Gaussian Process Optimization with Mutual Information

Size: px
Start display at page:

Download "Gaussian Process Optimization with Mutual Information"

Transcription

1 Gaussian Process Optimization with Mutual Information Emile Contal 1 Vianney Perchet 2 Nicolas Vayatis 1 1 CMLA Ecole Normale Suprieure de Cachan & CNRS, France 2 LPMA Université Paris Diderot & CNRS, France June 22, 214

2 Problem Statement Sequential Optimization Let f : X R where X R d is compact and convex. We consider the problem of finding the maximum of f denoted by: f (x ) = max x X f (x), via sequential queries f (x 1 ), f (x 2 ),... Noisy Observations At iteration T we choose x T +1 using the previous noisy observations Y T = {y 1,..., y T }, where t T : y t = f (x t ) + ɛ t and ɛ t iid N (, η 2 ). Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 2

3 Gaussian Processes Definition f GP(m, k) with mean function m : X R and kernel function k : X X R +, when for all x 1,..., x n X we have: ( f (x1 ),..., f (x n ) ) N ( [m(x i )] i, [k(x i, x j )] i,j ). Bayesian Inference Given Y T, the posterior distribution Pr[f Y T ] is a GP with mean µ T +1 (prediction) and variance σt 2 +1 (uncertainty) computed by Bayesian inference. Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 3

4 Gaussian Processes Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 4

5 Objective Cumulative Regret The efficiency of a policy is measured via the cumulative regret: R T = f (x ) f (x t ). t<t Goal The cumulative regret is unknown in practice. Our aim is to obtain upper bounds on R T with high probability. Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 5

6 Related Work Dani al. 28 In the general linear optimization problem, we have a lower bound on the cumulative regret of Ω(d T ). Srinivas et al. 212 For the GP-UCB algorithm with linear GP, we have an upper bound on the cumulative regret of O(d T ) with high probability. Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 6

7 Mutual Information An Important Ingredient Information Gain The information gain on f at X T is the mutual information between f and Y T. For a GP distribution with K T the kernel matrix of X T : I T (X T ) = 1 2 log det(i + η 2 K T ). We define γ T = max X =T I T (X ) the maximum information gain by a sequence of T queries points. Empirical Lower Bound For GPs with bounded variance, we have: [Srinivas et al. 212] T γ T = σt 2 2 (x t ) Cγ T where C = log(1 + η 2 ) t=1 Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 7

8 GP-MI A Novel Algorithm for Sequential Optimization γ for t = 1, 2,... do Compute µ t and σt 2 using Bayesian inference φ t (x) α ( σ 2t (x) + γ t 1 γ ) t 1 x t argmax x X µ t (x) + φ t (x) γ t γ t 1 + σ 2 t (x t ) Query at x t and observe y t end Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 8

9 Main Result Regret bounds for GP-MI For all δ > and T > 1, set α = log 2 δ. The cumulative regret R T incurred by the GP-MI algorithm on f distributed as a GP perturbed by independent Gaussian noise with variance η 2 satisfies the following bounds: [ Pr R T 5 αcγ T + 4 ] α 1 δ, where C = 2 log(1+η 2 ). Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 9

10 Application to Specific Kernels For linear kernel: R T = O( d log T ) For RBF kernel: R T = O ( (log T ) d+1) For Matérn kernel: R T = O ( T a log T ), where a = d(d+1) 2ν+d(d+1) < 1 and ν is the Matérn parameter. Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 1

11 High Probabilistic Bounds for R T Gaussian Martingale The sequence M T = R T T t=1 ( µt (x ) µ t (x t ) ) is a Gaussian martingale with respect to Y T 1. Concentration Inequalities [Becu et al. 28] For all δ > and T > 1, with y = 8(Cγ T + 1) we have: [ Pr M T ] 2α T 2αy+ σt 2 (x ) 1 δ y Pr [ R T 2αy+ 2α y t=1 t=1 T T σt 2 (x ( )+ µt (x ) µ t (x t ) )] 1 δ. t=1 Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 11

12 Regret Bounds for the GP-MI Algorithm Inequality for the GP-MI Algorithm Using the function φ t as defined in GP-MI, we have: T ( µt (x ) µ t (x t ) ) T ( φt (x t ) φ t (x ) ) t=1 t=1 αcγ T 2α y T σt 2 (x ). t=1 Regret bounds Plugging this inequality in the previous concentration bound for R T : [ Pr R T 5 αcγ T + 4 ] α 1 δ. Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 12

13 Empirical Average Regret RT /T EI UCB 1.5 MI (a) Generated GP (d = 2) UCB 3 2 EI 1 MI (b) Generated GP (d = 4) RT /T EI UCB.5 MI , (c) Gaussian mixture UCB 1 EI.5 MI (d) Himmelblau Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 13

14 Empirical Average Regret RT /T UCB EI MI (e) Branin.6 UCB.4 EI.2 MI (f) Goldstein.4.3 UCB.4.3 UCB RT /T.2.1 MI EI (g) Tsunamis.2 EI.1 MI , (h) Mackey-Glass Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 14

15 Implementation Exact Inference for Gaussian likelihood Numerical complexity in O(T 2 ) using the Cholesky sequential updates of the covariance matrix. Algorithms for non-gaussian likelihood For other likelihood functions (e.g. Laplacian or Student s t), one can use the EP algorithm or Monte Carlo sampling. Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 15

16 Open Questions and Discussion Theoretical guarantees for simple regret Empirical performance for simple regret Kernel learning procedure Calibration of δ Contal, Perchet, Vayatis Gaussian Process Optimization with Mutual Information 16

Optimisation séquentielle et application au design

Optimisation séquentielle et application au design Optimisation séquentielle et application au design d expériences Nicolas Vayatis Séminaire Aristote, Ecole Polytechnique - 23 octobre 2014 Joint work with Emile Contal (computer scientist, PhD student)

More information

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration

Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Parallel Gaussian Process Optimization with Upper Confidence Bound and Pure Exploration Emile Contal David Buffoni Alexandre Robicquet Nicolas Vayatis CMLA, ENS Cachan, France September 25, 2013 Motivating

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

arxiv: v3 [stat.ml] 8 Jun 2015

arxiv: v3 [stat.ml] 8 Jun 2015 Gaussian Process Optimization with Mutual Information arxiv:1311.485v3 [stat.ml] 8 Jun 15 Emile Contal 1, Vianney Perchet, and Nicolas Vayatis 1 1 CMLA, UMR CNRS 8536, ENS Cachan, France LPMA, Université

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Predictive Variance Reduction Search

Predictive Variance Reduction Search Predictive Variance Reduction Search Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh Centre of Pattern Recognition and Data Analytics (PRaDA), Deakin University Email: v.nguyen@deakin.edu.au

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

State-Space Methods for Inferring Spike Trains from Calcium Imaging

State-Space Methods for Inferring Spike Trains from Calcium Imaging State-Space Methods for Inferring Spike Trains from Calcium Imaging Joshua Vogelstein Johns Hopkins April 23, 2009 Joshua Vogelstein (Johns Hopkins) State-Space Calcium Imaging April 23, 2009 1 / 78 Outline

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Parallelised Bayesian Optimisation via Thompson Sampling

Parallelised Bayesian Optimisation via Thompson Sampling Parallelised Bayesian Optimisation via Thompson Sampling Kirthevasan Kandasamy Carnegie Mellon University Google Research, Mountain View, CA Sep 27, 2017 Slides: www.cs.cmu.edu/~kkandasa/talks/google-ts-slides.pdf

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Talk on Bayesian Optimization

Talk on Bayesian Optimization Talk on Bayesian Optimization Jungtaek Kim (jtkim@postech.ac.kr) Machine Learning Group, Department of Computer Science and Engineering, POSTECH, 77-Cheongam-ro, Nam-gu, Pohang-si 37673, Gyungsangbuk-do,

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Kernel adaptive Sequential Monte Carlo

Kernel adaptive Sequential Monte Carlo Kernel adaptive Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) December 7, 2015 1 / 36 Section 1 Outline

More information

Two generic principles in modern bandits: the optimistic principle and Thompson sampling

Two generic principles in modern bandits: the optimistic principle and Thompson sampling Two generic principles in modern bandits: the optimistic principle and Thompson sampling Rémi Munos INRIA Lille, France CSML Lunch Seminars, September 12, 2014 Outline Two principles: The optimistic principle

More information

Quantifying mismatch in Bayesian optimization

Quantifying mismatch in Bayesian optimization Quantifying mismatch in Bayesian optimization Eric Schulz University College London e.schulz@cs.ucl.ac.uk Maarten Speekenbrink University College London m.speekenbrink@ucl.ac.uk José Miguel Hernández-Lobato

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Bayesian Quadrature: Model-based Approximate Integration. David Duvenaud University of Cambridge

Bayesian Quadrature: Model-based Approximate Integration. David Duvenaud University of Cambridge Bayesian Quadrature: Model-based Approimate Integration David Duvenaud University of Cambridge The Quadrature Problem ˆ We want to estimate an integral Z = f ()p()d ˆ Most computational problems in inference

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Robust Monte Carlo Methods for Sequential Planning and Decision Making

Robust Monte Carlo Methods for Sequential Planning and Decision Making Robust Monte Carlo Methods for Sequential Planning and Decision Making Sue Zheng, Jason Pacheco, & John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory

More information

Global Optimisation with Gaussian Processes. Michael A. Osborne Machine Learning Research Group Department o Engineering Science University o Oxford

Global Optimisation with Gaussian Processes. Michael A. Osborne Machine Learning Research Group Department o Engineering Science University o Oxford Global Optimisation with Gaussian Processes Michael A. Osborne Machine Learning Research Group Department o Engineering Science University o Oxford Global optimisation considers objective functions that

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Multi-fidelity sensitivity analysis

Multi-fidelity sensitivity analysis Multi-fidelity sensitivity analysis Loic Le Gratiet 1,2, Claire Cannamela 2 & Bertrand Iooss 3 1 Université Denis-Diderot, Paris, France 2 CEA, DAM, DIF, F-91297 Arpajon, France 3 EDF R&D, 6 quai Watier,

More information

Parallel Particle Filter in Julia

Parallel Particle Filter in Julia Parallel Particle Filter in Julia Gustavo Goretkin December 12, 2011 1 / 27 First a disclaimer The project in a sentence. workings 2 / 27 First a disclaimer First a disclaimer The project in a sentence.

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

Afternoon Meeting on Bayesian Computation 2018 University of Reading

Afternoon Meeting on Bayesian Computation 2018 University of Reading Gabriele Abbati 1, Alessra Tosi 2, Seth Flaxman 3, Michael A Osborne 1 1 University of Oxford, 2 Mind Foundry Ltd, 3 Imperial College London Afternoon Meeting on Bayesian Computation 2018 University of

More information

Dynamic Batch Bayesian Optimization

Dynamic Batch Bayesian Optimization Dynamic Batch Bayesian Optimization Javad Azimi EECS, Oregon State University azimi@eecs.oregonstate.edu Ali Jalali ECE, University of Texas at Austin alij@mail.utexas.edu Xiaoli Fern EECS, Oregon State

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing George Papandreou and Alan Yuille Department of Statistics University of California, Los Angeles ICCV Workshop on Information

More information

Robustness in GANs and in Black-box Optimization

Robustness in GANs and in Black-box Optimization Robustness in GANs and in Black-box Optimization Stefanie Jegelka MIT CSAIL joint work with Zhi Xu, Chengtao Li, Ilija Bogunovic, Jonathan Scarlett and Volkan Cevher Robustness in ML noise Generator Critic

More information

Constrained Bayesian Optimization and Applications

Constrained Bayesian Optimization and Applications Constrained Bayesian Optimization and Applications The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gelbart, Michael

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Introduction to Bayesian methods in inverse problems

Introduction to Bayesian methods in inverse problems Introduction to Bayesian methods in inverse problems Ville Kolehmainen 1 1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland March 4 2013 Manchester, UK. Contents Introduction

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

When Gaussian Processes Meet Combinatorial Bandits: GCB

When Gaussian Processes Meet Combinatorial Bandits: GCB European Workshop on Reinforcement Learning 14 018 October 018, Lille, France. When Gaussian Processes Meet Combinatorial Bandits: GCB Guglielmo Maria Accabi Francesco Trovò Alessandro Nuara Nicola Gatti

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine

Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Bayesian Inference: Principles and Practice 3. Sparse Bayesian Models and the Relevance Vector Machine Mike Tipping Gaussian prior Marginal prior: single α Independent α Cambridge, UK Lecture 3: Overview

More information

Knowledge-Gradient Methods for Bayesian Optimization

Knowledge-Gradient Methods for Bayesian Optimization Knowledge-Gradient Methods for Bayesian Optimization Peter I. Frazier Cornell University Uber Wu, Poloczek, Wilson & F., NIPS 17 Bayesian Optimization with Gradients Poloczek, Wang & F., NIPS 17 Multi

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Approximate Bayesian Computation

Approximate Bayesian Computation Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki and Aalto University 1st December 2015 Content Two parts: 1. The basics of approximate

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Spatial omain Hierarchical Modelling for Univariate Spatial ata Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Bandit Convex Optimization

Bandit Convex Optimization March 7, 2017 Table of Contents 1 (BCO) 2 Projection Methods 3 Barrier Methods 4 Variance reduction 5 Other methods 6 Conclusion Learning scenario Compact convex action set K R d. For t = 1 to T : Predict

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

arxiv: v1 [stat.ml] 24 Oct 2016

arxiv: v1 [stat.ml] 24 Oct 2016 Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation arxiv:6.7379v [stat.ml] 4 Oct 6 Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher Laboratory

More information

Kernel Sequential Monte Carlo

Kernel Sequential Monte Carlo Kernel Sequential Monte Carlo Ingmar Schuster (Paris Dauphine) Heiko Strathmann (University College London) Brooks Paige (Oxford) Dino Sejdinovic (Oxford) * equal contribution April 25, 2016 1 / 37 Section

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation

Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation Won Chang Post Doctoral Scholar, Department of Statistics, University of Chicago Oct 15, 2014 Thesis Advisors: Murali

More information

Worst-Case Bounds for Gaussian Process Models

Worst-Case Bounds for Gaussian Process Models Worst-Case Bounds for Gaussian Process Models Sham M. Kakade University of Pennsylvania Matthias W. Seeger UC Berkeley Abstract Dean P. Foster University of Pennsylvania We present a competitive analysis

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

arxiv: v4 [cs.lg] 9 Jun 2010

arxiv: v4 [cs.lg] 9 Jun 2010 Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design arxiv:912.3995v4 [cs.lg] 9 Jun 21 Niranjan Srinivas California Institute of Technology niranjan@caltech.edu Sham M.

More information

Lecture 1c: Gaussian Processes for Regression

Lecture 1c: Gaussian Processes for Regression Lecture c: Gaussian Processes for Regression Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

The Bayesian approach to inverse problems

The Bayesian approach to inverse problems The Bayesian approach to inverse problems Youssef Marzouk Department of Aeronautics and Astronautics Center for Computational Engineering Massachusetts Institute of Technology ymarz@mit.edu, http://uqgroup.mit.edu

More information

Linear regression example Simple linear regression: f(x) = ϕ(x)t w w ~ N(0, ) The mean and covariance are given by E[f(x)] = ϕ(x)e[w] = 0.

Linear regression example Simple linear regression: f(x) = ϕ(x)t w w ~ N(0, ) The mean and covariance are given by E[f(x)] = ϕ(x)e[w] = 0. Gaussian Processes Gaussian Process Stochastic process: basically, a set of random variables. may be infinite. usually related in some way. Gaussian process: each variable has a Gaussian distribution every

More information

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge

Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Master s Thesis Presentation Adaptive Sampling of Clouds with a Fleet of UAVs: Improving Gaussian Process Regression by Including Prior Knowledge Diego Selle (RIS @ LAAS-CNRS, RT-TUM) Master s Thesis Presentation

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Tutorial on Approximate Bayesian Computation

Tutorial on Approximate Bayesian Computation Tutorial on Approximate Bayesian Computation Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology 16 May 2016

More information