Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation

Size: px
Start display at page:

Download "Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation"

Transcription

1 Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation Won Chang Post Doctoral Scholar, Department of Statistics, University of Chicago Oct 15, 2014 Thesis Advisors: Murali Haran, Klaus Keller Coauthors: Murali Haran, Klaus Keller (Penn State), Roman Olson (U of New South Wales) Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

2 Overview Climate models are often used to make projections about future climate. A major source of uncertainty about these projections is due to uncertainty about climate model input parameters. We propose methods for learning about climate model parameters from climate model outputs and observations. Challenges: Data in the form of high-dimensional spatial fields. Complicated error structures. I will describe novel computationally efficient calibration approach. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

3 Scientific Motivation Scientific Goal: Making projections for AMOC using climate model. Atlantic Meridional Overturning Circulation (AMOC): Large scale ocean circulation, important for equilibrium climate in Europe Rahmstorf (1997) Background vertical diffusivity (K bg ): Model parameter that quantifies intensity of vertical mixing in ocean. Source of uncertainty in AMOC projections. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

4 Parametric Uncertainty in AMOC Projections Bhat et al. (2012) Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

5 Calibration Problem Which parameter settings best match observations? Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

6 Emulation Step Computer model output (y-axis) vs. input (x-axis) Emulation (approximation) of computer model using GP Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

7 Calibration Step Combining observation and emulator Posterior PDF of θ given model output and observations Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

8 Summary of Statistical Problem Goal: Learning about θ based on two sources of information: Observations*: Mean potential ocean temperature, Z = (Z(s 1 ),..., Z(s n )) T, where s 1,..., s n are 3D locations. Climate model output** for mean potential temperature Y(θ 1 ),..., Y(θ p ), where each Y(θ i ) = (Y (s 1, θ i ),..., Y (s n, θ i )) T is spatial field (Sriver et al., 2012). Z and Y(θ i ) s are n-dimensional vectors Important: output at each θ i is a high-dimensional spatial field. n = 61, 051 locations, p = 250 runs. *World Ocean Atlas 2009 **University of Victoria (UVic) Earth System Climate Model Averaged over Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

9 GP for Computer Model Emulation Fit GP to np-dimensional data Y = ( Y(θ 1 ) T,..., Y(θ p ) T ) T by finding MLE ˆξ of emulator parameter ξ. Covariance used for non-linear relationship between parameter and model output (model output as a function of parameter) non-linear spatial surface (model output as a function of location) Covariance function example: Cov ( Y (s, θ), Y (s, θ ); ξ ) ( =κ exp g (s, ) ( s ) θ θ ) exp φ s φ θ + ζi (θ = θ )I (s = s ) where g is geodesic distance, and ξ = (κ, φ s, φ θ, ζ) is covariance parameter. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

10 Step 1: Emulation (Approximating Computer Model) Get η(θ NEW, Y) for prediction at any θ NEW Θ: GP gives ( Y Y(θ NEW ) ) N ( ( 0 0 ), n(p+1) 1 ( ) Σ11 Σ 12 Σ 21 Σ 22 n(p+1) n(p+1) Emulator: η (θ NEW, Y) = Y(θ NEW ) Y N ( Σ 21 Σ 1 11 Y, Σ 22 Σ 21 Σ 1 11 Σ ) 12 ) Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

11 Calibration Model based on GP Emulator Model observational data by Z = η(θ, Y) + δ, where n-dimensional spatial field δ is model-observation discrepancy with covariance parameter ξ δ. Corresponding probability model: Z Y, θ, ξ δ N ( µ η, Σ η + Σ d ) where µ η = Σ 12 Σ 1 22 Y and Σ η = Σ 22 Σ 21 Σ 1 11 Σ 12. Σ d is covariance matrix for discrepancy process such that ( {Σ d } ij = κ d exp g(s ) i, s j ) + ζ d I (s i = s j ), φ d where κ d > 0, φ d > 0, ζ d > 0, and ξ δ = (κ d, φ d, ζ d ). Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

12 Step 2: Calibration (Inferring Input Parameter) Inference for θ based on posterior distribution π(θ, ξ δ Z, Y, ˆξ) L(Z Y, θ, ξ δ, ˆξ) p(θ) p(ξ }{{} δ ) }{{} likelihood priors for θ and ξ δ with emulator parameter ˆξ fixed at value estimated in emulation step. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

13 Computational Challenges Emulation Step: Computational Challenges for np np covariance matrix: Cholesky decomposition costs 1 3 n3 p 3 = flops. Storing covariance matrix requires = 1, 735, 624 Gb 3 memory space. Calibration Step: Similar challenges for dealing with n n covariance matrix. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

14 Our Solution: Dimension Reduction Fast computation using PC and Kernel Convolution (Chang et al. 2014a, the Annals of Applied Statistics) Consider model outputs at θ 1,..., θ p as replicates and obtain PCs Y (s 1, θ 1 )... Y (s n, θ 1 )..... Y (s 1, θ p )... Y (s n, θ p ) p n Y1 R(θ 1)... Y R J y (θ 1 )..... Y1 R(θ p)... YJ R y (θ p ) p J y PCs pick up characteristics of model output that vary most across input parameters θ 1,..., θ p. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

15 Emulation Using PCs Fit 1-dimensional GP for each series Yj R (θ 1 ),..., Yj R (θ p ) η(θ, Y R ): J y -dimensional emulation process for PCs, Y R is collection of PCs Computation reduces from O(n 3 p 3 ) to O(J y p 3 ) ( to flops). Emulation for original output: compute K y η(θ, Y R ) where K y is matrix of scaled eigenvectors Covariance Structure Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

16 Cross-validation for Emulator Check emulation performance: Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

17 Calibration in Reduced Dimensions Probability model for dimension-reduced observation Z R : Z = K y η(θ, Y R ) + }{{} K d ν }{{} emulator discrepancy + ɛ }{{} ( Z R = (K T K) 1 K T η(θ, Y Z = R ) ν observation error, ) + (K T K) 1 K T ɛ, with combined basis K = [K y K d ], knot process ν N(0, κ d I), and observational error ɛ N(0, σ 2 I). Infer θ through posterior distribution π(θ, κ d, σ 2 Z R, Y R ) L(Z R Y R, θ, κ d, σ 2 ) p(θ)p(κ }{{} d )p(σ 2 ) }{{} likelihood given by above priors Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

18 Modeling Discrepancy with Kernel Convolution Kernel convolution: Specifying n-dimensional discrepancy process δ using J d -dimensional knot process ν (J d < n) and n J d kernel basis matrix K d. Let δ = K d ν. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

19 Scientific Question: Effect of Data Aggregation Data aggregation is commonly used to avoid computational challenges Its effect is previously unknown due to computational challenges for unaggregated data Our approach allows us to calibrate using unaggregated data. We compare results based on 1D (depth profile, n=13) 2D (zonal average, n=984) 3D (unaggregated, n=61051) Inference using 3D data: shaper inference for input parameter θ more robust to changes in prior specifications for discrepancy parameters. Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

20 Projection Results Using unaggregated spatial patterns (3D) leads to sharper projections Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

21 Discussion Dimension reduction-based approach: Very fast, scales well with n, number of spatial locations Very easy to use: Automatic emulation step Scientific finding: Using full spatial pattern without data aggregation leads to better results Other application: Greenland ice sheet model calibration (Chang 2014b) Ongoing Work: Calibration using binary spatial data: First extension to non-gaussian data Easily extended to one parametric exponential family Possible application: Ice sheet model calibration, ecological model, infectious disease model Won Chang (U of Chicago) Climate Model Calibration Oct 15, / 21

The Pennsylvania State University The Graduate School CLIMATE MODEL CALIBRATION USING HIGH-DIMENSIONAL AND NON-GAUSSIAN SPATIAL DATA

The Pennsylvania State University The Graduate School CLIMATE MODEL CALIBRATION USING HIGH-DIMENSIONAL AND NON-GAUSSIAN SPATIAL DATA The Pennsylvania State University The Graduate School CLIMATE MODEL CALIBRATION USING HIGH-DIMENSIONAL AND NON-GAUSSIAN SPATIAL DATA A Dissertation in Statistics by Won Chang c 2014 Won Chang Submitted

More information

1. Gaussian process emulator for principal components

1. Gaussian process emulator for principal components Supplement of Geosci. Model Dev., 7, 1933 1943, 2014 http://www.geosci-model-dev.net/7/1933/2014/ doi:10.5194/gmd-7-1933-2014-supplement Author(s) 2014. CC Attribution 3.0 License. Supplement of Probabilistic

More information

Inferring Likelihoods and Climate System Characteristics from Climate Models and Multiple Tracers

Inferring Likelihoods and Climate System Characteristics from Climate Models and Multiple Tracers Inferring Likelihoods and Climate System Characteristics from Climate Models and Multiple Tracers K. Sham Bhat, Murali Haran, Roman Tonkonojenkov, and Klaus Keller Abstract Characterizing the risks of

More information

Gaussian Processes and Complex Computer Models

Gaussian Processes and Complex Computer Models Gaussian Processes and Complex Computer Models Astroinformatics Summer School, Penn State University June 2018 Murali Haran Department of Statistics, Penn State University Murali Haran, Penn State 1 Modeling

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Tutorial on Approximate Bayesian Computation

Tutorial on Approximate Bayesian Computation Tutorial on Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology 16 May 2016

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Bayesian Inference by Density Ratio Estimation

Bayesian Inference by Density Ratio Estimation Bayesian Inference by Density Ratio Estimation Michael Gutmann https://sites.google.com/site/michaelgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Efficient Likelihood-Free Inference

Efficient Likelihood-Free Inference Efficient Likelihood-Free Inference Michael Gutmann http://homepages.inf.ed.ac.uk/mgutmann Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh 8th November 2017

More information

By K. Sham Bhat, Murali Haran, Roman Tonkonojenkov and Klaus Keller. The Pennsylvania State University

By K. Sham Bhat, Murali Haran, Roman Tonkonojenkov and Klaus Keller. The Pennsylvania State University Submitted to the Annals of Applied Statistics INFERRING LIKELIHOODS AND CLIMATE SYSTEM CHARACTERISTICS FROM CLIMATE MODELS AND MULTIPLE TRACERS By K. Sham Bhat, Murali Haran, Roman Tonkonojenkov and Klaus

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Statistics and the Future of the Antarctic Ice Sheet

Statistics and the Future of the Antarctic Ice Sheet Statistics and the Future of the Antarctic Ice Sheet by Murali Haran, Won Chang, Klaus Keller, Robert Nicholas and David Pollard Introduction One of the enduring symbols of the impact of climate change

More information

Gaussian Process Optimization with Mutual Information

Gaussian Process Optimization with Mutual Information Gaussian Process Optimization with Mutual Information Emile Contal 1 Vianney Perchet 2 Nicolas Vayatis 1 1 CMLA Ecole Normale Suprieure de Cachan & CNRS, France 2 LPMA Université Paris Diderot & CNRS,

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Package stilt. R topics documented: November 2, Type Package

Package stilt. R topics documented: November 2, Type Package Type Package Package stilt November 2, 2017 Title Separable Gaussian Process Interpolation (Emulation) Version 1.2.0 Date 2017-11-02 Author Roman Olson, Won Chang, Klaus Keller, and Murali Haran Maintainer

More information

The Pennsylvania State University The Graduate School INFERENCE FOR COMPLEX COMPUTER MODELS AND LARGE

The Pennsylvania State University The Graduate School INFERENCE FOR COMPLEX COMPUTER MODELS AND LARGE The Pennsylvania State University The Graduate School INFERENCE FOR COMPLEX COMPUTER MODELS AND LARGE MULTIVARIATE SPATIAL DATA WITH APPLICATIONS TO CLIMATE SCIENCE A Dissertation in Statistics by Kabekode

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood 1 / 29 Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood Yuan Liao Wenxin Jiang Northwestern University Presented at: Department of Statistics and Biostatistics Rutgers University

More information

Gaussian Processes for Computer Experiments

Gaussian Processes for Computer Experiments Gaussian Processes for Computer Experiments Jeremy Oakley School of Mathematics and Statistics, University of Sheffield www.jeremy-oakley.staff.shef.ac.uk 1 / 43 Computer models Computer model represented

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Bayesian model selection for computer model validation via mixture model estimation

Bayesian model selection for computer model validation via mixture model estimation Bayesian model selection for computer model validation via mixture model estimation Kaniav Kamary ATER, CNAM Joint work with É. Parent, P. Barbillon, M. Keller and N. Bousquet Outline Computer model validation

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

The Social Cost of Stochastic & Irreversible Climate Change

The Social Cost of Stochastic & Irreversible Climate Change The Social Cost of Stochastic & Irreversible Climate Change Thomas S. Lontzek (University of Zurich and RDCEP) joint work with Yongyang Cai and Kenneth L. Judd (both at Hoover Institution, RDCEP and NBER)

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Linear Classification: Probabilistic Generative Models

Linear Classification: Probabilistic Generative Models Linear Classification: Probabilistic Generative Models Sargur N. University at Buffalo, State University of New York USA 1 Linear Classification using Probabilistic Generative Models Topics 1. Overview

More information

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models John M. Neuhaus Charles E. McCulloch Division of Biostatistics University of California, San

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

An Implementation of Dynamic Causal Modelling

An Implementation of Dynamic Causal Modelling An Implementation of Dynamic Causal Modelling Christian Himpe 24.01.2011 Overview Contents: 1 Intro 2 Model 3 Parameter Estimation 4 Examples Motivation Motivation: How are brain regions coupled? Motivation

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Scaling up Bayesian Inference

Scaling up Bayesian Inference Scaling up Bayesian Inference David Dunson Departments of Statistical Science, Mathematics & ECE, Duke University May 1, 2017 Outline Motivation & background EP-MCMC amcmc Discussion Motivation & background

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Nonparametric Bayes Uncertainty Quantification

Nonparametric Bayes Uncertainty Quantification Nonparametric Bayes Uncertainty Quantification David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & ONR Review of Bayes Intro to Nonparametric Bayes

More information

An Introduction to Spectral Learning

An Introduction to Spectral Learning An Introduction to Spectral Learning Hanxiao Liu November 8, 2013 Outline 1 Method of Moments 2 Learning topic models using spectral properties 3 Anchor words Preliminaries X 1,, X n p (x; θ), θ = (θ 1,

More information

Bayesian Calibration of Inexact Computer Models

Bayesian Calibration of Inexact Computer Models Bayesian Calibration of Inexact Computer Models James Matuk Research Group in Design of Physical and Computer Experiments March 5, 2018 James Matuk (STAT 8750.02) Calibration of Inexact Computer Models

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Supporting Information for Glacial Atlantic overturning increased by wind stress in climate models

Supporting Information for Glacial Atlantic overturning increased by wind stress in climate models GEOPHYSICAL RESEARCH LETTERS Supporting Information for Glacial Atlantic overturning increased by wind stress in climate models Juan Muglia 1 and Andreas Schmittner 1 Contents of this file 1. Figures S1

More information

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL

Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 1 Bayesian inference & process convolution models Dave Higdon, Statistical Sciences Group, LANL 2 MOVING AVERAGE SPATIAL MODELS Kernel basis representation for spatial processes z(s) Define m basis functions

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Riemann Manifold Methods in Bayesian Statistics

Riemann Manifold Methods in Bayesian Statistics Ricardo Ehlers ehlers@icmc.usp.br Applied Maths and Stats University of São Paulo, Brazil Working Group in Statistical Learning University College Dublin September 2015 Bayesian inference is based on Bayes

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

A new Hierarchical Bayes approach to ensemble-variational data assimilation

A new Hierarchical Bayes approach to ensemble-variational data assimilation A new Hierarchical Bayes approach to ensemble-variational data assimilation Michael Tsyrulnikov and Alexander Rakitko HydroMetCenter of Russia College Park, 20 Oct 2014 Michael Tsyrulnikov and Alexander

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

Gaussian predictive process models for large spatial data sets.

Gaussian predictive process models for large spatial data sets. Gaussian predictive process models for large spatial data sets. Sudipto Banerjee, Alan E. Gelfand, Andrew O. Finley, and Huiyan Sang Presenters: Halley Brantley and Chris Krut September 28, 2015 Overview

More information

The joint posterior distribution of the unknown parameters and hidden variables, given the

The joint posterior distribution of the unknown parameters and hidden variables, given the DERIVATIONS OF THE FULLY CONDITIONAL POSTERIOR DENSITIES The joint posterior distribution of the unknown parameters and hidden variables, given the data, is proportional to the product of the joint prior

More information

Quarter degree resolution ocean component of the Norwegian Earth System Model

Quarter degree resolution ocean component of the Norwegian Earth System Model Quarter degree resolution ocean component of the Norwegian Earth System Model Mats Bentsen 1,2, Mehmet Ilicak 1,2, and Helge Drange 3,2 1 Uni, Uni Research Ltd 2 Bjerknes Centre for Research 3 Geophysical

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Nonparametric Bayesian Methods - Lecture I

Nonparametric Bayesian Methods - Lecture I Nonparametric Bayesian Methods - Lecture I Harry van Zanten Korteweg-de Vries Institute for Mathematics CRiSM Masterclass, April 4-6, 2016 Overview of the lectures I Intro to nonparametric Bayesian statistics

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

. D CR Nomenclature D 1

. D CR Nomenclature D 1 . D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the

More information

Hierarchical Modelling for Multivariate Spatial Data

Hierarchical Modelling for Multivariate Spatial Data Hierarchical Modelling for Multivariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Point-referenced spatial data often come as

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

Computer Emulation With Density Estimation

Computer Emulation With Density Estimation Computer Emulation With Density Estimation Jake Coleman, Robert Wolpert May 8, 2017 Jake Coleman, Robert Wolpert Emulation and Density Estimation May 8, 2017 1 / 17 Computer Emulation Motivation Expensive

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

An introduction to Bayesian statistics and model calibration and a host of related topics

An introduction to Bayesian statistics and model calibration and a host of related topics An introduction to Bayesian statistics and model calibration and a host of related topics Derek Bingham Statistics and Actuarial Science Simon Fraser University Cast of thousands have participated in the

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

New Insights into History Matching via Sequential Monte Carlo

New Insights into History Matching via Sequential Monte Carlo New Insights into History Matching via Sequential Monte Carlo Associate Professor Chris Drovandi School of Mathematical Sciences ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Hierarchical Modeling for Multivariate Spatial Data

Hierarchical Modeling for Multivariate Spatial Data Hierarchical Modeling for Multivariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Course topics (tentative) The role of random effects

Course topics (tentative) The role of random effects Course topics (tentative) random effects linear mixed models analysis of variance frequentist likelihood-based inference (MLE and REML) prediction Bayesian inference The role of random effects Rasmus Waagepetersen

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Gaussian processes for uncertainty quantification in computer experiments

Gaussian processes for uncertainty quantification in computer experiments Gaussian processes for uncertainty quantification in computer experiments Richard Wilkinson University of Nottingham Gaussian process summer school, Sheffield 2013 Richard Wilkinson (Nottingham) GPs for

More information

Statistical Tools and Techniques for Solar Astronomers

Statistical Tools and Techniques for Solar Astronomers Statistical Tools and Techniques for Solar Astronomers Alexander W Blocker Nathan Stein SolarStat 2012 Outline Outline 1 Introduction & Objectives 2 Statistical issues with astronomical data 3 Example:

More information

Calibrating Environmental Engineering Models and Uncertainty Analysis

Calibrating Environmental Engineering Models and Uncertainty Analysis Models and Cornell University Oct 14, 2008 Project Team Christine Shoemaker, co-pi, Professor of Civil and works in applied optimization, co-pi Nikolai Blizniouk, PhD student in Operations Research now

More information

Introduction to emulators - the what, the when, the why

Introduction to emulators - the what, the when, the why School of Earth and Environment INSTITUTE FOR CLIMATE & ATMOSPHERIC SCIENCE Introduction to emulators - the what, the when, the why Dr Lindsay Lee 1 What is a simulator? A simulator is a computer code

More information

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood

Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Spatially Smoothed Kernel Density Estimation via Generalized Empirical Likelihood Kuangyu Wen & Ximing Wu Texas A&M University Info-Metrics Institute Conference: Recent Innovations in Info-Metrics October

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Virtual Sensors and Large-Scale Gaussian Processes

Virtual Sensors and Large-Scale Gaussian Processes Virtual Sensors and Large-Scale Gaussian Processes Ashok N. Srivastava, Ph.D. Principal Investigator, IVHM Project Group Lead, Intelligent Data Understanding ashok.n.srivastava@nasa.gov Coauthors: Kamalika

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Introduction to Machine Learning Bayesian Classification Varun Chandola March 8, 017 1. {circular,large,light,smooth,thick}, malignant. {circular,large,light,irregular,thick}, malignant 3. {oval,large,dark,smooth,thin},

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

A general hybrid formulation of the background-error covariance matrix for ensemble-variational ocean data assimilation

A general hybrid formulation of the background-error covariance matrix for ensemble-variational ocean data assimilation .. A general hybrid formulation of the background-error covariance matrix for ensemble-variational ocean data assimilation Anthony Weaver Andrea Piacentini, Serge Gratton, Selime Gürol, Jean Tshimanga

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information