Static and Kinetic Friction in Frenkel-Kontorova-like Models. Franz-Josef Elmer University of Basel Switzerland

Size: px
Start display at page:

Download "Static and Kinetic Friction in Frenkel-Kontorova-like Models. Franz-Josef Elmer University of Basel Switzerland"

Transcription

1 Static and Kinetic Friction in Frenkel-Kontorova-like Models Franz-Josef Elmer University of Basel Switzerland

2 Friction in Frenkel-Kontorova-like Models 1 Overview 1. The Frenkel-Kontorova (FK) Model 2. The Frenkel-Kontorova-Tomlinson (FKT) Model 3. Static friction 4. Kinetic friction 5. Pinning Sliding 6. Why studying toy models?

3 Friction in Frenkel-Kontorova-like Models 2 1. The Frenkel-Kontorova (FK) Model Equation of motion: ẍ j +γẋ j = x j 1 + x j+1 2x j b sin x j +F, j = 1,..., N Boundary conditions: x j+n = x j + 2πM, averaged distance: a = 2π M N

4 Friction in Frenkel-Kontorova-like Models 3 2. The Frenkel-Kontorova-Tomlinson (FKT) Model Equation of motion: ξ j + (γ L + γ U ) }{{} γ Boundary conditions: ξ j = ξ j 1 +ξ j+1 (2+κ)ξ j +b sin 2π ( x B {}}{ vt +cj + ξ j ), j = 1,..., N x j }{{} ξ j+n = ξ j, c = M N

5 Friction in Frenkel-Kontorova-like Models 4 Co-workers: Torsten Strunz, Michael Weiss Publications FK model: 1. T. Strunz and F.J. Elmer, Phys. Rev. E 58, 1601 (1998). 2. T. Strunz and F.J. Elmer, Phys. Rev. E 58, 1612 (1998). Publications FKT model: 1. M. Weiss and F.J. Elmer, Phys. Rev. B. 53, 7539 (1996). 2. M. Weiss and F.J. Elmer, Z. Phys. B. 104, 55 (1997). 3. F.J. Elmer, in Workshop on Friction, Arching, Contact Dynamics edited by D. E. Wolf and P. Grassberger (World Scientific, Singapore, 1997).

6 Friction in Frenkel-Kontorova-like Models 5 3. Static friction Phenomenological definition:the force necessary to start sliding. Static friction depends on history, inertia, and temperature. Unique definition: Static friction F S is the force where the last (meta)stable state disappears.

7 Friction in Frenkel-Kontorova-like Models 6 Properties of the static friction in FK and FKT model 1. Ground state at F = 0 last state at F = F S 2. Commensurate lattic constants: FKT model, κ = 1 F S b Q c golden mean where Q = N/gcd(M, N). 3. Incommensurate lattic constants: { 0 : b < b F S = S c const (b b S c ) α : b > b S c with α = 3 for FK and α = 2 for FKT.

8 Friction in Frenkel-Kontorova-like Models 7 4. Kinetic friction Definition: The averaged force F K necessary to slide with an on average constant velocity v. Dissipated energy per time unit: F K v Averaged kinetic friction: F = F K N = γ L + γ (ẋj v 1 with the averaged velocity v = ẋj j t ) 2 j t v Dissipation channels:

9 Friction in Frenkel-Kontorova-like Models 8 Kinetic friction versus velocity:

10 Friction in Frenkel-Kontorova-like Models 9 How uniform motion excites phonons? The periodic substrate acts like a wave: washboard wave: phonon: wavenumber K, frequency Ω v wavenumber k, frequency ω(k) Dispersion relation: FK model: ω(k) = 2 sin(k/2) FKT model: ω(k) = κ + 4 sin 2 (k/2) Resonances: Main resonance: Superharmonic resonance of 2. order: Parametric resonance of 1. order: k 1, ω 1 k 2, ω 2

11 Friction in Frenkel-Kontorova-like Models 10 Resonances in the kinetic friction F K : FK model FKT model

12 Friction in Frenkel-Kontorova-like Models 11 Kinetic friction in the FKT model in the small velocity limit commensurate case: b < b K c b > b K c incommensurate case: b < b S c b > b S c

13 Friction in Frenkel-Kontorova-like Models Pinning Sliding Pinning sliding transition: Happens at a saddle-node bifurcation Usually starts at a certain particle Leads to an avalanche involving neighbouring particles Microslip: Avalanche stops before sweeping over all particles Pinning sliding transition: A system-spanning avalanche

14 Friction in Frenkel-Kontorova-like Models 13 Microslip in the FK model

15 Friction in Frenkel-Kontorova-like Models 14 Sliding pinning transition in the FK model Similar to an ordinary first order phase transition: 1. creation of a critical nucleus: nucleation time t N is Poisson-distributed t N = t N 1/N 2. growth of the nucleus: growth time t G t G N

16 Friction in Frenkel-Kontorova-like Models Why studying toy models? Or in terms of todays question in the Round Table Discussion: Are abstract models useful for anything? Yes, because toy models are conceptual simple laboratories for basic concepts analytical treatable, at least sometimes ;-) less expensive for simulation (a PC instead of a super computer is enough)

17 Friction in Frenkel-Kontorova-like Models 16 The Friction Lab The FK model as a Java Applet. Other models in the future.

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

Multistable Spatiotemporal Dynamics in the Driven Frenkel Kontorova Lattice

Multistable Spatiotemporal Dynamics in the Driven Frenkel Kontorova Lattice Commun. Theor. Phys. (Beijing, China) 36 (2001) pp. 37 43 c International Academic Publishers Vol. 36, No. 1, July 15, 2001 Multistable Spatiotemporal Dynamics in the Driven Frenkel Kontorova Lattice ZHENG

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PD hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. or additional information about this

More information

Energy dissipation in atomic-scale friction

Energy dissipation in atomic-scale friction Friction 1(1): 24 40 (2013) DOI 10.1007/s40544-013-0002-6 ISSN 2223-7690 REVIEW ARTICLE Energy dissipation in atomic-scale friction Yuan-zhong HU *, Tian-bao MA, Hui WANG State Key Laboratory of Tribology,

More information

Chapter VI: Ionizations and excitations

Chapter VI: Ionizations and excitations Chapter VI: Ionizations and excitations 1 Content Introduction Ionization in gases Ionization in solids Fano factor 2 Introduction (1) Ionizations created by charged particles (incident particles or particles

More information

Math 4200, Problem set 3

Math 4200, Problem set 3 Math, Problem set 3 Solutions September, 13 Problem 1. ẍ = ω x. Solution. Following the general theory of conservative systems with one degree of freedom let us define the kinetic energy T and potential

More information

Aubry transition in a real material: prediction for its existence in an incommensurate gold/gold interface

Aubry transition in a real material: prediction for its existence in an incommensurate gold/gold interface Accepted for publication on 14 October 2001 Ref.: Europhys. Lett., 57 p. 74 (2002) Europhysics Letters PREPRINT Aubry transition in a real material: prediction for its eistence in an incommensurate gold/gold

More information

Relaxion with Particle Production

Relaxion with Particle Production Relaxion with Particle Production Gustavo Marques-Tavares Stanford University with A. Hook: 1607.01786 Why is the Higgs mass small? m 2 h? Symmetry +? µ 2 Symmetry Where are you? +? µ 2 Why is the Higgs

More information

A ttr a c to r M e rg in g C ris is in th e D o u b le -S c ro ll O s c illa to r*

A ttr a c to r M e rg in g C ris is in th e D o u b le -S c ro ll O s c illa to r* A ttr a c to r M e rg in g C ris is in th e D o u b le -S c ro ll O s c illa to r* B. Reisner, A. Kittel, S. Lück, J. Peinke, and J. Parisi Physical Institute, University of Bayreuth, D-95440 Bayreuth

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 28 Jun 2001

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 28 Jun 2001 arxiv:cond-mat/665v [cond-mat.mtrl-sci] 28 Jun 2 Matching Conditions in -Continuum Modeling of Materials Weinan E and Zhongyi Huang 2 Department of Mathematics and PACM, Princeton University and School

More information

11 The Prandtl-Tomlinson Model for Dry Friction

11 The Prandtl-Tomlinson Model for Dry Friction The Prandtl-Tomlinson Model for Dry Friction Photodetector Laser Beam Cantilever. Introduction The development of experimental methods to investigate frictional processes on the atomic scale and numerical

More information

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION

CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION CHARACTERISTICS OF DRY FRICTION & PROBLEMS INVOLVING DRY FRICTION Today s Objective: Students will be able to: a) Understand the characteristics of dry friction. b) Draw a FBD including friction. c) Solve

More information

Nonlinear dynamics of dry friction

Nonlinear dynamics of dry friction J. Phys. A: Math. Gen. 30 (1997) 6057 6063. Printed in the UK PII: S0305-4470(97)79385-5 Nonlinear dynamics of dry friction Franz-Josef Elmer Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland

More information

MITOCW MIT8_01F16_w02s06_360p

MITOCW MIT8_01F16_w02s06_360p MITOCW MIT8_01F16_w02s06_360p So I would like to tell you about friction today. Friction is a very mysterious subject, because it has such simple rules at the macroscopic scale, and yet-- as I will show

More information

Transition from smooth sliding to stick-slip motion in a single frictional contact

Transition from smooth sliding to stick-slip motion in a single frictional contact Transition from smooth sliding to stick-slip motion in a single frictional contact O. M. Braun* Institute of Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine M. Peyrard Laboratoire

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j PHY 396 K. Solutions for problem set #4. Problem 1a: The linear sigma model has scalar potential V σ, π = λ 8 σ + π f βσ. S.1 Any local minimum of this potential satisfies and V = λ π V σ = λ σ + π f =

More information

Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors. Mostly Gaseous Detectors Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 4 Aug 1998

arxiv:cond-mat/ v2 [cond-mat.soft] 4 Aug 1998 arxiv:cond-mat/98646v2 [cond-mat.soft] 4 Aug 1998 Transition to Centrifugal Particle Motion in Rotating Drums Gerald H. Ristow Fachbereich Physik, Philipps Universität Renthof 6, D 3532 Marburg, Germany

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/104029

More information

Origin of stick-slip motion in a driven two-wave potential

Origin of stick-slip motion in a driven two-wave potential PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996 Origin of stick-slip motion in a driven two-wave potential M. G. Rozman * NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark M. Urbakh and J. Klafter

More information

Atomic-scale study of friction and energy dissipation

Atomic-scale study of friction and energy dissipation Wear 254 (2003) 911 916 Atomic-scale study of friction and energy dissipation S. Ciraci a,, A. Buldum b a Department of Physics, Bilkent University, Ankara 06533, Turkey b Department of Physics, The University

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ. Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass

More information

Metamaterials with tunable dynamic properties

Metamaterials with tunable dynamic properties Metamaterials with tunable dynamic properties Varvara Kouznetsova Marc Geers 6 October 2015 Mechanics of Materials Project aim development of new generation mechanical metamaterials with adaptive, tunable

More information

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual *****

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual ***** SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual ***** A PROJECT DEVELOPED FOR THE UNIVERSITY CONSORTIUM ON INSTRUCTIONAL SHAKE TABLES http://wusceel.cive.wustl.edu/ucist/

More information

AP Physics 1 Dynamics Free Response Problems ANS KEY

AP Physics 1 Dynamics Free Response Problems ANS KEY AP Physics 1 Dynamics ree Response Problems ANS KEY 1. A block of mass m, acted on by a force directed horizontally, slides up an inclined plane that makes an angle θ with the horizontal. The coefficient

More information

Computer Simulations of Friction, Lubrication, and Wear

Computer Simulations of Friction, Lubrication, and Wear 20 Computer Simulations of Friction, Lubrication, and Wear Mark O. Robbins The Johns Hopkins University Martin H. Müser Johannes Gutenberg-Universität 20.1 Introduction 20.2 Atomistic Computer Simulations

More information

Collective aspects of microscopic mean-field evolution along the fission path

Collective aspects of microscopic mean-field evolution along the fission path Collective aspects of microscopic mean-field evolution along the fission path Yusuke Tanimura 1, Denis Lacroix 1 and Guillaume Scamps 2 1 IPN Orsay, 2 Tohoku University Y. Tanimura, D. Lacroix, and G.

More information

Microfluidic crystals: Impossible order

Microfluidic crystals: Impossible order Microfluidic crystals: Impossible order Tsevi Beatus, Roy Bar-Ziv, T. T. Weizmann Institute International Symposium on Non-Equilibrium Soft Matter Kyoto 2008 1 Outline Micro-fluidic droplets: micron sized

More information

Nanotribology: Microscopic mechanisms of friction

Nanotribology: Microscopic mechanisms of friction Surface Science Reports 60 (2006) 79 158 www.elsevier.com/locate/surfrep Nanotribology: Microscopic mechanisms of friction O.M. Braun, A.G. Naumovets 1 Institute of Physics, National Academy of Sciences

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

FRENKEL KONTOROVA MODEL ON QUASIPERIODIC SUBSTRATE POTENTIALS

FRENKEL KONTOROVA MODEL ON QUASIPERIODIC SUBSTRATE POTENTIALS FRENKEL KONTOROVA MODEL ON QUASIPERIODIC SUBSTRATE POTENTIALS Titus Sebastiaan van Erp januari 1999 0.07 V/K K=0.65 0.00 0.07 V/K K=1.0 0.00 0.07 V/K K=3.0 0.00 50 55 60 65 70 75 80 85 90 95 100 Doctoraalscriptie

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 7 JJ II. Home Page. Title Page.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 7 JJ II. Home Page. Title Page. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics Fall 2015 Lecture 7 Page 1 of 31 Midterm 1: Monday October 10th Motion in one, two and three dimensions Forces and Motion

More information

Final Test for PHYS 2130 section 091 Date: 2 nd May 2007

Final Test for PHYS 2130 section 091 Date: 2 nd May 2007 Final Test for PHYS 2130 section 091 Date: 2 nd May 2007 Student First Name: Student Rocket ID: Student Last Name: You may use the backside of all pages. No calculators are allowed. Express all answers

More information

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans

Cause of Friction. Friction is caused by the microscopic roughness between surfaces like two gears locking together. S. Evans Cause of Friction Friction is caused by the microscopic roughness between surfaces like two gears locking together. Factors Affecting Friction Factors affecting friction: 1) The condition of the surfaces

More information

Superfluidity and Supersolidity in 4 He

Superfluidity and Supersolidity in 4 He Superfluidity and Supersolidity in 4 He Author: Lars Bonnes Supervisor: Lode Pollet Proseminar Theoretische Physik: Phase Transitions SS 07 18.06.2007 Superfluid Liquid Helium Motivation Two-fluid Model

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

PHYSICS 110A : CLASSICAL MECHANICS

PHYSICS 110A : CLASSICAL MECHANICS PHYSICS 110A : CLASSICAL MECHANICS 1. Introduction to Dynamics motion of a mechanical system equations of motion : Newton s second law ordinary differential equations (ODEs) dynamical systems simple 2.

More information

Static and dynamic friction in sliding colloidal monolayers

Static and dynamic friction in sliding colloidal monolayers Milan, April 16, 2013 Static and dynamic friction in sliding colloidal monolayers Nicola Manini Dipartimento di Fisica, Università degli Studi di Milano in collaboration with: A. Vanossi, E. Tosatti (Trieste)

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Surface Plasmon Wave

Surface Plasmon Wave Surface Plasmon Wave In this experiment you will learn about a surface plasmon wave. Certain metals (Au, Ag, Co, etc) exhibit a negative dielectric constant at certain regions of the electromagnetic spectrum.

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Scaling analysis of negative differential thermal resistance

Scaling analysis of negative differential thermal resistance Scaling analysis of negative differential thermal resistance Dahai He Department of Physics, Xiamen University, China Workshop on Nanoscale Heat Transport @IPM, Tehran April, 205 2 3 PhD Positions available!

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

The ac-driven Motion of Dislocations in a Weakly Damped Frenkel-Kontorova Lattice

The ac-driven Motion of Dislocations in a Weakly Damped Frenkel-Kontorova Lattice arxiv:cond-mat/9908292v1 [cond-mat.supr-con] 20 Aug 1999 The ac-driven Motion of Dislocations in a Weakly Damped Frenkel-Kontorova Lattice Giovanni Filatrella 1 and Boris A. Malomed 2 1 Unità INFM Salerno

More information

Solid State Physics II Lattice Dynamics and Heat Capacity

Solid State Physics II Lattice Dynamics and Heat Capacity SEOUL NATIONAL UNIVERSITY SCHOOL OF PHYSICS http://phya.snu.ac.kr/ ssphy2/ SPRING SEMESTER 2004 Chapter 3 Solid State Physics II Lattice Dynamics and Heat Capacity Jaejun Yu jyu@snu.ac.kr http://phya.snu.ac.kr/

More information

The Torsion Pendulum (One or two weights)

The Torsion Pendulum (One or two weights) The Torsion Pendulum (One or two weights) Exercises I through V form the one-weight experiment. Exercises VI and VII, completed after Exercises I -V, add one weight more. Preparatory Questions: 1. The

More information

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay Difference Resonances in a controlled van der Pol-Duffing oscillator involving time delay This paper was published in the journal Chaos, Solitions & Fractals, vol.4, no., pp.975-98, Oct 9 J.C. Ji, N. Zhang,

More information

Chapter 4. Dynamics: Newton s Laws of Motion

Chapter 4. Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces -- All of these are derived from the electroweak force: normal or support forces friction tension

More information

Quantize electrical circuits

Quantize electrical circuits Quantize electrical circuits a lecture in Quantum Informatics the 4th and 7th of September 017 Thilo Bauch and Göran Johansson In this lecture we will discuss how to derive the quantum mechanical hamiltonian

More information

Superlubricity on the nanometer scale

Superlubricity on the nanometer scale Friction 2(2): 106 113 (2014) ISSN 2223-7690 DOI 10.1007/s40544-014-0052-4 CN 10-1237/TH REVIEW ARTICLE Superlubricity on the nanometer scale Ernst MEYER 1,*, Enrico GNECCO 2 1 Department of Physics, University

More information

Front propagation in lattices with on-site bistable non-degenerate potential: multiplicity, bifurcations and route to chaos

Front propagation in lattices with on-site bistable non-degenerate potential: multiplicity, bifurcations and route to chaos Front propagation in lattices with on-site bistable non-degenerate potential: multiplicity, bifurcations and route to chaos I.B. Shiroy and O.V. Gendelman Faculty of Mechanical Engineering, Technion, Haifa

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation Radiation Damping Lecture 18 1 Introduction to the Abraham-Lorentz equation Classically, a charged particle radiates energy if it is accelerated. We have previously obtained the Larmor expression for the

More information

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH74 Solution. There are two possible point defects in the crystal structure, Schottky and

More information

Influence of moving breathers on vacancies migration

Influence of moving breathers on vacancies migration Physics Letters A 315 (2003) 364 371 www.elsevier.com/locate/pla Influence of moving breathers on vacancies migration J. Cuevas a,, C. Katerji a, J.F.R. Archilla a,j.c.eilbeck b,f.m.russell b a Grupo de

More information

Lecture 7. Forces: Newton s Laws. Problem-Solving Tactics: Friction and Centripetal Motion. Physics 105; Summer How do we jump?

Lecture 7. Forces: Newton s Laws. Problem-Solving Tactics: Friction and Centripetal Motion. Physics 105; Summer How do we jump? ecture 7 Problem-Solving Tactics: Friction and Centripetal Motion (H&W, Chapters 5-6) http://web.njit.edu/~sirenko/ Newton s aws I. If no net force acts on a body, then the body s velocity cannot change.

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

Lecture 11: Periodic systems and Phonons

Lecture 11: Periodic systems and Phonons Lecture 11: Periodic systems and Phonons Aims: Mainly: Vibrations in a periodic solid Complete the discussion of the electron-gas Astrophysical electrons Degeneracy pressure White dwarf stars Compressibility/bulk

More information

Simulation of Optical Bloch Equations for two and three level atoms*.

Simulation of Optical Bloch Equations for two and three level atoms*. Simulation of Optical Bloch Equations for two and three level atoms*. Jose Mawyin, Harold Metcalf, A.G.E.P., Laser Teaching Center. *Based on the optics rotation project of Dan Li and the Master Thesis

More information

Numerical study of friction of flake and adsorbed monolayer on atomically clean substrate

Numerical study of friction of flake and adsorbed monolayer on atomically clean substrate Journal of Physics: Conference Series Numerical study of friction of flake and adsorbed monolayer on atomically clean substrate To cite this article: Hiroshi Matsukawa et al 2007 J. Phys.: Conf. Ser. 89

More information

2. A 10 kg box is being pushed by a 100 N force 30 above the horizontal. The acceleration of the box is 5 m/s 2. What is the value of µ k?

2. A 10 kg box is being pushed by a 100 N force 30 above the horizontal. The acceleration of the box is 5 m/s 2. What is the value of µ k? Physics Whiteboard Forces with Friction 1. A 70 kg block is being pushed across a tabletop with a constant force of 350 N exerted in the direction of travel. If the coefficient of kinetic friction (µ k

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

The velocity dependence of frictional forces in point-contact friction

The velocity dependence of frictional forces in point-contact friction Appl. Phys. A, S3 S7 (199) Applied Physics A Materials Science & Processing Springer-Verlag 199 The velocity dependence of frictional forces in point-contact friction O. Zwörner, H. Hölscher, U. D. Schwarz,

More information

The Toric-Boson model and quantum memory at finite temperature

The Toric-Boson model and quantum memory at finite temperature The Toric-Boson model and quantum memory at finite temperature A.H., C. Castelnovo, C. Chamon Phys. Rev. B 79, 245122 (2009) Overview Classical information can be stored for arbitrarily long times because

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

Neighbor Tables Long-Range Potentials

Neighbor Tables Long-Range Potentials Neighbor Tables Long-Range Potentials Today we learn how we can handle long range potentials. Neighbor tables Long-range potential Ewald sums MSE485/PHY466/CSE485 1 Periodic distances Minimum Image Convention:

More information

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and Lecture 6. Josephson junction circuits Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and I(t) its only destination is as supercurrent through the

More information

Damping of materials and members in structures

Damping of materials and members in structures Journal of Physics: Conference Series Damping of materials and members in structures To cite this article: F Orban 0 J. Phys.: Conf. Ser. 68 00 View the article online for updates and enhancements. Related

More information

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six READING QUIZ 1. One of the assumptions used when analyzing a simple truss is that the members are joined together by. A) Welding B) Bolting C) Riveting D) Smooth pins E) Super glue 2. When using the method

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Physics 8 Monday, October 28, 2013

Physics 8 Monday, October 28, 2013 Physics 8 Monday, October 28, 2013 Turn in HW8 today. I ll make them less difficult in the future! Rotation is a hard topic. And these were hard problems. HW9 (due Friday) is 7 conceptual + 8 calculation

More information

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES J.D. MEISS Program in Applied Mathematics University of Colorado Boulder, CO Abstract We construct an approximate renormalization operator for a

More information

Rare Event Simulations

Rare Event Simulations Rare Event Simulations Homogeneous nucleation is a rare event (e.g. Liquid Solid) Crystallization requires supercooling (µ solid < µ liquid ) Crystal nucleus 2r Free - energy gain r 3 4! 3! GBulk = ñr!

More information

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2 MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

Anomalous energy transport in FPU-β chain

Anomalous energy transport in FPU-β chain Anomalous energy transport in FPU-β chain Sara Merino Aceituno Joint work with Antoine Mellet (University of Maryland) http://arxiv.org/abs/1411.5246 Imperial College London 9th November 2015. Kinetic

More information

Emergent Horizons in the Laboratory

Emergent Horizons in the Laboratory Emergent Horizons in the Laboratory Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Emergent Horizons in the Laboratory p.1/26 Event Horizon Collapsing matter Singularity Light cones, light

More information

Modeling Dust-Density Wave Fields as a System of Coupled van der Pol Oscillators

Modeling Dust-Density Wave Fields as a System of Coupled van der Pol Oscillators Kristoffer Menzel 13th WPDP 1 Modeling Dust-Density Wave Fields as a System of Coupled van der Pol Oscillators Kristoffer Ole Menzel, Tim Bockwoldt, Oliver Arp, Alexander Piel 13th WPDP, Waco May 21, 2012

More information

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators Dynamics Days Asia-Pacific: Singapore, 2004 1 Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators Alexander Zumdieck (Max Planck, Dresden), Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL,

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Frequency locking in a forced Mathieu van der Pol Duffing system

Frequency locking in a forced Mathieu van der Pol Duffing system Nonlinear Dyn (008) 54:3 1 DOI 10.1007/s11071-007-938-x ORIGINAL ARTICLE requency locking in a forced Mathieu van der Pol Duffing system Manoj Pandey Richard H. Rand Alan T. Zehnder Received: 4 August

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

arxiv: v1 [cond-mat.stat-mech] 3 Nov 2011

arxiv: v1 [cond-mat.stat-mech] 3 Nov 2011 T-Shape Molecular Heat Pump arxiv:.074v [cond-mat.stat-mech] 3 Nov 0 Wei-Rong Zhong, and Bambi Hu, 3 Department of Physics, ollege of Science and Engineering, Jinan University, Guangzhou, 5063, hina. Department

More information

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable Printed from the Mathematica Help Browser 1 1 of 10 Phase Locking A neuron phase-locks to a periodic input it spikes at a fixed delay [Izhikevich07]. The PRC's amplitude determines which frequencies a

More information

GIANT SUPPRESSION OF THE ACTIVATION RATE IN DYNAMICAL SYSTEMS EXHIBITING CHAOTIC TRANSITIONS

GIANT SUPPRESSION OF THE ACTIVATION RATE IN DYNAMICAL SYSTEMS EXHIBITING CHAOTIC TRANSITIONS Vol. 39 (2008) ACTA PHYSICA POLONICA B No 5 GIANT SUPPRESSION OF THE ACTIVATION RATE IN DYNAMICAL SYSTEMS EXHIBITING CHAOTIC TRANSITIONS Jakub M. Gac, Jan J. Żebrowski Faculty of Physics, Warsaw University

More information

Online homework #6 due on Tue March 24

Online homework #6 due on Tue March 24 Online homework #6 due on Tue March 24 Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits) 51 Equilibrium Question 52 1 Using Newton

More information

SPH3U1 - Dynamics Problems Set 3

SPH3U1 - Dynamics Problems Set 3 SPH3U1 - Dynamics Problems Set 3 Problems 1. A force of 1.2 N [ ] is applied to an object of mass 1.5 kg. It accelerates at 0.50 m/s 2 [ ] along a surface. Determine the force of friction that is acting

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

Additive resonances of a controlled van der Pol-Duffing oscillator

Additive resonances of a controlled van der Pol-Duffing oscillator Additive resonances of a controlled van der Pol-Duffing oscillator This paper has been published in Journal of Sound and Vibration vol. 5 issue - 8 pp.-. J.C. Ji N. Zhang Faculty of Engineering University

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information