σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j

Size: px
Start display at page:

Download "σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j"

Transcription

1 PHY 396 K. Solutions for problem set #4. Problem 1a: The linear sigma model has scalar potential V σ, π = λ 8 σ + π f βσ. S.1 Any local minimum of this potential satisfies and V = λ π V σ = λ σ + π f = 0 π σ + π f σ β = 0, S. which together imply π = 0 while σ satisfies a cubic equation σσ f β λ = 0. S.3 For small β > 0 this equation has three real solutions, namely σ 1 β λf, σ f + β λf, σ 3 +f + β λf. S.4 Furthermore, at π = 0 the second derivatives of the potential are V σ = λ3σ f, V π i π j = λσ f δ ij, v σ π i = 0, S.5 which means that the stationary point σ 1 is the local maximum of V σ, π, the stationary point σ is a saddle point, and only the σ 3 is a minimum. In other words, V σ, π has a unique minimum at = 0, σ = σ 3, exactly as in eq.. Q.E.D. π 1

2 Problem 1b: Let us shift the σ field by its vacuum expectation value σx = σ + σx. Expanding the scalar potential into powers of the π and σ fields, we have V π, σ = λ π + σ + σ f β σ + σ 8 S.6 = const + V + V 3 + V 4 where V 4 = λ 8 π + σ, V 3 V = λ σ σ π + σ = λ 4 σ f π + λ 4 3 σ f σ = β σ π + β σ + λ σ σ, S.7 and the last equality follows from eq. S. for the σ. Lagrangian into powers of π x and σx and write Consequently, we expand the while L = L free + L int + const S.8 where L free = L kin V π, σ [ ] 1 = µ σ β σ + λ σ σ + [ 1 µπ β ] σ π S.9 describes the free π and σ fields, and L int = V 3 π, σ V 4 π, σ S.10 describes their interactions. The particles masses follow from the quadratic Lagrangian S.9: M π = β σ β f, and M σ = M π + λ σ λf M π. Q.E.D.

3 Problem a: Combining definitions 4 with commutation relations 3, we immediately calculate [ˆb k, ˆb k ] = cosht k sinht k δ k, k sinht k cosht k δ k,k = 0 S.11 where the second equality follows from t k = t k for k = k. Likewise, [ˆb k, ˆb k ] = 0. Finally, [ˆb k, ˆb k ] = cosht k cosht k δ k,k sinht k sinht k δ k, k = δ k,k cosh t k sinh t k = 1. S.1 In other words, the ˆb k and ˆb k operators satisfy the same bosonic commutations relations [ˆb k, ˆb k ] = 0, [ˆb k, ˆb k ] = 0, [ˆb k, ˆb k ] = δ k,k. S.13 as the original â k and â k operators. Q.E.D. Problem b: A straightforward calculation shows that k ω kˆb kˆb k ω k cosht k â kâk + 1 k ω k sinht k â kâ k + â kâk + const. S.14 Therefore, the Hamiltonian 5 can be diagonalized in terms of the transformed creation / annihilation operators 4 if and only if we can solve for ω k and t k such that ω k cosht k = A k and ω k sinht k = B k. S.15 The latter equations are solvable whenever A k > B k and the solution is t k = 1 artanh B k A k and ω k = A k B k. S.16 Q.E.D. 3

4 Problem c: In terms of the momentum modes ã k and ã k of the shifted fields ˆϕx and ˆϕ x, the free Hamiltonian 8 becomes Ĥ free [ k M + λn ã kãk + λn ã k ã k + ã kã k ]. S.17 This Hamiltonian has form 5 in term of the shifted annihilation and creation operators ã k = â k + Nδ bp,0 and ã k = â k + Nδ bp,0, which obviously satisfy the same bosonic commutation relations as the un-shifted operators â k and ã k. Therefore, we may diagonalize this Hamiltonian by means of the Bogolyubov transform ˆbk = cosht k ã k + sinht k ã k, ˆb k = cosht k ã k + sinht k ã k, 4 for suitable parameters t k = t k. Specifically, according to eqs. S.16, we let t k = 1 artanh λn k M + λn = 1 4 log and then the free Hamiltonian S.17 takes form 9 for 1 + 4λnM k, S.18 ω k = k λn M + λn λn = k M + k 4M. 10 Q.E.D. Problem : The key to this exercise is the multiple commutator formula: For any two operators ˆF and Ĝ, e + ˆF Ĝe ˆF = 1 n! [ ˆF, [ ˆF, Ĝ] ] n times n=0 S.19 = Ĝ + [ ˆF, Ĝ] + 1 [ ˆF, [ ˆF, Ĝ]] [ ˆF, [ ˆF, [ ˆF, Ĝ]]] +. Now, let ˆF be as in eq. 11 and let Ĝ be one of the ã k or ã b p. The simple commutators [ ˆF, Ĝ] 4

5 follow directly from the bosonic commutation relations: [ ˆF, ã k ] = t k ã k and [ ˆF, ã k ] = t kã k. S.0 Consequently, [ ˆF, [ ˆF, ã k ] ] n times = t k n { ãk for even n, ã k for odd n, S.1 and therefore eq. S.19 yields e + ˆF ã k e ˆF = t k n ã n! k + even n odd n t k n ã n! k = cosht k ã k + sinht k ã k S. = ˆb k. And since ˆF is anti-hermitian, we also have e + ˆF ã k e ˆF = e + ˆF ã k e ˆF = ˆb k, S.3 and hence the bosonic commutation relations S.13 follow from the relations 3 via unitary equivalence S. and S.3. Finally, for the quantum state Ω = e + ˆF coh we have ˆbk Ω = e + ˆF ã k e ˆF e + ˆF coh = e + ˆF ã k coh = 0 because ã k coh = 0 for all momenta k. Therefore, from the point of view of quasi-particles created by the ˆb k operators and annihilated by the ˆb k, the Ω is the vacuum state. 5

6 Problem d: In terms of atomic creation and annihilation operators ˆP tot k â kâk = k ã kãk, S.4 k 0 hence [ ˆP tot, ã k ] = +k ã k and [ ˆP tot, ã k ] = k ã k. S.5 Consequently, for any t k coefficients, the Bogolyubov-transformed operators 4 operators satisfy [ ˆP tot, ˆb k ] = +k ˆb k and [ ˆP tot, ˆb k ] = k ˆb k, S.6 which means that the quasiparticle created by the ˆb k operator and annihilated by the ˆb k has definite momentum k. Also, straightforward algebra shows that for any k 0 and t k = t k ˆb kˆb k ˆb kˆb k = ã kãk ã kã k. S.7 Consequently, ˆP tot 0 k ã kãk ã kãk ã kã k k 0 ˆb kˆb k ˆb kˆb k k 0 S.8 0 k ˆb kˆb k. In other words, the total mechanical momentum of the superfluid helium is simply the net momentum of all the quasi-particles. 6

7 Problem e: Combining eqs. S.18 and 4 we immediately see that for large momenta k, and therefore t k λnm k 1 = cosht k 1, sinht k t k 1, S.9 ˆb k ã k + t kã k ã k = â k. S.30 Thus, quasi-particles with large momenta are approximately atoms. On the other hand, for small momenta k but k 0, t k 1 4 4λnM log k 1 = cosht k, sinht k 1et k 1 4 4λnM k 1, S.31 and therefore ˆb k 1 4 4λnM k ã k + ã k. S.3 At the same time, the density fluctuations in the superfluid are measured by the operators δnx ˆΨ x ˆΨx n = n ˆϕ x + ˆϕx + ˆϕ x ˆϕx. S.33 Approximating this formula by its leading first-order terms and then taking a Fourier transform, we find δn k Hence, the physical meaning of eq. S.3 is n ã k + ã k. S.34 for small k, ˆb k coeff δn k, S.35 or in other words, for small momenta, the quasiparticle created by the ˆb k wave in the superfluid, i.e. a phonon. operator is the density 7

8 Problem 3f: Non-relativistic mechanics classical or quantum is invariant under Galilean boosts, which act on coordinates, momenta and energy according to t = t, x i = x i + vt, p i = p i + m i v, H = H + v P total + const. S.36 A superfluid flowing at a uniform velocity v is related to the same superfluid at rest via a Galilean boost. Consequently, the lab-frame Hamiltonian of the flowing superfluid is Ĥ µ ˆN lab frame = Ĥ µ ˆN fluid frame + v ˆP fluid frame + const = Ĥ free + v ˆP fluid frame + Ĥint + const S.37 where lab frame Ĥfree = Ĥ free + v ˆP fluid frame ω k + v k ˆb kˆb k. S.38 The quasiparticle momenta k in this formula are in the fluid s rest frame. Eq. S.38 applies to a flow of an ideal gas just as well as a flow of a superfluid, the only difference being in the dispersion relations ωk. For the ideal gas, ω = k /M, and therefore for any non-zero velocity v, there are modes k for which ω k + v k = k Mv M 1 Mv < 0. S.39 For such modes, excitations created by the ˆb k have negative energy, which means that any perturbation of the flowing gas can create such negative-energy excitations and slow down the flow. For the superfluid however, ω k v c k for all modes, hence ω k + v k v c v k 0 S.40 for all the excitation modes, provided v v 0. Consequently, all excitations in the flowing superfluid have positive lab-frame energies, so they don t get spontaneously created and the flow persists forever without dissipation, thus superfluidity. 8

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday). PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday. 1. Quantum mechanics of a fixed number of relativistic particles does not work (except as an approximation because of problems with relativistic

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

d 3 k In the same non-relativistic normalization x k = exp(ikk),

d 3 k In the same non-relativistic normalization x k = exp(ikk), PHY 396 K. Solutions for homework set #3. Problem 1a: The Hamiltonian 7.1 of a free relativistic particle and hence the evolution operator exp itĥ are functions of the momentum operator ˆp, so they diagonalize

More information

PHY 396 K. Problem set #3. Due September 29, 2011.

PHY 396 K. Problem set #3. Due September 29, 2011. PHY 396 K. Problem set #3. Due September 29, 2011. 1. Quantum mechanics of a fixed number of relativistic particles may be a useful approximation for some systems, but it s inconsistent as a complete theory.

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where PHY 396 K. Solutions for problem set #11. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where Ĥ 0 = Ĥfree Φ + Ĥfree

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly PHY 396 K. Solutions for problem set #10. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where and Ĥ 0 = Ĥfree Φ

More information

SECOND QUANTIZATION. Lecture notes with course Quantum Theory

SECOND QUANTIZATION. Lecture notes with course Quantum Theory SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION 1. Introduction and history 3 2. The N-boson system 4 3. The many-boson system 5 4. Identical

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,

More information

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13 The Dirac Equation Dirac s discovery of a relativistic wave equation for the electron was published in 1928 soon after the concept of intrisic spin angular momentum was proposed by Goudsmit and Uhlenbeck

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Fermionic Algebra and Fock Space

Fermionic Algebra and Fock Space Fermionic Algebra and Fock Space Earlier in class we saw how harmonic-oscillator-like bosonic commutation relations [â α,â β ] = 0, [ ] â α,â β = 0, [ ] â α,â β = δ α,β (1) give rise to the bosonic Fock

More information

From Particles to Fields

From Particles to Fields From Particles to Fields Tien-Tsan Shieh Institute of Mathematics Academic Sinica July 25, 2011 Tien-Tsan Shieh (Institute of MathematicsAcademic Sinica) From Particles to Fields July 25, 2011 1 / 24 Hamiltonian

More information

Physics 582, Problem Set 3 Solutions

Physics 582, Problem Set 3 Solutions Physics 582, Problem Set 3 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 208 Contents. Spin Waves in a Quantum Heisenberg Antiferromagnet 2. The Two-Component Complex Scalar Field 5. SPIN WAVES IN

More information

PHY 396 K. Solutions for problems 1 and 2 of set #5.

PHY 396 K. Solutions for problems 1 and 2 of set #5. PHY 396 K. Solutions for problems 1 and of set #5. Problem 1a: The conjugacy relations  k,  k,, Ê k, Ê k, follow from hermiticity of the Âx and Êx quantum fields and from the third eq. 6 for the polarization

More information

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning.

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning. Imperial College London QFFF MSc TEST January 017 QUANTUM FIELD THEORY TEST For QFFF MSc Students Monday, 9th January 017: 14:00 to 16:00 Answer ALL questions. Please answer each question in a separate

More information

Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields

Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields Classical Mechanics Classical and Quantum Mechanics of a Charged Particle Moving in Electric and Magnetic Fields In this section I describe the Lagrangian and the Hamiltonian formulations of classical

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Relativistic Dirac fermions on one-dimensional lattice

Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa DUE, 211-1-2 Relativistic Dirac fermions on one-dimensional lattice Niodem Szpa Universität Duisburg-Essen & Ralf Schützhold Plan: 2 Jan 211 Discretized relativistic Dirac fermions (in an external

More information

Second quantization. Emmanuel Fromager

Second quantization. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Second Quantization: Quantum Fields

Second Quantization: Quantum Fields Second Quantization: Quantum Fields Bosons and Fermions Let X j stand for the coordinate and spin subscript (if any) of the j-th particle, so that the vector of state Ψ of N particles has the form Ψ Ψ(X

More information

SECOND QUANTIZATION. notes by Luca G. Molinari. (oct revised oct 2016)

SECOND QUANTIZATION. notes by Luca G. Molinari. (oct revised oct 2016) SECOND QUANTIZATION notes by Luca G. Molinari (oct 2001- revised oct 2016) The appropriate formalism for the quantum description of identical particles is second quantisation. There are various equivalent

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models

Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 569 57 Symmetries and Supersymmetries in Trapped Ion Hamiltonian Models Benedetto MILITELLO, Anatoly NIKITIN and Antonino MESSINA

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Fermionic Algebra and Fock Space

Fermionic Algebra and Fock Space Fermionic Algebra and Fock Space Earlier in class we saw how the harmonic-oscillator-like bosonic commutation relations [â α,â β ] = 0, [ ] â α,â β = 0, [ ] â α,â β = δ α,β (1) give rise to the bosonic

More information

7 Quantized Free Dirac Fields

7 Quantized Free Dirac Fields 7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Quantum Many Body Theory

Quantum Many Body Theory Quantum Many Body Theory Victor Gurarie Week 4 4 Applications of the creation and annihilation operators 4.1 A tight binding model Consider bosonic particles which hops around on the lattice, for simplicity,

More information

1.1 Creation and Annihilation Operators in Quantum Mechanics

1.1 Creation and Annihilation Operators in Quantum Mechanics Chapter Second Quantization. Creation and Annihilation Operators in Quantum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator.

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

An origin of light and electrons a unification of gauge interaction and Fermi statistics

An origin of light and electrons a unification of gauge interaction and Fermi statistics An origin of light and electrons a unification of gauge interaction and Fermi statistics Michael Levin and Xiao-Gang Wen http://dao.mit.edu/ wen Artificial light and quantum orders... PRB 68 115413 (2003)

More information

6 Multi-particle Systems (2)

6 Multi-particle Systems (2) 6 Multi-particle Systems (2) Exercise 6.1: Four particles in one dimension Four one-dimensional particles of mass m are confined to a length L with periodic boundary conditions. The Hamiltonian Ĥ for one

More information

Problem 1(a): The scalar potential part of the linear sigma model s Lagrangian (1) is. 8 i φ2 i f 2) 2 βλf 2 φ N+1,

Problem 1(a): The scalar potential part of the linear sigma model s Lagrangian (1) is. 8 i φ2 i f 2) 2 βλf 2 φ N+1, PHY 396 K. Solutions for problem set #10. Problem 1a): The scalar potential part of the linear sigma model s Lagrangian 1) is Vφ) = λ 8 i φ i f ) βλf φ N+1, S.1) where the last term explicitly breaks the

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

CHM 532 Notes on Creation and Annihilation Operators

CHM 532 Notes on Creation and Annihilation Operators CHM 53 Notes on Creation an Annihilation Operators These notes provie the etails concerning the solution to the quantum harmonic oscillator problem using the algebraic metho iscusse in class. The operators

More information

PHY 396 K. Solutions for homework set #9.

PHY 396 K. Solutions for homework set #9. PHY 396 K. Solutions for homework set #9. Problem 2(a): The γ 0 matrix commutes with itself but anticommutes with the space-indexed γ 1,2,3. At the same time, the parity reflects the space coordinates

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

Bogoliubov theory of the weakly interacting Bose gas

Bogoliubov theory of the weakly interacting Bose gas Chapter 4 Bogoliubov theory of the wealy interacting Bose gas In the presence of BEC, the ideal Bose gas has a constant pressure against variation of volume, so that the system features infinite compressibility.

More information

e ik(x y) m 2 where the last equality follows from eq. (3.10a) for the sum over polarizations. = i

e ik(x y) m 2 where the last equality follows from eq. (3.10a) for the sum over polarizations. = i PHY 396 K. Solutions for homework set #4. Problem 1a): Each quantum field is a linear combination 3.11) of creation and annihilation operators. The product of two fields µ x)âν y) therefore decomposes

More information

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday,

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday, ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set, 15.09.014. (0 points in total) Problems are due at Monday,.09.014. PROBLEM 4 Entropy of coupled oscillators. Consider two coupled simple

More information

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS February 18, 2011 2 Contents 1 Need for Statistical Mechanical Description 9 2 Classical Statistical Mechanics 13 2.1 Phase Space..............................

More information

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Physics 28. Quantum Field Theory. Professor Dine Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Field Theory in a Box Consider a real scalar field, with lagrangian L = 2 ( µφ)

More information

Week 1 - Superfluidity

Week 1 - Superfluidity Week 1 - Superfluidity I. REVIEW OF BEC Thinking again about a a ton of bosons in a box, the state equation concerning number was: N V = 1 V 1 e ɛ kβ /ζ 1 k (1) with ζ = e µβ. (2) The k = 0 term in the

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

1 Free real scalar field

1 Free real scalar field 1 Free real scalar field The Hamiltonian is H = d 3 xh = 1 d 3 x p(x) +( φ) + m φ Let us expand both φ and p in Fourier series: d 3 p φ(t, x) = ω(p) φ(t, x)e ip x, p(t, x) = ω(p) p(t, x)eip x. where ω(p)

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

Bosonization of a Finite Number of Non-Relativistic Fermions and Applications

Bosonization of a Finite Number of Non-Relativistic Fermions and Applications Bosonization of a Finite Number of Non-Relativistic Fermions and Applications p. 1/4 Bosonization of a Finite Number of Non-Relativistic Fermions and Applications Avinash Dhar Tata Institute of Fundamental

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

le LPTMS en Bretagne... photo extraite du site

le LPTMS en Bretagne... photo extraite du site le LPTMS en Bretagne... 1 photo extraite du site http://www.chateau-du-val.com le LPTMS en Bretagne... 1 2 Quantum signature of analog Hawking radiation in momentum space Nicolas Pavloff LPTMS, CNRS, Univ.

More information

Complex Solutions to the Klein-Gordon Equation

Complex Solutions to the Klein-Gordon Equation University of Rochester Quantum Field Theory II Professor Sarada Rajeev Complex Solutions to the Klein-Gordon Equation David Mayrhofer PHY 39 Independent Study Paper April 0th, 08 Introduction At this

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision)

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision) Particle Physics Michaelmas Term 2011 Prof. Mark Thomson + e - e + - + e - e + - + e - e + - + e - e + - Handout 2 : The Dirac Equation Prof. M.A. Thomson Michaelmas 2011 45 Non-Relativistic QM (Revision)

More information

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253)

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253) 44 Group Theory The matrix D (/,) that represents the Lorentz transformation (.4) L = e i `J` i `K` (.5) is D (/,) (, )=exp( i / /). (.5) And so the generic D (/,) matrix is D (/,) (, )=e z / (.53) with

More information

On Perturbation Theory, Dyson Series, and Feynman Diagrams

On Perturbation Theory, Dyson Series, and Feynman Diagrams On Perturbation Theory, Dyson Series, and Feynman Diagrams The Interaction Picture of QM and the Dyson Series Many quantum systems have Hamiltonians of the form Ĥ Ĥ0 + ˆV where Ĥ0 is a free Hamiltonian

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 45 Particle Physics Dr. Alexander Mitov µ + e - e + µ - µ + e - e + µ - µ + e - e + µ - µ + e - e + µ - Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 46 Non-Relativistic

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

16. GAUGE THEORY AND THE CREATION OF PHOTONS

16. GAUGE THEORY AND THE CREATION OF PHOTONS 6. GAUGE THEORY AD THE CREATIO OF PHOTOS In the previous chapter the existence of a gauge theory allowed the electromagnetic field to be described in an invariant manner. Although the existence of this

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler March 8, 011 1 Lecture 19 1.1 Second Quantization Recall our results from simple harmonic oscillator. We know the Hamiltonian very well so no need to repeat here.

More information

arxiv:cond-mat/ v1 21 Jun 2000

arxiv:cond-mat/ v1 21 Jun 2000 SUPERSYMMETRY IN THERMO FIELD DYNAMICS arxiv:cond-mat/0006315v1 21 Jun 2000 R.Parthasarathy and R.Sridhar 1 The Institute of Mathematical Sciences C.P.T.Campus, Taramani Post Chennai 600 113, India. Abstract

More information

Quantum Field theory. Kimmo Kainulainen. Abstract: QFT-II partial lecture notes. Keywords:.

Quantum Field theory. Kimmo Kainulainen. Abstract: QFT-II partial lecture notes. Keywords:. Preprint typeset in JHEP style - PAPER VERSION Quantum Field theory Kimmo Kainulainen Department of Physics, P.O.Box 35 (YFL), FI-40014 University of Jyväskylä, Finland, and Helsinki Institute of Physics,

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

Introduction to Second-quantization I

Introduction to Second-quantization I Introduction to Second-quantization I Jeppe Olsen Lundbeck Foundation Center for Theoretical Chemistry Department of Chemistry, University of Aarhus September 19, 2011 Jeppe Olsen (Aarhus) Second quantization

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Inverse Problems in Quantum Optics

Inverse Problems in Quantum Optics Inverse Problems in Quantum Optics John C Schotland Department of Mathematics University of Michigan Ann Arbor, MI schotland@umich.edu Motivation Inverse problems of optical imaging are based on classical

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

An Introduction to Quantum Field Theory

An Introduction to Quantum Field Theory An Introduction to Quantum Field Theory Owe Philipsen Institut für Theoretische Physik Universität Münster Wilhelm-Klemm-Str.9, 48149 Münster, Germany Lectures presented at the School for Young High Energy

More information

Canonical Quantization

Canonical Quantization Canonical Quantization March 6, 06 Canonical quantization of a particle. The Heisenberg picture One of the most direct ways to quantize a classical system is the method of canonical quantization introduced

More information

Quantum Physics 2006/07

Quantum Physics 2006/07 Quantum Physics 6/7 Lecture 7: More on the Dirac Equation In the last lecture we showed that the Dirac equation for a free particle i h t ψr, t = i hc α + β mc ψr, t has plane wave solutions ψr, t = exp

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Many Body Quantum Mechanics

Many Body Quantum Mechanics Many Body Quantum Mechanics In this section, we set up the many body formalism for quantum systems. This is useful in any problem involving identical particles. For example, it automatically takes care

More information

Prancing Through Quantum Fields

Prancing Through Quantum Fields November 23, 2009 1 Introduction Disclaimer Review of Quantum Mechanics 2 Quantum Theory Of... Fields? Basic Philosophy 3 Field Quantization Classical Fields Field Quantization 4 Intuitive Field Theory

More information

Lecture 1: Introduction to QFT and Second Quantization

Lecture 1: Introduction to QFT and Second Quantization Lecture 1: Introduction to QFT and Second Quantization General remarks about quantum field theory. What is quantum field theory about? Why relativity plus QM imply an unfixed number of particles? Creation-annihilation

More information

chapter 3 Spontaneous Symmetry Breaking and

chapter 3 Spontaneous Symmetry Breaking and chapter 3 Spontaneous Symmetry Breaking and Nambu-Goldstone boson History 1961 Nambu: SSB of chiral symmetry and appearance of zero mass boson Goldstone s s theorem in general 1964 Higgs (+others): consider

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information

Isotropic harmonic oscillator

Isotropic harmonic oscillator Isotropic harmonic oscillator 1 Isotropic harmonic oscillator The hamiltonian of the isotropic harmonic oscillator is H = h m + 1 mω r (1) = [ h d m dρ + 1 ] m ω ρ, () ρ=x,y,z a sum of three one-dimensional

More information

An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions

An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions Andrzej Pokraka February 5, 07 Contents 4 Interacting Fields and Feynman Diagrams 4. Creation of Klein-Gordon particles from a classical

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

Adaptive Perturbation Theory: Quantum Mechanics and Field Theory

Adaptive Perturbation Theory: Quantum Mechanics and Field Theory Invited Talk at Workshop on Light-Cone QCD and Nonperturbative Hadron Physics 005 (LC005, 7-5 July 005, Cairns, Australia SLAC-PUB-53 Adaptive Perturbation Theory: Quantum Mechanics and Field Theory Marvin

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Chapter 19 - Second Quantization. 1. Identical Particles Revisited

Chapter 19 - Second Quantization. 1. Identical Particles Revisited Chapter 19 - Second Quantization 1. Identical Particles Revisited When dealing with a system that contains only a few identical particles, we were easily able to explicitly construct appropriately symmetrized

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

The Particle-Field Hamiltonian

The Particle-Field Hamiltonian The Particle-Field Hamiltonian For a fundamental understanding of the interaction of a particle with the electromagnetic field we need to know the total energy of the system consisting of particle and

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

QUANTUM FIELD THEORY. Kenzo INOUE

QUANTUM FIELD THEORY. Kenzo INOUE QUANTUM FIELD THEORY Kenzo INOUE September 0, 03 Contents Field and Lorentz Transformation. Fields........................................... Lorentz Transformation..................................3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10748 Contents 1 Quenches to U /J = 5.0 and 7.0 2 2 Quasiparticle model 3 3 Bose Hubbard parameters 6 4 Ramp of the lattice depth for the quench 7 WWW.NATURE.COM/NATURE

More information

On the non-relativistic limit of charge conjugation in QED

On the non-relativistic limit of charge conjugation in QED arxiv:1001.0757v3 [hep-th] 20 Jun 2010 On the non-relativistic limit of charge conjugation in QED B. Carballo Pérez and M. Socolovsky Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Introduction to Path Integrals

Introduction to Path Integrals Introduction to Path Integrals Consider ordinary quantum mechanics of a single particle in one space dimension. Let s work in the coordinate space and study the evolution kernel Ut B, x B ; T A, x A )

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Chapter 9. Electromagnetic Radiation

Chapter 9. Electromagnetic Radiation Chapter 9. Electromagnetic Radiation 9.1 Photons and Electromagnetic Wave Electromagnetic radiation is composed of elementary particles called photons. The correspondence between the classical electric

More information