PHY 396 K. Solutions for problems 1 and 2 of set #5.

Size: px
Start display at page:

Download "PHY 396 K. Solutions for problems 1 and 2 of set #5."

Transcription

1 PHY 396 K. Solutions for problems 1 and of set #5. Problem 1a: The conjugacy relations  k,  k,, Ê k, Ê k, follow from hermiticity of the Âx and Êx quantum fields and from the third eq. 6 for the polarization vectors:  k, d 3 x e +ikx e k  x d 3 x e i kx e k   k,, S.1 and likewise Ê k, d 3 x e +ikx e k Ê x d 3 x e i kx e k Ê Ê k,, S. The equal-time commutation relations follow from eqs. 1: Obviously, [Âk,, Âk, ] 0, [Êk,, Êk,] 0. S.3 Less obviously, [Âk,, Ê k, ] d 3 x d 3 y e ikx e k i e +ik y e k j [  i x, Êj y] d 3 x d 3 y e ikx e k i e +ik y e k j iδ 3 x yδ ij i d 3 x e ik k x e k e k S.4 iπ 3 δ 3 k k e k e k iπ 3 δ 3 k k δ,, or equivalently, [Âk,, Êk, ] +iπ3 δ 3 k + k δ,. S.5 1

2 Problem 1b: There are four terms in the Hamiltonian density, so let us consider them one by one. Combining Fourier transform with decomposition into polarization modes it is easy to see that in light of eq. 4, d d 3 x Ê 3 k x π 3 Ê k,êk, S.6 and likewise d d 3 x  3 k x π 3  k,âk,. S.7 Furthermore, using eq. 5 we have Âx π 3 e ikx ik e k k e k Âk, S.8 and hence d 3 x Âx π 3 k  k,âk,. S.9 Finally, the first eq. 6 gives us Êx π 3 e ikx ik e k i k δ,0 Êk, S.10 and hence d 3 x d 3 k Êx π 3 k Ê k,0êk,0. S.11 Ĥ In light of all these formulæ, we assemble the Hamiltonian as d 3 k 1 + k m δ,0 C k, Ê k,êk, m + + k ω k  C k,âk,. k, 8

3 Problem 1c: Given eqs. S.3 and S.5, we have C k, [â k,, â k, ] iω k [Âk,, C Êk, ] +iπ3 δ 3 k + k δ, k, C k, + iω k [Êk,, C Âk, ] iπ3 δ 3 k + k δ, k, ω k π 3 δ 3 k + k δ, ω k π 3 δ 3 k + k δ, 0 S.1 and likewise [â k,, â k, ] 0. On the other hand, [â k,, â C k, k, ] +iω k [Âk, C, Ê k, ] iπ 3 δ 3 k k δ, k, C k, + iω k [Êk, C,  k k,, ] +iπ 3 δ 3 k k δ, S.13 ω k π 3 δ 3 k k δ, + ω bk π 3 δ 3 k k δ, ω k π 3 δ 3 k k δ,. Problem 1d: Expanding the operators â k, and â k, according to eqs. 9, we have â k,âk, ω k C k,  k,âk, + C k, Ê k,êk, + iω k Ê k,âk, iω k  k,êk, S.14 and therefore Ĥ eq. 8 π 3 ω k â ω k,âk, + Ĥ S.15 k where Ĥ d 3 k iω k π 3  k,êk, Ê k,âk, S.16 Thus, to prove eq. 10 we need to show that Ĥ is a c-number constant. 3

4 The trick here is to change the integration variable k k in the the first term in the integrand of eq. S.16 and then apply eqs. S.1 and S.: d 3 k Consequently iω k  k,êk, d 3 k iω k  k,ê k, d 3 k iω k  +k, Ê +k,. S.17 Ĥ d 3 k d 3 k E vacuum iω k Âk, Ê k, Ê k,âk, [Âk,, Ê k, ] ω k π3 δ 3 k k 0 S.18 which is indeed a c-number constant, albeit divergent. Physically, the vacuum energy S.18 is the net zero-point energy of all the oscillatory modes of the vector field theory. This energy is infinite for two reasons, one having do do with the infinite volume of space and the other with its perfect continuity. The infinite-volume divergence of d 3 x of a constant vacuum energy density manifest itself via the π 3 δ 3 0 factor, which is simply the Fourier transform of d 3 x1. Indeed, had we quantized the theory in a very large but finite box, we would have obtained the L 3 volume factor in eq. S.18 instead of the delta function. In other words, the vacuum has energy density Energy Volume Vacuum d 3 k π 3 3 ω k. S.19 Alas, this integral diverges at large momenta so the vacuum energy density is also infinite. This is a generic problem of all Quantum Field Theories in a perfectly continuous space and hence unlimitedly high momenta. Ultimately, this problem should be resolved by the fundamental theory of physics at ultra-short distances, whatever such theory might be. Fortunately, for all practical purposes, we may safely disregard any c-number constant term in the Hamiltonian, even if such term is infinite and that is exactly what we shall do in this course! 4

5 Problem 1e: Reversing eqs. 9, we have  k, Ck, ω k â k, â k, S.0 and therefore d 3 k Âx π 3 e ikx ω k d 3 k e +ikx π 3 ω k π 3 ω k Ck, e k â k, â k, Ck, e k â k, d 3 k π 3 e ikx ω k Ck, e +ikx e k â k, + e ikx e k â k,. Ck, e k â +k, It remains to work out the time dependence in the Heisenberg picture. S.1 For the free field governed by Hamiltonian 10, â k, t e iωt â k, 0 and â k, t e+iωt â k, 0 where ω ω k. Substituting this time dependence into eq. S.1 and switching to relativistic notations, we immediately arrive at Âx π 3 ω k Ck, e ikx e k â k, 0 + e +ikx e k â k, 0 k 0 +ω k. 11 Problem 1f: The 3 scalar field Â0 x is governed by eqs. 3 and S.10,  0 x, t d 3 k π 3 i k m e ikx Ê k,0 t. S. Reversing eqs. 9 for the Êk, operator, we have Ê k, i/ â k, + â k,, S.3 Ck, 5

6 and in particular Hence,  0 x Ê k,0 im â ω k,0 + â k,0. k d 3 k π 3 ω k k d 3 k π 3 ω k k d 3 k k π 3 ω k m m e+ikx â k,0 + â k,0 m e+ikx â k,0 + e +ikx â k,0 + e ikx â k,0 d 3 k π 3 ω k k m e ikx â +k,0. S.4 As to the time dependence, it works exactly as in eq. 11 for the vector field, thus  0 x d 3 k k e ikx π 3 â ω k m k,0 0 + e +ikx â k,0 0. S.5 k 0 +ω k In light of similarity between eqs. 11 and S.5, we may combine them into a single eq. 1 where or equivalently, 13. Problem 1g: According to eq. 1, + m µ x fk, C k, e k and f 0 k, k m δ,0 π 3 ω k k + m e ikx f µ k, â k, 0 + k + m e +ikx f µ k, â k, 0 k 0 +ω k, S.6 S.7 which vanishes because k + m 0 for k 0 ω k. Likewise, µ  µ x π 3 ω k e ikx ik µ f µ k, â k, 0 + e +ikx ik µ f µ k, â k, 0 k 0 +ω k, S.8 which vanishes because k µ f µ k, 0 for all polarizations. 6

7 Problem a: The simplest way to prove this lemma is by direct inspection, component by component: f i k, f j k, e i ke j k + k m ei 0ke j 0 k δij + ki k j m ; f i k, f 0 k, f i k, 0f 0 k, 0 ki ω k m ; f 0 k, f 0 k, f 0 k, 0 0 k m 1 + ω k m. S.9 Alternatively, we may use the fact that the three four-vectors f µ k, fixed k, 1, 0, +1 are orthogonal to each other and also to the k µ ω k, k. Furthermore, each fk, 1. Consequently, the symmetric matrix in Lorentz indices µ, ν on the left hand side of eq. 14 has to be minus the projection matrix onto four-vectors orthogonal to the k µ, and that is precisely the matrix appearing on the right hand side of eq. 14 note k m. Problem b: The operator product µ xâν y comprises ââ, â â, â â and ââ terms. The first three kinds of terms have zero matrix elements between vacuum states while 0 â k, â k, 0 ω k π 3 δ 3 k k δ,. Consequently, d 3 k 1 [ ] 0 µ xâν y 0 π 3 e ikx y f µ k, f ν k, ω k k 0 +ω k d 3 k 1 [ g µν π 3 + kµ k ν ] ω k m e ikx y g µν 1 m g µν 1 m x µ x µ d 3 k x ν x ν k 0 +ω k π 3 1 ω k [e ikx y] k 0 +ω k Dx y. 15 7

8 Problem c: Starting with eq. 15, we immediately see that for the un-modified time-ordering, 0 Tµ xâν y 0 θx 0 y 0 0 µ xâν y 0 + θy 0 x 0 0 Âν yâµ x 0 On the other hand, θx 0 y 0 g µν 1 m Dx y x µ x ν + θy 0 x 0 g µν 1 m Dy x. x µ x ν S.30 G F x y θx 0 y 0 Dx y + θy 0 x 0 Dy x, S.31 and hence g µν 1 m x µ G F x y θx 0 y 0 g µν 1 x ν m Dx y x µ x ν + θy 0 x 0 g µν 1 m x µ x ν iδ µ0 δ ν0 δ 4 x y Dy x S.3 where the δ-function term arises from taking time derivatives of the θ-functions. cf. explanation of + m G F x y iδ 4 x y in class. Comparing eqs. S.30 and S.3, we obtain 0 Tµ xâν y 0 g µν 1 m x µ x ν G F x y iδ µ0 δ ν0 δ 4 x y S.33 and hence 0 T  µ xâν y 0 g µν 1 m x µ x ν G F x y. S.34 This proves the first line of eq. 16; the second line follows from the momentum-space form 8

9 of the scalar propagator g µν 1 m x µ [ ] d 4 k ie ikx y G F x y x ν π 4 k m + i0 d 4 k g µν π 4 + kµ k ν m ie ikx y k m + i0. S.35 9

d 3 k In the same non-relativistic normalization x k = exp(ikk),

d 3 k In the same non-relativistic normalization x k = exp(ikk), PHY 396 K. Solutions for homework set #3. Problem 1a: The Hamiltonian 7.1 of a free relativistic particle and hence the evolution operator exp itĥ are functions of the momentum operator ˆp, so they diagonalize

More information

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday). PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday. 1. Quantum mechanics of a fixed number of relativistic particles does not work (except as an approximation because of problems with relativistic

More information

Problem 1(a): Since the Hamiltonian (1) is a function of the particles momentum, the evolution operator has a simple form in momentum space,

Problem 1(a): Since the Hamiltonian (1) is a function of the particles momentum, the evolution operator has a simple form in momentum space, PHY 396 K. Solutions for problem set #5. Problem 1a: Since the Hamiltonian 1 is a function of the particles momentum, the evolution operator has a simple form in momentum space, exp iĥt d 3 2π 3 e itω

More information

PHY 396 K. Problem set #3. Due September 29, 2011.

PHY 396 K. Problem set #3. Due September 29, 2011. PHY 396 K. Problem set #3. Due September 29, 2011. 1. Quantum mechanics of a fixed number of relativistic particles may be a useful approximation for some systems, but it s inconsistent as a complete theory.

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

etc., etc. Consequently, the Euler Lagrange equations for the Φ and Φ fields may be written in a manifestly covariant form as L Φ = m 2 Φ, (S.

etc., etc. Consequently, the Euler Lagrange equations for the Φ and Φ fields may be written in a manifestly covariant form as L Φ = m 2 Φ, (S. PHY 396 K. Solutions for problem set #3. Problem 1a: Let s start with the scalar fields Φx and Φ x. Similar to the EM covariant derivatives, the non-abelian covariant derivatives may be integrated by parts

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S. In particularly,

More information

Mandl and Shaw reading assignments

Mandl and Shaw reading assignments Mandl and Shaw reading assignments Chapter 2 Lagrangian Field Theory 2.1 Relativistic notation 2.2 Classical Lagrangian field theory 2.3 Quantized Lagrangian field theory 2.4 Symmetries and conservation

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

e ik(x y) m 2 where the last equality follows from eq. (3.10a) for the sum over polarizations. = i

e ik(x y) m 2 where the last equality follows from eq. (3.10a) for the sum over polarizations. = i PHY 396 K. Solutions for homework set #4. Problem 1a): Each quantum field is a linear combination 3.11) of creation and annihilation operators. The product of two fields µ x)âν y) therefore decomposes

More information

S = ( µ φ µ φ m 2 φ φ)d 4 x (1) Then we can easily read off the Lagrangian density to be: φ a φ a φ m 2 φ φ (3) π = L φ = φ (4) φ (5)

S = ( µ φ µ φ m 2 φ φ)d 4 x (1) Then we can easily read off the Lagrangian density to be: φ a φ a φ m 2 φ φ (3) π = L φ = φ (4) φ (5) Problem. (a) We are given the action to be: S ( µ φ µ φ m φ φ)d 4 x (1) Then we can easily read off the Lagrangian density to be: Then the momentum densities are: L µ φ µ φ m φ φ () L φ φ a φ a φ m φ φ

More information

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS

CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS CHAPTER 1. SPECIAL RELATIVITY AND QUANTUM MECHANICS 1.1 PARTICLES AND FIELDS The two great structures of theoretical physics, the theory of special relativity and quantum mechanics, have been combined

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

H =Π Φ L= Φ Φ L. [Φ( x, t ), Φ( y, t )] = 0 = Φ( x, t ), Φ( y, t )

H =Π Φ L= Φ Φ L. [Φ( x, t ), Φ( y, t )] = 0 = Φ( x, t ), Φ( y, t ) 2.2 THE SPIN ZERO SCALAR FIELD We now turn to applying our quantization procedure to various free fields. As we will see all goes smoothly for spin zero fields but we will require some change in the CCR

More information

Srednicki Chapter 3. QFT Problems & Solutions. A. George. March 19, 2013

Srednicki Chapter 3. QFT Problems & Solutions. A. George. March 19, 2013 Srednicki Chapter 3 QFT Problems & Solutions A. George March 9, 203 Srednicki 3.. Derive the creation/annihilation commutation relations from the canonical commutation relations, the expansion of the operators,

More information

1 Free real scalar field

1 Free real scalar field 1 Free real scalar field The Hamiltonian is H = d 3 xh = 1 d 3 x p(x) +( φ) + m φ Let us expand both φ and p in Fourier series: d 3 p φ(t, x) = ω(p) φ(t, x)e ip x, p(t, x) = ω(p) p(t, x)eip x. where ω(p)

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

d 3 xe ipm x φ(x) (2) d 3 x( φ(x)) 2 = 1 2 p n p 2 n φ(p n ) φ( p n ). (4) leads to a p n . (6) Finally, fill in the steps to show that = 1δpn,p m

d 3 xe ipm x φ(x) (2) d 3 x( φ(x)) 2 = 1 2 p n p 2 n φ(p n ) φ( p n ). (4) leads to a p n . (6) Finally, fill in the steps to show that = 1δpn,p m Physics 61 Homework Due Thurs 7 September 1 1 Commutation relations In class we found that φx, πy iδ 3 x y 1 and then defined φp m L 3/ d 3 xe ipm x φx and likewise for πp m. Show that it really follows

More information

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j PHY 396 K. Solutions for problem set #4. Problem 1a: The linear sigma model has scalar potential V σ, π = λ 8 σ + π f βσ. S.1 Any local minimum of this potential satisfies and V = λ π V σ = λ σ + π f =

More information

Introduction to Path Integrals

Introduction to Path Integrals Introduction to Path Integrals Consider ordinary quantum mechanics of a single particle in one space dimension. Let s work in the coordinate space and study the evolution kernel Ut B, x B ; T A, x A )

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Solutions 4: Free Quantum Field Theory

Solutions 4: Free Quantum Field Theory QFT PS4 Solutions: Free Quantum Field Theory 8//8 Solutions 4: Free Quantum Field Theory. Heisenberg icture free real scalar field We have φt, x π 3 a e iωt+i x + a e iωt i x ω i By taking an exlicit hermitian

More information

On Perturbation Theory, Dyson Series, and Feynman Diagrams

On Perturbation Theory, Dyson Series, and Feynman Diagrams On Perturbation Theory, Dyson Series, and Feynman Diagrams The Interaction Picture of QM and the Dyson Series Many quantum systems have Hamiltonians of the form Ĥ Ĥ0 + ˆV where Ĥ0 is a free Hamiltonian

More information

PHYS Handout 6

PHYS Handout 6 PHYS 060 Handout 6 Handout Contents Golden Equations for Lectures 8 to Answers to examples on Handout 5 Tricks of the Quantum trade (revision hints) Golden Equations (Lectures 8 to ) ψ Â φ ψ (x)âφ(x)dxn

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Wave Packets. Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal)

Wave Packets. Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal) Wave Packets Eef van Beveren Centro de Física Teórica Departamento de Física da Faculdade de Ciências e Tecnologia Universidade de Coimbra (Portugal) http://cft.fis.uc.pt/eef de Setembro de 009 Contents

More information

A Simply Regularized Derivation of the Casimir Force

A Simply Regularized Derivation of the Casimir Force EJTP 3, No. 13 (2006) 121 126 Electronic Journal of Theoretical Physics A Simply Regularized Derivation of the Casimir Force H. Razmi Habibollah Razmi, 37185-359, Qom, I. R. Iran Department of Physics,

More information

Complex Solutions to the Klein-Gordon Equation

Complex Solutions to the Klein-Gordon Equation University of Rochester Quantum Field Theory II Professor Sarada Rajeev Complex Solutions to the Klein-Gordon Equation David Mayrhofer PHY 39 Independent Study Paper April 0th, 08 Introduction At this

More information

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν = Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Green s functions for planarly layered media

Green s functions for planarly layered media Green s functions for planarly layered media Massachusetts Institute of Technology 6.635 lecture notes Introduction: Green s functions The Green s functions is the solution of the wave equation for a point

More information

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression Coherent-state path integrals A coherent state of argument α α = e α / e αa 0 = e α / (αa ) n 0 n! n=0 = e α / α n n n! n=0 (1) is an eigenstate of the annihilation operator a with eigenvalue α a α = α

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

Srednicki Chapter 62

Srednicki Chapter 62 Srednicki Chapter 62 QFT Problems & Solutions A. George September 28, 213 Srednicki 62.1. Show that adding a gauge fixing term 1 2 ξ 1 ( µ A µ ) 2 to L results in equation 62.9 as the photon propagator.

More information

Ward Takahashi Identities

Ward Takahashi Identities Ward Takahashi Identities There is a large family of Ward Takahashi identities. Let s start with two series of basic identities for off-shell amplitudes involving 0 or 2 electrons and any number of photons.

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

What is a particle? Keith Fratus. July 17, 2012 UCSB

What is a particle? Keith Fratus. July 17, 2012 UCSB What is a particle? Keith Fratus UCSB July 17, 2012 Quantum Fields The universe as we know it is fundamentally described by a theory of fields which interact with each other quantum mechanically These

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Section 4: The Quantum Scalar Field

Section 4: The Quantum Scalar Field Physics 8.323 Section 4: The Quantum Scalar Field February 2012 c 2012 W. Taylor 8.323 Section 4: Quantum scalar field 1 / 19 4.1 Canonical Quantization Free scalar field equation (Klein-Gordon) ( µ µ

More information

Lorentz Invariance and Second Quantization

Lorentz Invariance and Second Quantization Lorentz Invariance and Second Quantization By treating electromagnetic modes in a cavity as a simple harmonic oscillator, with the oscillator level corresponding to the number of photons in the system

More information

Canonical Quantization C6, HT 2016

Canonical Quantization C6, HT 2016 Canonical Quantization C6, HT 016 Uli Haisch a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to u.haisch1@physics.ox.ac.uk.

More information

d 2 Area i K i0 ν 0 (S.2) when the integral is taken over the whole space, hence the second eq. (1.12).

d 2 Area i K i0 ν 0 (S.2) when the integral is taken over the whole space, hence the second eq. (1.12). PHY 396 K. Solutions for prolem set #. Prolem 1a: Let T µν = λ K λµ ν. Regardless of the specific form of the K λµ ν φ, φ tensor, its antisymmetry with respect to its first two indices K λµ ν K µλ ν implies

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Chapter 9. Electromagnetic Radiation

Chapter 9. Electromagnetic Radiation Chapter 9. Electromagnetic Radiation 9.1 Photons and Electromagnetic Wave Electromagnetic radiation is composed of elementary particles called photons. The correspondence between the classical electric

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

(b) : First, (S.1) = +iγ 0 γ 1 γ 2 γ 3 +γ 5. Second,

(b) : First, (S.1) = +iγ 0 γ 1 γ 2 γ 3 +γ 5. Second, (a) : γ µ γ ν = ±γ ν γ µ where the sign is + for µ = ν and otherwise. Hence for any product Γ of the γ matrices, γ µ Γ = ( 1) nµ Γγ µ where n µ is the number of γ ν µ factors of Γ. For Γ = γ 5 iγ γ 1 γ

More information

Quantum Physics Lecture 8

Quantum Physics Lecture 8 Quantum Physics ecture 8 Steady state Schroedinger Equation (SSSE): eigenvalue & eigenfunction particle in a box re-visited Wavefunctions and energy states normalisation probability density Expectation

More information

Problem set 6 for Quantum Field Theory course

Problem set 6 for Quantum Field Theory course Problem set 6 or Quantum Field Theory course 2018.03.13. Toics covered Scattering cross-section and decay rate Yukawa theory and Yukawa otential Scattering in external electromagnetic ield, Rutherord ormula

More information

Inverse Problems in Quantum Optics

Inverse Problems in Quantum Optics Inverse Problems in Quantum Optics John C Schotland Department of Mathematics University of Michigan Ann Arbor, MI schotland@umich.edu Motivation Inverse problems of optical imaging are based on classical

More information

PHY 396 K. Problem set #5. Due October 9, 2008.

PHY 396 K. Problem set #5. Due October 9, 2008. PHY 396 K. Problem set #5. Due October 9, 2008.. First, an exercise in bosonic commutation relations [â α, â β = 0, [â α, â β = 0, [â α, â β = δ αβ. ( (a Calculate the commutators [â αâ β, â γ, [â αâ β,

More information

Fourier Series and Integrals

Fourier Series and Integrals Fourier Series and Integrals Fourier Series et f(x) beapiece-wiselinearfunctionon[, ] (Thismeansthatf(x) maypossessa finite number of finite discontinuities on the interval). Then f(x) canbeexpandedina

More information

CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles

CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles Art PowerPoints Peter Atkins & Julio De Paula 2010 1 mm 1000 m 100 m 10 m 1000 nm 100 nm 10 nm 1 nm 10 Å 1 Å Quantum phenomena 7.1 Energy quantization

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

using D 2 D 2 D 2 = 16p 2 D 2

using D 2 D 2 D 2 = 16p 2 D 2 PHY 396 T: SUSY Solutions for problem set #4. Problem (a): Let me start with the simplest case of n = 0, i.e., no good photons at all and one bad photon V = or V =. At the tree level, the S tree 0 is just

More information

= k, (2) p = h λ. x o = f1/2 o a. +vt (4)

= k, (2) p = h λ. x o = f1/2 o a. +vt (4) Traveling Functions, Traveling Waves, and the Uncertainty Principle R.M. Suter Department of Physics, Carnegie Mellon University Experimental observations have indicated that all quanta have a wave-like

More information

The Helmholtz theorem at last!

The Helmholtz theorem at last! Problem. The Helmholtz theorem at last! Recall in class the Helmholtz theorem that says that if if E =0 then E can be written as E = φ () if B =0 then B can be written as B = A (2) (a) Let n be a unit

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

General Fourier Analysis and Gravitational Waves.

General Fourier Analysis and Gravitational Waves. General Fourier Analysis and Gravitational Waves. Johan Noldus April 0, 06 Abstract In a recent paper [] of this author, we generalized quantum field theory to any curved spacetime. The key idea of the

More information

Quantum Dynamics. March 10, 2017

Quantum Dynamics. March 10, 2017 Quantum Dynamics March 0, 07 As in classical mechanics, time is a parameter in quantum mechanics. It is distinct from space in the sense that, while we have Hermitian operators, X, for position and therefore

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

Srednicki Chapter 9. QFT Problems & Solutions. A. George. August 21, Srednicki 9.1. State and justify the symmetry factors in figure 9.

Srednicki Chapter 9. QFT Problems & Solutions. A. George. August 21, Srednicki 9.1. State and justify the symmetry factors in figure 9. Srednicki Chapter 9 QFT Problems & Solutions A. George August 2, 22 Srednicki 9.. State and justify the symmetry factors in figure 9.3 Swapping the sources is the same thing as swapping the ends of the

More information

H ( E) E ( H) = H B t

H ( E) E ( H) = H B t Chapter 5 Energy and Momentum The equations established so far describe the behavior of electric and magnetic fields. They are a direct consequence of Maxwell s equations and the properties of matter.

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

INTRODUCTION TO QUANTUM MECHANICS PART-II MAKING PREDICTIONS in QUANTUM

INTRODUCTION TO QUANTUM MECHANICS PART-II MAKING PREDICTIONS in QUANTUM Lecture Notes PH4/5 ECE 598 A. La Rosa INTRODUCTION TO QUANTUM MECHANICS PART-II MAKING PREDICTIONS in QUANTUM MECHANICS and the HEISENBERG s PRINCIPLE CHAPTER-4 WAVEPACKETS DESCRIPTION OF A FREE-PARTICLE

More information

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x.

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x. SOLUTIONS for Homework #. The given wave function can be normalized to the total probability equal to, ψ(x) = Ne λ x. () To get we choose dx ψ(x) = N dx e λx =, () 0 N = λ. (3) This state corresponds to

More information

B = 0. E = 1 c. E = 4πρ

B = 0. E = 1 c. E = 4πρ Photons In this section, we will treat the electromagnetic field quantum mechanically. We start by recording the Maxwell equations. As usual, we expect these equations to hold both classically and quantum

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Neutrino Oscillation as Coupled vibration.

Neutrino Oscillation as Coupled vibration. 1 Neutrino Oscillation as Coupled vibration. arxiv:gr-qc/0211097v1 28 Nov 2002 Jyotisekhar Bhattacharyya Dept. of Physics, Kanchrapara College,West Bengal, P.O. Kanchrapara, India, Satyabrata Biswas Dept.

More information

From Particles to Fields

From Particles to Fields From Particles to Fields Tien-Tsan Shieh Institute of Mathematics Academic Sinica July 25, 2011 Tien-Tsan Shieh (Institute of MathematicsAcademic Sinica) From Particles to Fields July 25, 2011 1 / 24 Hamiltonian

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday,

ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set 2, (20 points in total) Problems are due at Monday, ADVANCED TOPICS IN THEORETICAL PHYSICS II Tutorial problem set, 15.09.014. (0 points in total) Problems are due at Monday,.09.014. PROBLEM 4 Entropy of coupled oscillators. Consider two coupled simple

More information

Quantum Field Theory. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 10, 2012

Quantum Field Theory. Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 10, 2012 Quantum Field Theory Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. December 10, 2012 1 Concours Doctorat Physique Théorique Théorie Des Champs Quantique v1

More information

Introduction to string theory 2 - Quantization

Introduction to string theory 2 - Quantization Remigiusz Durka Institute of Theoretical Physics Wroclaw / 34 Table of content Introduction to Quantization Classical String Quantum String 2 / 34 Classical Theory In the classical mechanics one has dynamical

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

An Introduction to Quantum Field Theory

An Introduction to Quantum Field Theory An Introduction to Quantum Field Theory Owe Philipsen Institut für Theoretische Physik Universität Münster Wilhelm-Klemm-Str.9, 48149 Münster, Germany Lectures presented at the School for Young High Energy

More information

Introduction to Quantum Field Theory Quantum Electrodynamics

Introduction to Quantum Field Theory Quantum Electrodynamics Introduction to Quantum Field Theory Quantum Electrodynamics Rafael Juan Alvarez Reyes Supervisor: Vicente Delgado Universidad de La Laguna September, 2017 CONTENTS CONTENTS Contents 1 Summary 4 2 Introduction,

More information

Conventions for fields and scattering amplitudes

Conventions for fields and scattering amplitudes Conventions for fields and scattering amplitudes Thomas DeGrand 1 1 Department of Physics, University of Colorado, Boulder, CO 80309 USA (Dated: September 21, 2017) Abstract This is a discussion of conventions

More information

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001 Quantum Electrodynamics D. E. Soper University of Oregon Physics 666, Quantum Field Theory April The action We begin with an argument that quantum electrodynamics is a natural extension of the theory of

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Lecture 3 Dynamics 29

Lecture 3 Dynamics 29 Lecture 3 Dynamics 29 30 LECTURE 3. DYNAMICS 3.1 Introduction Having described the states and the observables of a quantum system, we shall now introduce the rules that determine their time evolution.

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

Physics 443, Solutions to PS 1 1

Physics 443, Solutions to PS 1 1 Physics 443, Solutions to PS. Griffiths.9 For Φ(x, t A exp[ a( mx + it], we need that + h Φ(x, t dx. Using the known result of a Gaussian intergral + exp[ ax ]dx /a, we find that: am A h. ( The Schrödinger

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint

Physics 218. Quantum Field Theory. Professor Dine. Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Physics 28. Quantum Field Theory. Professor Dine Green s Functions and S Matrices from the Operator (Hamiltonian) Viewpoint Field Theory in a Box Consider a real scalar field, with lagrangian L = 2 ( µφ)

More information

8.04 Quantum Physics Lecture IV. ψ(x) = dkφ (k)e ikx 2π

8.04 Quantum Physics Lecture IV. ψ(x) = dkφ (k)e ikx 2π Last time Heisenberg uncertainty ΔxΔp x h as diffraction phenomenon Fourier decomposition ψ(x) = dkφ (k)e ikx π ipx/ h = dpφ(p)e (4-) πh φ(p) = φ (k) (4-) h Today how to calculate φ(k) interpretation of

More information

An operator is a transformation that takes a function as an input and produces another function (usually).

An operator is a transformation that takes a function as an input and produces another function (usually). Formalism of Quantum Mechanics Operators Engel 3.2 An operator is a transformation that takes a function as an input and produces another function (usually). Example: In QM, most operators are linear:

More information

(p 2 = δk p 1 ) 2 m 2 + i0, (S.1)

(p 2 = δk p 1 ) 2 m 2 + i0, (S.1) PHY 396 K. Solutions for problem set #3. The one-loop diagram ) yields amplitude F δk) iλ d 4 p π) 4 p m + i p δk p ) m + i, S.) but the momentum integral here diverges logarithmically as p, so it needs

More information

2.1 Green Functions in Quantum Mechanics

2.1 Green Functions in Quantum Mechanics Chapter 2 Green Functions and Observables 2.1 Green Functions in Quantum Mechanics We will be interested in studying the properties of the ground state of a quantum mechanical many particle system. We

More information

Vector and Tensor Calculus

Vector and Tensor Calculus Appendices 58 A Vector and Tensor Calculus In relativistic theory one often encounters vector and tensor expressions in both three- and four-dimensional form. The most important of these expressions are

More information