Memorandum COSOR 97-??, 1997, Eindhoven University of Technology

Size: px
Start display at page:

Download "Memorandum COSOR 97-??, 1997, Eindhoven University of Technology"

Transcription

1 Meoandu COSOR 97-??, 1997, Endhoven Unvey of Technology The pobably geneang funcon of he Feund-Ana-Badley ac M.A. van de Wel 1 Depaen of Maheac and Copung Scence, Endhoven Unvey of Technology, Endhoven, The Neheland Abac We deve a expeon fo he pobably geneang funcon of he dbuon-fee Feund- Ana-Badley cale ac. Fo h geneang funcon we how how o yeacally copue he exac null dbuon and he oen of he ac whn he copue algeba ye Maheaca. Fnally, we gve a able wh ccal value whch exend he exng able. Keywod Feund-Ana-Badley e, geneang funcon, exac dbuon, oen, copue algeba, nonpaaec ac. 1 Inoducon In h acle we deve a expeon fo he pobably geneang funcon of he dbuon-fee Feund-Ana-Badley ac, whch abbevaed a he FAB ac. Sacally euvalen veon of h ac wee noduced by Feund and Ana (1957) and Ana and Badley (1960). We pleened h geneang funcon n he copue algeba ye Maheaca fo copung he dbuon of he e ac vey uckly. We alo how how o ue he geneang funcon fo copung (hghe) oen of he e ac. In he appendx we peen he Maheaca code fo expandng he geneang funcon, n he econd appendx we gve a able wh ccal value fo he balanced cae whch exend he exng able fo N 0 o N 80. Fo geneal deal abou he FAB ac we efe o Gbbon and Chakabo (199). Seveal ehod have been developed fo copung he null dbuon of he FAB ac. Ana and Badley (1960) and Kanneann (1983) deve ecuence elaon baed on a wodenonal geneang funcon of Eule (1748, anl. 1988). Ohe ehod ae geneal ehod fo copung null dbuon of lnea wo-aple ank e and hence do no ue he pecc chaacec of he FAB ac. Exaple of hee ehod nclude he Pagano and Tchle (1983) appoach baed on chaacec funcon and fa Foue anfo and he newok algoh developed by Meha e al. (1987). Fo a ho decpon of hee ehod we efe o Good (1994). We gve an alenave ehod baed on he wo-denonal geneang funcon n Van de Wel (1996). Th la ehod fa and, alhough no val, vey nuve. We ue exac expeon and do no deal wh oundng eo a oe ecuve ehod do. The Feund-Ana-Badley e Le (X 1 ::: X )and(y 1 ::: Y n ) be ndependen aple fo connuou dbuon funcon. Thu we ay and wll aue ha e do no occu. We conde he cobned aple (X 1 ::: X Y 1 ::: Y n ), N +n. TheFeund-Ana-Badley e a wo-aple cale e. The coepondng e ac dened by: A N NX `1 ` ; N +1 Z` (1) 1 Mak van de Wel, Depaen of Maheac and Copung Scence, Endhoven Unvey oftechnology P. O.Box MB Endhoven, The Neheland akvdw@wn.ue.nl 6

2 whee Z` 1fhe`h ode ac n he cobned aple an X-obevaon and Z` 0 ohewe. Thu, fo h ac he ank coe ae ` 1 ::: N. a(`) ` ; N +1 () Duan (1976) copae he FAB ac wh ohe cale ac lke he Mood cale ac, he Segel-Tukey ac and he Kloz ac (fo deal abou hee e ac: ee Gbbon and Chakabo (199)). I un ou ha he Segel-Tukey ac and FAB ac ae aypocally euvalen n e of (Pan) aypoc elave ecency. The Mood ac and Kloz ac ae oe ecen when he alenave noal (o lgh-aled), whle he Segel-Tukey ac and FAB ac ae oe ecen fo heavy-aled dbuon. The FAB ac aan uch le value han he Mood and Kloz ac. Th boh a copuaonal advanage and a poenal dadvanage egadng he nube of gncance level (fo all aple ze). 3 The pobably geneang funcon Fo () we ee ha fo N even he ank coe ae of he fo ; 1 1 :::N.Wewll nd o be convenen ha he coe ae nege and heefoe we noduce adjued FAB coe: a 0 (`) 8 >< >: ` ; N +1 ` ; N f N even (3) f N odd, ` 1 ::: N: We dene he adjued FAB e ac A 0 N a A N wh he FAB coe eplaced by he adjued FAB coe. The ac A 0 N, of coue, acally euvalen oa N.Fo N even, we ay pl he e of adjued coe fa 0 (1) ::: a 0 (N)g no wo e of Wlcoxon coe f1 ::: 1 Ng, whch he an dea behnd ou appoach. Wh he ad of h obevaon we found he followng heoe fo he cae N even: Theoe 3.1 Unde H 0, N + n even and n he pobably geneang funcon of he Feund-Ana-Badley ac whee 0 1 k0 P(A N k) x k 1 ; N X 0 c() c( ; ) N Q `1 (1;`) Q `1 (1;`)Q ; `1 (1;`) fo >0 and c() (+1) : N (4) ; Poof: Aue, whou lo of genealaon, ha n. We dene R a he ank coe n he pooled aple coepondng o X 1 :::. Slaly, S j he ank coe coepondng o Y j j 1 ::: n. We know ha unde H 0 evey conguaon of R 1 ::: R S 1 ::: S n eupobable. Le T (a) be he half of a conguaon a. We can paon hee conguaon no clae of conguaon wh R' n T (a),. The cla of conguaon wh R' n T (a) called C. We denoe he eleen of T (a) by R u1 :::R u S v1 ::: S vn;, whee u 1 ::: u and v 1 ::: v N; ae ubeuence of 1 ::: and 1 ::: n, epecvely. We dene he followng Wlcoxon ac: W N; X j1 R uj and W ; N;+ ; X j1 R u+j : 7

3 We need o pove he condonal ndependence of W N; and W ; N;+, gven C. Le K 1 (a) be he cla of ' fo whch he half eual he half of a conguaon a. Slaly, le K (a) be he cla of ' fo whch he econd half eual he econd ; ; half of a. We noe ha N he even a euvalen ok 1 (a) \ K (a). Thee ae N ; conguaon n C. They ae eupobable unde H 0,o Unde H 0 wehave, P( K 1 (a)j C ) P( K (a)j C ) P( aj C ) 8 < : ( 1 f a C ( N )( ;) N 0 f a 6 C. #(:K 1(a)\C ) #(:C ) ( ;) N ( N )( ;) 1 f a C N ( N ) 0 f a 6 C, ( 1 ( N f a C ;) 0 f a 6 C. (5) (6) Cobnng (5) and (6) we conclude ha P( K 1 (a) \ K (a)j C )P( aj C ) P( K 1 (a)j C )P( K (a)j C ): (7) Le 1 be a conguaon of R' and N ; S' and le be a conguaon of ; R' and N ; + S'. Fo j 1 : P( K j (a)j C )f P( j a j) (8) whee a j he jh (j 1 ) half of he conguaon a. The ybol P denoe he pobably eaue on he pace wh conguaon of lengh N, wheea P f denoe he pobably eaue on he pace wh conguaon of lengh N: The ac W N; and W ; N;+ ae funcon of 1 and,epecvely. Becaue of eualy (8)weayegad W N; and W ; N;+ a funcon of all ' fo whch C. Snce euaon (7) ell u ha, gven C, he even f K 1 (a)g and f K (a)g ae ndependen, we conclude ha W N; and W ; N;+ ae alo ndependen, gven C. The e of adjued FAB coe con of wo dencal e of Wlcoxon coe. When coe of he e ae agned o he X', we knowha ; coe of he econd e ae agned o he X', 0. The u of he coe agned o X' eual A 0 N and alo eual he u of W N; and W ; N;+. Theefoe, #(A 0 N k) P 0 #(W N; + W ; N;+ k). Le H Z be a geneang funcon fo he nube of way a ac Z can each a cean value. Then, H A 0 N X k0 X 0 k0 0 #(A 0 N k) x k X k0 0 #(W N ; + W ; N ;+ k) xk H W N ; H W ; N ;+ #(W N ; + W ; N ;+ k) xk X 0 H W N ; +W ; N ;+ whee n he la ep we ued ha W N ; and W ; N ;+ ae ndependen. The geneang funcon H Wa b can ealy be deved fo he geneang funcon of he euvalen Mann-Whney (9) 8

4 ac M a b.weknowhaw a b M a b + 1 a(a+1) and fo Andew (1976, Ch. 3) and Davd and Baon (196, pp ) we knowha Theefoe, H Ma b H Wa b c(a) a + b : a a + b : (10) a Subung (10) no (9) wh (a b) ( N ; ) and(a b) ( ; N ; + ) gve u H A 0. N We coplee ou poof by eakng ha fo N even, A N A 0 N ;. Theoe 3. Unde H 0, N + n odd and n he pobably geneang funcon of he Feund-Ana-Badley ac whee k0 P(A N k) x k ; 1 X N 1 j0 and c() a n Theoe 3.1. ;j X 0 N;1 c() c( ; j ; ) N;1 ; j ; Poof: The poof la o ha of Theoe 3.1, bu now we deal wh wo dencal e of Wlcoxon coe and one coe ha eual o zeo. Th poble olved by ung ove a vaable j ha eual 1 f zeo agned o an X-obevaon and ha eual 0 ohewe. So fo j 0we oban all poble value of A 0 N wh coe n he wo dencal e and fo j 1 we oban all poble value of A 0 N wh ; 1 coe n he wo dencal e. 4 Moen of he FAB ac Foula (4) and (11) ell u ha fo copung oen of he FAB ac uce o copue devave of he expeon V () d() whee d() a ne u of e of he fo c z whee c and z ae aonal. If we denoe he kh devave off() by f (k) () hen we ee ha V (k) () Xk; kx j0 0 k k ; ; j j d (k;;j) () () (j) Snce d() a ne u of e of he fo c z whee c and z ae aonal, aghfowad o copue d (`) (1) fo ` abay lage. The wo ohe e n he gh hand de of (1) ae polynoal, o we ayake he! 1 and we nd he followng expeon fo he kh devave ofv () a 1: V (k) (1) Xk; kx j0 0 k k ; ; j j d (k;;j) (1)!1 ()!1 (j) D Bucchanco (1996) povde a ehod fo copung expeon of he fo ()!1 wh he ad of he copue algeba package Maheaca. We ued h ehod fo copung oen of he FAB ac. (11) (1) (13) 9

5 4.1 Exaple A an lluaon we copue he ean fo he cae N even. In h cae k 1, o afe expandng (13) we ge 0 V 0 (1) d(1)!1 ; N ;1 1 In h cae d() d 0 (1)!1!1!1 + d(1)!1 (+1)+ 1 (;)(;+1);,od(1) ; N!1 0 + ;1 and d 0 (1) ; N (14) ;1( 1 ( + 1) + 1 ( ; )( ; +1); ) 1 ; N ;1( + ; ). Fo he exaple n D Bucchanco (1996,p. 9) we exac ha!1 and 0 1!1 ( ; ): The ae euaon hold fo eplaced by. In euaon (4) we eeha N and ;. Subung n (14) leave u afe oe labou ; V 0 (1) N;N ; N ; N (15) 4 The la hng we have odoungove and we ge he ean AN AN X 0 N ; N ; N 4 ; N fo N even: ; N 4 (16) P ; N ; N ; whee we ue he fac ha 0 ; N whch a pecal cae of he Chu-VandeMonde foula. Fo a coplee poof: ee (Chu 1303, anl. 1959) o Rodan (1979).. 4. Exaple of a hghe oen We gve EA 5 N, he fh oen ofhefab ac fo N even. I ook 80 econd o copue h oen on a SunSpac 10. EA 5 N P( n) 307 ( + n ; 3) ( + n ; 1) wh P ( n) (;1+1n)+ 9 ; ;111 ; 6 n +63n + 8 ; 480 ; 705 n ; 10 n +105n ; n ; 1855 n ; 90 n n ; ; n +340n ; 585 n 3 +0n 4 +63n ; ;4560 ; 416 n n n 3 ; 005 n 4 +78n 5 +1n ; ; 3196 n ; n +1975n 3 ; 48 n 4 ; 811 n 5 +48n 6 +3n ; ; n ; 6896 n ; 1364 n n 4 ; 8 n 5 ; 15 n 6 +10n 7 + ; ; n +9075n ; 5051 n n n 5 ; 60 n 6 +5n 7 + ; 5596 ; n n +0768n 3 ; n n 5 ; 36 n 6 ; n n ; n n 3 ; 364 n 4 ; 3 n 5 +16n 6 Skech of he poof: dene a geneang funcon wh coecen eual o he lef-hand de of he eualy and wh ung vaable. Then ue he convoluon heoe o pl he u no a poduc of wo u. Fnally, ue he bnoal heoe o oban he deed eul. 10

6 5 Copue algeba Th econ conan he ex of he Maheaca package we ued fo copung he dbuon of he FAB ac by ung Theoe 3.1 and 3.. We alo gve a all exaple. FABevengf[N_,_]: Expand[Splfy[1/Bnoal[N,]*^(-(/))* (Su[c[]*c[-]*Poduc[1-^l,{l,N/}]/(Poduc[1-^l,{l,}]* Poduc[1-^l,{l,N/-}])*Poduc[1-^l,{l,N/}]/ (Poduc[1-^l,{l,-}]*Poduc[1-^l,{l,N/-(-)}]),{,-1}] + (*c[])*poduc[1-^l,{l,n/}]/ (Poduc[1-^l,{l,}]*Poduc[1-^l,{l,N/-}]))]] FABoddgf[N_,_]: Expand[Splfy[1/Bnoal[N,]* Su[Su[c[]*c[-j-]*Poduc[1-^l,{l,(N-1)/}]/ (Poduc[1-^l,{l,}]*Poduc[1-^l,{l,(N-1)/-}])* Poduc[1-^l,{l,(N-1)/}]/(Poduc[1-^l,{l,-j-}]* Poduc[1-^l,{l,(N-1)/-(-j-)}]),{,-j-1}] + (*c[-j])*poduc[1-^l,{l,(n-1)/}]/(poduc[1-^l,{l,-j}]* Poduc[1-^l,{l,(N-1)/-(-j)}]),{j,0,1}]]] c[_]: ^((1/)**(+1)) Noe ha he cae 0 and ;j ae pl o, becaue we have o ell Maheaca explcly ha 0 1. The conbuon of hee cae o he u eual. The Maheaca funcon Expand and Splfy ae ued o copue he full polynoal whch epeen he dbuon of he FAB ac. The followng exaple gve he dbuon of he FAB ac fo n 4. FABevengf[8,4] Table of ccal value Wh he ad of Theoe 3.1 and 3. we wee able o exend he exng able of ccal value. Ana and Badley (1960) gve ccal value fo N 0. We gve able fo n N 80. Fo paccal eaon we dd no pn he unbalanced cae. Anyone neeed n ccal value fo an unbalanced cae ay conac he auho. Acknowledgeen I would lke o hank Aleando D Bucchanco fo he dcuon and coecon and fo povdng he Maheaca package fo copung oen of he Mann-Whney ac. 11

7 n 0:005 0:01 0:05 0:05 0:1 0:1 0:05 0:05 0:01 0: :5 7:5 7:5 8:5 16:5 17:5 17:5 18: :5 14:5 15:5 17:5 18:5 30:5 31:5 33:5 34:5 35: :5 6:5 8:5 30:5 3:5 48:5 50:5 5:5 54:5 55: :5 4:5 44:5 46:5 49:5 71:5 74:5 76:5 78:5 80: :5 61:5 64:5 67:5 70:5 98:5 101:5 104:5 107:5 109: :5 83:5 88:5 91:5 95:5 19:5 133:5 136:5 141:5 143: :5 110:5 115:5 119:5 14:5 164:5 169:5 173:5 178:5 18: :5 140:5 146:5 151:5 157:5 03:5 09:5 14:5 0:5 4: :5 173:5 180:5 186:5 193:5 47:5 54:5 60:5 67:5 71: :5 11:5 19:5 6:5 34:5 94:5 30:5 309:5 317:5 33: :5 5:5 61:5 69:5 78:5 346:5 355:5 363:5 37:5 379: :5 96:5 307:5 315:5 36:5 40:5 413:5 41:5 43:5 439: :5 345:5 356:5 366:5 378:5 46:5 474:5 484:5 495:5 503: :5 397:5 410:5 41:5 433:5 57:5 539:5 550:5 563:5 57: :5 453:5 467:5 479:5 493:5 595:5 609:5 61:5 635:5 645: :5 513:5 58:5 541:5 556:5 668:5 683:5 696:5 711:5 7: :5 576:5 593:5 607:5 64:5 744:5 761:5 775:5 79:5 803: :5 643:5 661:5 677:5 695:5 85:5 843:5 859:5 877:5 889: Table 1: Lef and gh ccal value fo he Feund-Ana-Badley e, n. 1

8 Refeence Andew, G.E. (1981), The heoy of paon, Encyclopeda of aheac and applcaon (Addon-Weley, Readng, nd ed.). Ana, A.R. and R.A. Badley (1960), Rank u e fo dpeon, Ann. Mah. Sa. 31, Chu Ch-Ke (1303), Manucp, Chna, n: J. Needha, Scence and Cvlzaon n Chna 3 (Cabdge Unvey Pe, Cabdge, 196). Davd, F.N. and D.E. Baon (196), Cobnaoal chance (Chale Gn & Co., London) D Bucchanco, A. (1996), Cobnaoc, copue algeba and he Wlcoxon-Mann-Whney e, Tech. Rep. COSOR 96-4 (Endhoven Unvey of Technology, Endhoven). Duan, B.S. (1976), A uvey of nonpaaec e fo cale, Co. Sa.{Theoy Mehod A5, Eule, L. (1748), Inoduco n analyn nnou, n: Inoducon o analy of he nne (Spnge, New Yok, 1988). Feund, J.E. and A.R. Ana (1957), Two-way ank u e fo vaance, Vgna Polyechnc Inue Techncal Repo o Oce of Odnance Reeach and Naonal Scence Foundaon 34. Gbbon, J.D. and S. Chakabo (199), Nonpaaec acal nfeence (Macel Dekke, New Yok, 3d ed.). Good, P.I. (1994), Peuaon e, a paccal gude o eaplng ehod fo eng hypohee (Spnge-Velag, New Yok). Kanneann, K. (1983), A unfyng, analyc odel fo cean lnea ank e II. Exac dbuon algoh, Boecal J. 5, Meha, C.R., N.R. Pael and L.J. We (1987), Conucng exac gncance e wh eced andozaon ule, Boeka 75(), Pagano, M. and D. Tchle (1983), On obanng peuaon dbuon n polynoal e, J. Ae. Sa. Aoc. 78, Rodan, J. (1979), Cobnaoal dene (Wley, 1979, nd ed.). van de Wel, M.A. (1996), Exac dbuon of nonpaaec ac ung copue algeba, Mae' he, (Endhoven Unvey of Technology, Endhoven). 13

Maximum Likelihood Estimation

Maximum Likelihood Estimation Mau Lkelhood aon Beln Chen Depaen of Copue Scence & Infoaon ngneeng aonal Tawan oal Unvey Refeence:. he Alpaydn, Inoducon o Machne Leanng, Chape 4, MIT Pe, 4 Saple Sac and Populaon Paaee A Scheac Depcon

More information

ESS 265 Spring Quarter 2005 Kinetic Simulations

ESS 265 Spring Quarter 2005 Kinetic Simulations SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

More information

Information Fusion Kalman Smoother for Time-Varying Systems

Information Fusion Kalman Smoother for Time-Varying Systems Infoaon Fuon alan oohe fo Te-Vayng ye Xao-Jun un Z- Deng Abac-- Fo he lnea dcee e-ayng ochac conol ye wh uleno coloed eaueen noe hee dbued opal fuon alan oohe ae peened baed on he opal nfoaon fuon ule

More information

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) USOD 005 uecal Sudy of Lage-aea An-Reonan Reflecng Opcal Wavegude (ARROW Vecal-Cavy Seconduco Opcal Aplfe (VCSOA anhu Chen Su Fung Yu School of Eleccal and Eleconc Engneeng Conen Inoducon Vecal Cavy Seconduco

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations Çny Ünvee Fen-Edeby Füle Jounl of A nd Scence Sy : 5 y 6 Chebyhev Polynol Soluon of onlne Fedhol-Vole Inego- Dffeenl Equon Hndn ÇERDİK-YASA nd Ayşegül AKYÜZ-DAŞCIOĞU Abc In h ppe Chebyhev collocon ehod

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

c- : r - C ' ',. A a \ V

c- : r - C ' ',. A a \ V HS PAGE DECLASSFED AW EO 2958 c C \ V A A a HS PAGE DECLASSFED AW EO 2958 HS PAGE DECLASSFED AW EO 2958 = N! [! D!! * J!! [ c 9 c 6 j C v C! ( «! Y y Y ^ L! J ( ) J! J ~ n + ~ L a Y C + J " J 7 = [ " S!

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

STABILITY CRITERIA FOR A CLASS OF NEUTRAL SYSTEMS VIA THE LMI APPROACH

STABILITY CRITERIA FOR A CLASS OF NEUTRAL SYSTEMS VIA THE LMI APPROACH Asan Jounal of Conol, Vol. 6, No., pp. 3-9, Mach 00 3 Bef Pape SABILIY CRIERIA FOR A CLASS OF NEURAL SYSEMS VIA HE LMI APPROACH Chang-Hua Len and Jen-De Chen ABSRAC In hs pape, he asypoc sably fo a class

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS #A39 INTEGERS 9 (009), 497-513 GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS Mohaad Faokh D. G. Depatent of Matheatcs, Fedows Unvesty of Mashhad, Mashhad,

More information

Probability Distribution (Probability Model) Chapter 2 Discrete Distributions. Discrete Random Variable. Random Variable. Why Random Variable?

Probability Distribution (Probability Model) Chapter 2 Discrete Distributions. Discrete Random Variable. Random Variable. Why Random Variable? Discete Distibutions - Chapte Discete Distibutions Pobability Distibution (Pobability Model) If a balanced coin is tossed, Head and Tail ae equally likely to occu, P(Head) = = / and P(Tail) = = /. Rando

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

Physics 120 Spring 2007 Exam #1 April 20, Name

Physics 120 Spring 2007 Exam #1 April 20, Name Phc 0 Spng 007 E # pl 0, 007 Ne P Mulple Choce / 0 Poble # / 0 Poble # / 0 Poble # / 0 ol / 00 In eepng wh he Unon College polc on cdec hone, ued h ou wll nehe ccep no pode unuhozed nce n he copleon o

More information

Physics 201 Lecture 15

Physics 201 Lecture 15 Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

More information

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution ISSN 684-843 Joua of Sac Voue 5 8 pp. 7-5 O Pobaby Dey Fuco of he Quoe of Geeaed Ode Sac fo he Webu Dbuo Abac The pobaby dey fuco of Muhaad Aee X k Y k Z whee k X ad Y k ae h ad h geeaed ode ac fo Webu

More information

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

More information

1 Random Variable. Why Random Variable? Discrete Random Variable. Discrete Random Variable. Discrete Distributions - 1 DD1-1

1 Random Variable. Why Random Variable? Discrete Random Variable. Discrete Random Variable. Discrete Distributions - 1 DD1-1 Rando Vaiable Pobability Distibutions and Pobability Densities Definition: If S is a saple space with a pobability easue and is a eal-valued function defined ove the eleents of S, then is called a ando

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

THIS PAGE DECLASSIFIED IAW EO 12958

THIS PAGE DECLASSIFIED IAW EO 12958 THIS PAGE DECLASSIFIED IAW EO 2958 THIS PAGE DECLASSIFIED IAW EO 2958 THIS PAGE DECLASSIFIED IAW E0 2958 S T T T I R F R S T Exhb e 3 9 ( 66 h Bm dn ) c f o 6 8 b o d o L) B C = 6 h oup C L) TO d 8 f f

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

H = d d q 1 d d q N d d p 1 d d p N exp

H = d d q 1 d d q N d d p 1 d d p N exp 8333: Sacal Mechanc I roblem Se # 7 Soluon Fall 3 Canoncal Enemble Non-harmonc Ga: The Hamlonan for a ga of N non neracng parcle n a d dmenonal box ha he form H A p a The paron funcon gven by ZN T d d

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL UPB Sc B See A Vo 72 I 3 2 ISSN 223-727 MUTIPE -HYBRID APACE TRANSORM AND APPICATIONS TO MUTIDIMENSIONA HYBRID SYSTEMS PART II: DETERMININ THE ORIINA Ve PREPEIŢĂ Te VASIACHE 2 Ace co copeeă oă - pce he

More information

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem b) Theoe The u of he eco pojecon of eco n ll uull pependcul (n he ene of he cl poduc) decon equl o he eco. ( ) n e e o The pojecon conue he eco coponen of he eco. poof. n e ( ) ( ) ( ) e e e e e e e e

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

Clustering Web Access Patterns based on Learning Automata and Fuzzy Logic

Clustering Web Access Patterns based on Learning Automata and Fuzzy Logic The Thd Ian Daa Mnng Confeence/IDMC 009 5-6 Dec.009, Tehan,Ian Pape ID: 4....... weghed fuzzy c-ean... Clueng Web Acce Paen baed on eanng Auoaa and Fuzzy ogc Z. Ana Copue Engneeng Depaen Ilac Azad Unvey

More information

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by

A GENERALIZATION OF A CONJECTURE OF MELHAM. 1. Introduction The Fibonomial coefficient is, for n m 1, defined by A GENERALIZATION OF A CONJECTURE OF MELHAM EMRAH KILIC 1, ILKER AKKUS, AND HELMUT PRODINGER 3 Abstact A genealization of one of Melha s conectues is pesented Afte witing it in tes of Gaussian binoial coefficients,

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

Flow Decomposition and Large Deviations

Flow Decomposition and Large Deviations ounal of funconal analy 14 2367 (1995) acle no. 97 Flow Decompoon and Lage Devaon Ge ad Ben Aou and Fabenne Caell Laboaoe de Mode laon ochaque e aque Unvee Pa-Sud (Ba^. 425) 91-45 Oay Cedex Fance Receved

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n HE EQUIVAENCE OF GRA-SCHID AND QR FACORIZAION (page 7 Ga-Schdt podes anothe way to copute a QR decoposton: n gen ectos,, K, R, Ga-Schdt detenes scalas j such that o + + + [ ] [ ] hs s a QR factozaton of

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Monetary policy and models

Monetary policy and models Moneay polcy and odels Kes Næss and Kes Haae Moka Noges Bank Moneay Polcy Unvesy of Copenhagen, 8 May 8 Consue pces and oney supply Annual pecenage gowh. -yea ovng aveage Gowh n oney supply Inflaon - 9

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

Central limit theorem for functions of weakly dependent variables

Central limit theorem for functions of weakly dependent variables Int. Statistical Inst.: Poc. 58th Wold Statistical Congess, 2011, Dublin (Session CPS058 p.5362 Cental liit theoe fo functions of weakly dependent vaiables Jensen, Jens Ledet Aahus Univesity, Depatent

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Several new identities involving Euler and Bernoulli polynomials

Several new identities involving Euler and Bernoulli polynomials Bull. Math. Soc. Sci. Math. Roumanie Tome 9107 No. 1, 016, 101 108 Seveal new identitie involving Eule and Benoulli polynomial by Wang Xiaoying and Zhang Wenpeng Abtact The main pupoe of thi pape i uing

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecton and Etmaton Theoy Joeph A. O Sullvan Samuel C. Sach Pofeo Electonc Sytem and Sgnal Reeach Laboatoy Electcal and Sytem Engneeng Wahngton Unvety 411 Jolley Hall 314-935-4173 (Lnda anwe) jao@wutl.edu

More information

A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE

A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE S13 A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE by Hossen JAFARI a,b, Haleh TAJADODI c, and Sarah Jane JOHNSTON a a Deparen of Maheacal Scences, Unversy

More information

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate ucs Nucleus Nucleus omaon cal supesauaon Mng o eucs, empeaue, ec. Pmay pacle Gowh Inegaon o uson-lme pacle gowh Nanopacles Agglomeaon eagglomeaon Agglomeae Sablsaon o he nanopacles agans agglomeaon! anspo

More information

Homework Set 4 Physics 319 Classical Mechanics. m m k. x, x, x, x T U x x x x l 2. x x x x. x x x x

Homework Set 4 Physics 319 Classical Mechanics. m m k. x, x, x, x T U x x x x l 2. x x x x. x x x x Poble 78 a) The agangian i Hoewok Set 4 Phyic 319 Claical Mechanic k b) In te of the cente of a cooinate an x x1 x x1 x xc x x x x x1 xc x xc x x x x x1 xc x xc x, x, x, x T U x x x x l 1 1 1 1 1 1 1 1

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES

MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES Jounal of lgeba Numbe heo: dance and pplcaon Volume 5 Numbe 6 Page -9 alable a hp://cenfcadance.co.n DOI: hp://d.do.og/.86/janaa_7686 MRIX COMPUIONS ON PROJCIV MODULS USING NONCOMMUIV GRÖBNR BSS CLUDI

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958

More information

New recipes for estimating default intensities

New recipes for estimating default intensities SFB 649 Dcuon Pape 9-4 New ecpe o emang deaul nene Alexande Baanov* Caen von Lee* Andé Wlch* * WeLB AG, Düeldo, Gemany SFB 6 4 9 E C O N O M I C R I S K B E R L I N h eeach wa uppoed by he Deuche Fochunggemencha

More information

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function MACROECONOMIC THEORY T J KEHOE ECON 87 SPRING 5 PROBLEM SET # Conder an overlappng generaon economy le ha n queon 5 on problem e n whch conumer lve for perod The uly funcon of he conumer born n perod,

More information

β A Constant-G m Biasing

β A Constant-G m Biasing p 2002 EE 532 Anal IC Des II Pae 73 Cnsan-G Bas ecall ha us a PTAT cuen efeence (see p f p. 66 he nes) bas a bpla anss pes cnsan anscnucance e epeaue (an als epenen f supply lae an pcess). Hw h we achee

More information

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ecre Noe Prepared b r G. ghda EE 64 ETUE NTE WEE r. r G. ghda ocorda Uer eceraled orol e - Whe corol heor appled o a e ha co of geographcall eparaed copoe or a e cog of a large ber of p-op ao ofe dered

More information

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie)

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie) Can a peon be blown away by a bullet? et' ay a bullet of a 0.06 k i ovin at a velocity of 300 /. And let' alo ay that it ebed itelf inide a peon. Could thi peon be thut back at hih peed (i.e. blown away)?

More information

Recurrence Relations for Single and Product Moments of Generalized Order Statistics from Extreme Value Distribution

Recurrence Relations for Single and Product Moments of Generalized Order Statistics from Extreme Value Distribution Aecan Jonal o Appled Matheatc and Stattc, 204, Vol. 2, No. 2, 77-82 Avalable onlne at http://pb.cepb.co/aa/2/2/5 Scence and Edcaton Pblhng DOI:0.269/aa-2-2-5 Recence Relaton o Sngle and Podct Moent o Genealzed

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

EE 410/510: Electromechanical Systems Chapter 3

EE 410/510: Electromechanical Systems Chapter 3 EE 4/5: Eleomehnl Syem hpe 3 hpe 3. Inoon o Powe Eleon Moelng n Applon of Op. Amp. Powe Amplfe Powe onvee Powe Amp n Anlog onolle Swhng onvee Boo onvee onvee Flyb n Fow onvee eonn n Swhng onvee 5// All

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

Matrix reconstruction with the local max norm

Matrix reconstruction with the local max norm Marx reconrucon wh he local max norm Rna oygel Deparmen of Sac Sanford Unvery rnafb@anfordedu Nahan Srebro Toyoa Technologcal Inue a Chcago na@cedu Rulan Salakhudnov Dep of Sac and Dep of Compuer Scence

More information

Universal Gravitation

Universal Gravitation Add Ipotant Univeal Gavitation Pae: 7 Note/Cue Hee Unit: Dynaic (oce & Gavitation Univeal Gavitation Unit: Dynaic (oce & Gavitation NGSS Standad: HS-PS-4 MA Cuiculu aewok (00:.7 AP Phyic Leanin Objective:.B..,.B..,

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

2 shear strain / L for small angle

2 shear strain / L for small angle Sac quaons F F M al Sess omal sess foce coss-seconal aea eage Shea Sess shea sess shea foce coss-seconal aea llowable Sess Faco of Safe F. S San falue Shea San falue san change n lengh ognal lengh Hooke

More information

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland The Unque Soluon of Sochasc Dffeenal Equaons Dech Rye RyeDM@gawne.ch Mdaweg 3 CH-4500 Solohun Swzeland Phone +4132 621 13 07 Tme evesal n sysems whou an exenal df sngles ou he an-iô negal. Key wods: Sochasc

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions: esng he Random Walk Hypohess If changes n a sees P ae uncoelaed, hen he followng escons hold: va + va ( cov, 0 k 0 whee P P. k hese escons n un mply a coespondng se of sample momen condons: g µ + µ (,,

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

Stability Analysis of a Sliding-Mode Speed Observer during Transient State

Stability Analysis of a Sliding-Mode Speed Observer during Transient State Poceedng of he 5h WA In. Conf. on Inuenaon Meaueen Ccu and ye Hangzhou Chna Apl 6-8 006 (pp35-40 ably Analy of a ldng-mode peed Obeve dung anen ae WIO ANGUNGONG AAWU UJIJON chool of leccal ngneeng Inue

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

arxiv: v1 [math.cv] 7 Nov 2018

arxiv: v1 [math.cv] 7 Nov 2018 INTERMEDIATE HANKEL OPERATORS ON THE FOCK SPACE OLIVIA CONSTANTIN axiv:181103137v1 [mathcv] 7 Nov 2018 Abtact We contuct a natual equence of middle Hankel opeato on the Fock pace, ie opeato which ae intemediate

More information