Size: px
Start display at page:

Download ""

Transcription

1 Rel Gses 1. Gses (N, CO ) which don t obey gs lws or gs eqution P=RT t ll pressure nd tempertures re clled rel gses.. Rel gses obey gs lws t extremely low pressure nd high temperture. Rel gses devited from idel behvior t high pressure nd low temperture. 3. Compressibility fctor (Z): The extent to which rel gs devited from idel behvior my be expressed in terms of Compressibility fctor (Z). Z= Molr volume of given gs ( P ) Molr volume of idel gs ( RT ) i. For n idel gs, Z=1 nd it is independent of temperture nd pressure. ii. iii. The devition from idel behvior of rel gs will be determined by the vlue of Z being grter or less thn one. The difference between unity nd the vlue of Z of gs is mesure of degree of non-idelity of the gs. For rel gs the devition from idel behvior depends on pressure nd temperture. This my be illustrted by exmining the compressibility curves of some gses. z=p/nrt N HO CH 4 CO O p/br

2 iv. At very low pressure, for ll these gses Z is pproximtely equl to one this indictes tht t low pressures, rel gses exhibit nerly idel behvior. v. As the pressure is incresed H shows continuous increse in Z. Thus H curve lies bove the idel gs curve (positively devited) t ll pressures. In this cse the repulsive forces dominnt. vi. For N, CO, Z first decreses (Z<1).It psses through minimum nd then increses continuously with pressure (Z>1). In this cse the forces of ttrction re dominnt. 4. Effect of temperture on devitions It is cler from the shpe of the curves tht thedevitions from idel gs behvior becomesless nd less with increse of temp. At low tempertures Z<1. While t high tempertures Z>1. At prticulr temperture, P/RT is lmost unity nd the Boyles lw is obeyed for n pprecible rnge of pressure is clled Boyles temperture. The Boyles temperture of ech gs is chrcteristic for exmple for N it is 33K. 5. Explntion for devition from idel gs behvior: The devition of rel gses from the idel behvior is minly due to two fulty ssumptions of kinetic theory of gses. i. The molecules is gs re point msses nd posses no volume. ii. There re no intermoleculr ttrctions in gs. There fore idel gs eqution P=nRT derived from kinetic theory could not hold for rel gs. 6. Eqution of stte for rel gs nder wlls pointed out tht both the pressure (P) nd volume () fctors re the idel gs eqution needed correction in order to more it pplicble to rel gses. i. The volume of rel gs =volume of idel gs volume occupied by gs molecules Thus corrected volume = (-b) Here b is co-volume or excluded volume or prohibited volume.

3 For n mole of gs, Co-volume is (-nb) Excluded volume is four times the ctul volume of molecules (b=4v). ii. Corrected pressure P P for one mole. v n For n mole of gs P= P.. iii. n der Wls eqution for one mole of Rel gs is ( p+ ) (v-b)=rt For n mole of gs is n P nb =nrt Here nd b re constnts known s n der Wls constnts, which vry from gs to gs. iv. Units of & b The vlue of is given by the reltion. = pv n = pressure( volume) mole The excluded volume b= tm lit. mole volume litre litre 1 n mole mole * is mesure to the mgnitude of ttrctive forces, greter the vlue of. more is the ese of liquifiction of gs. 7. Interprettion of devitions from n der Wls equtions: i. Cse 1: At extremity low pressure volume becomes very lrge hence b nd cn be neglected. Therefore the nder Wls equtions reduces to P=RT ii. Cse : At low pressure volume will be lrge; b cn be neglected, hence P RT ( or) P RT, dividing both sides with RT, we get P/RT =1- /RT, Z= 1-/RT i.e. Z<1

4 Hence the gs shows negtive devition from idel behviour. iii. Cse 3.At high pressure volume will be smll, therefore Hence cn be neglected. P(-b ) =RT or P=RT+ Pb or P/RT =1+ Pb/RT i.e Z>1The gs shows positive devition from idel behviour iv. Cse 4.At high temperture volume will be lrge nd pressure will be smll, the stte eqution becomes P=RT 8. In cse of H nd He ttrction between the molecules is negligible becuse of smll mss. So cn be neglected, the stte of eqution becomes P (-b) = RT or P=RT+Pb, dividing both sides with RT, we get Z=1+Pb/RT i.e Z>1 Hence both hydrogen nd helium lwys show positive devition from idel behvior Liquefction of Gses nd Criticl Point A gs cn be liquefied by lowering the temperture nd incresing pressure (or) rpid evportion nd doing mechnicl work in dibtic conditions. 9. Isotherms The grph drwn between pressure nd olume t constnt temperture is clled isotherm. The perfect gs isotherms re obtined from n der Wls eqution t high temperture nd low pressure. Andrews plotted isotherms of crbon dioxide t vrious tempertures s shown in the following

5 E P P c D C c T c Fig.5. Isotherms of crbondioxide t vrious tempertures B 50 0 C C 30 0 C 0 0 C A It ws noticed tht t high tempertures isotherms look like tht of n idel gs. The gs cn not be liquified even t very high pressure. As the temperture is lowered, shpe of the curve chnges nd shows considerble devition from idel behviour. In the isotherm of CO t 00C, t point A it is gs. When the gs is compressed, the pressure increses upto point B. The piston cn be pushed in from point B to D through C without ny further increse in pressure. The gs begins to condense from point B nd condenstion completes t point D. At point C the vessel contins both the liquid nd gs. At point D the molecules re in liquid stte. A very lrge pressure is required to decrese the volume from D to E. It is becuse when the pressure is incresed from D the repulsive forces between the molecules increses. So the decrese in volume is less from D to E even though the pressure increse is very high. At 31.10C, crbondioxide remins s gs up to 73 tm pressure. At 73 tm, liquid crbondioxide ppers for the first time C is clled criticl temperture of crbondioxide.

6 The temperture bove which the gs cn t be liquified by the ppliction of pressure is clled criticl temperture (Tc). olume of one mole of gs t criticl temperture (Tc) is clled criticl volume (c) nd pressure t this temperture is clled criticl pressure (Pc). Tc, Pc nd c re clled criticl constnts nd re obtined using the n der Wls constnts nd b. Criticl temperture Tc = Criticl volume, c = 3b Criticl pressure, Pc = 7b 8 7Rb At criticl condition, the compressibility fctor for one mole of gs, z = P P c c 3 RT RT 8 Liquefction of Gses c All rel gses upon compression t constnt temperture show the sme behviour s shown by crbon dioxide. Gses cooled only below their criticl tempertures, cn be liquified esily. This is becuse gses devites much from idel gs behviour nd intermoleculr ttrctions re considerbly high. A gs liquefies if it is cooled below its boiling point t given pressure. At 1 tm chlorine cn be liquefied by cooling it to 340C in dry ice bth. To liquify gses like nitrogen nd oxygen simple cooling to bring down temperture to 1960C nd 1830C is not possible. To liquify such type of gses the technique bsed on intermoleculr forces clled Joule Thomson effect is used.

7 When gs is llowed to expnd from high pressure to low pressure dibticlly through nrrow opening, the cooling effect of gs tkes plce. It is clled Joule - Thomson effect. In Joule - Thomson effect, the gs is llowed to expnd from high pressure to low pressure through nrrow opening (throttle), without supplying het from outside. In expnding, the molecules require certin energy to overcome the ttrctions of their neighbouring molecules. For this some of their kinetic energy converted into potentil energy. So the verge velocity of molecules decreses nd hence the temperture of the gs decreses nd the gs gets cooling effect. Under norml conditions when hydrogen is subjected to Joule - Thomson effect it wrms up. Becuse it s Z is greter thn 1. It cn be condensed to liquid only when the temperture of gs is below the inversion temperture. The temperture bove which gses get heted up nd below which gses get cooled due to Joule Thomson experiment is clled inversion temperture, Ti. Where Ti = /Rb Liquefction of gses like helium nd hydrogen is difficult. They re clled permnent gses. Liquefction of permnent gses requires cooling s well s compression.

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Prt I: Bsic Concepts o Thermodynmics Lecture 4: Kinetic Theory o Gses Kinetic Theory or rel gses 4-1 Kinetic Theory or rel gses Recll tht or rel gses: (i The volume occupied by the molecules under ordinry

More information

Ideal Gas behaviour: summary

Ideal Gas behaviour: summary Lecture 4 Rel Gses Idel Gs ehviour: sury We recll the conditions under which the idel gs eqution of stte Pn is vlid: olue of individul gs olecules is neglected No interctions (either ttrctive or repulsive)

More information

Psychrometric Applications

Psychrometric Applications Psychrometric Applictions The reminder of this presenttion centers on systems involving moist ir. A condensed wter phse my lso be present in such systems. The term moist irrefers to mixture of dry ir nd

More information

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler) CHE 309: Chemicl Rection Engineering Lecture-8 Module 2: Rte Lw & Stoichiomtery (Chpter 3, Fogler) Topics to be covered in tody s lecture Thermodynmics nd Kinetics Rection rtes for reversible rections

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

Real Gases 1. The value of compressibility factor for one mole of a gas under critical states is 1) 3/8 2) 2/3 3) 8/27 4) 27/8 2. an der Waal s equation for one mole of CO2 gas at low pressure will be

More information

is more suitable for a quantitative description of the deviation from ideal gas behaviour.

is more suitable for a quantitative description of the deviation from ideal gas behaviour. Real and ideal gases (1) Gases which obey gas laws or ideal gas equation ( PV nrt ) at all temperatures and pressures are called ideal or perfect gases. Almost all gases deviate from the ideal behaviour

More information

CHAPTER 20: Second Law of Thermodynamics

CHAPTER 20: Second Law of Thermodynamics CHAER 0: Second Lw of hermodynmics Responses to Questions 3. kg of liquid iron will hve greter entropy, since it is less ordered thn solid iron nd its molecules hve more therml motion. In ddition, het

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

2. My instructor s name is T. Snee (1 pt)

2. My instructor s name is T. Snee (1 pt) Chemistry 342 Exm #1, Feb. 15, 2019 Version 1 MY NAME IS: Extr Credit#1 1. At prissy Hrvrd, E. J. Corey is Nobel Prize (1990 winning chemist whom ll students cll (two letters 2. My instructor s nme is

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air Deprtment of Mechnicl Engineering ME 3 Mechnicl Engineering hermodynmics Lecture 33 sychrometric roperties of Moist Air Air-Wter Vpor Mixtures Atmospheric ir A binry mixture of dry ir () + ter vpor ()

More information

Unit 1 Exponentials and Logarithms

Unit 1 Exponentials and Logarithms HARTFIELD PRECALCULUS UNIT 1 NOTES PAGE 1 Unit 1 Eponentils nd Logrithms (2) Eponentil Functions (3) The number e (4) Logrithms (5) Specil Logrithms (7) Chnge of Bse Formul (8) Logrithmic Functions (10)

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS F. Tkeo 1 nd M. Sk 1 Hchinohe Ntionl College of Technology, Hchinohe, Jpn; Tohoku University, Sendi, Jpn Abstrct:

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy First w of hermodynmics Reding Problems 3-3-7 3-0, 3-5, 3-05 5-5- 5-8, 5-5, 5-9, 5-37, 5-0, 5-, 5-63, 5-7, 5-8, 5-09 6-6-5 6-, 6-5, 6-60, 6-80, 6-9, 6-, 6-68, 6-73 Control Mss (Closed System) In this section

More information

The Thermodynamics of Aqueous Electrolyte Solutions

The Thermodynamics of Aqueous Electrolyte Solutions 18 The Thermodynmics of Aqueous Electrolyte Solutions As discussed in Chpter 10, when slt is dissolved in wter or in other pproprite solvent, the molecules dissocite into ions. In queous solutions, strong

More information

CHEMICAL KINETICS

CHEMICAL KINETICS CHEMICAL KINETICS Long Answer Questions: 1. Explin the following terms with suitble exmples ) Averge rte of Rection b) Slow nd Fst Rections c) Order of Rection d) Moleculrity of Rection e) Activtion Energy

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou On the Uncertinty of Sensors Bsed on Mgnetic Effects E. ristoforou, E. Kyfs, A. Kten, DM Kepptsoglou Ntionl Technicl University of Athens, Zogrfou Cmpus, Athens 1578, Greece Tel: +3177178, Fx: +3177119,

More information

Chapter 13 Lyes KADEM [Thermodynamics II] 2007

Chapter 13 Lyes KADEM [Thermodynamics II] 2007 Gs-Vpor Mixtures Air is mixture of nitrogen nd oxygen nd rgon plus trces of some other gses. When wtervpor is not included, we refer to it s dry ir. If wter-vpor is included, we must properly ccount for

More information

R. I. Badran Solid State Physics

R. I. Badran Solid State Physics I Bdrn Solid Stte Physics Crystl vibrtions nd the clssicl theory: The ssmption will be mde to consider tht the men eqilibrim position of ech ion is t Brvis lttice site The ions oscillte bot this men position

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

Chapter 14. Gas-Vapor Mixtures and Air-Conditioning. Study Guide in PowerPoint

Chapter 14. Gas-Vapor Mixtures and Air-Conditioning. Study Guide in PowerPoint Chpter 14 Gs-Vpor Mixtures nd Air-Conditioning Study Guide in PowerPoint to ccopny Therodynics: An Engineering Approch, 5th edition by Yunus A. Çengel nd Michel A. Boles We will be concerned with the ixture

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009 Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm-6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

4. CHEMICAL KINETICS

4. CHEMICAL KINETICS 4. CHEMICAL KINETICS Synopsis: The study of rtes of chemicl rections mechnisms nd fctors ffecting rtes of rections is clled chemicl kinetics. Spontneous chemicl rection mens, the rection which occurs on

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

Joule-Thomson effect TEP

Joule-Thomson effect TEP Joule-homson effect EP elted oics el gs; intrinsic energy; Gy-Lussc theory; throttling; n der Wls eqution; n der Wls force; inverse Joule- homson effect; inversion temerture. Princile A strem of gs is

More information

Chapter 4 The second law of thermodynamics

Chapter 4 The second law of thermodynamics hpter 4 he second lw of thermodynmics Directions of thermodynmic processes et engines Internl-combustion engines Refrigertors he second lw of thermodynmics he rnotcycle Entropy Directions of thermodynmic

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below. Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we

More information

Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

10/25/2005 Section 5_2 Conductors empty.doc 1/ Conductors. We have been studying the electrostatics of freespace (i.e., a vacuum).

10/25/2005 Section 5_2 Conductors empty.doc 1/ Conductors. We have been studying the electrostatics of freespace (i.e., a vacuum). 10/25/2005 Section 5_2 Conductors empty.doc 1/3 5-2 Conductors Reding Assignment: pp. 122-132 We hve been studying the electrosttics of freespce (i.e., vcuum). But, the universe is full of stuff! Q: Does

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

Chemistry 431 Problem Set 9 Fall 2018 Solutions

Chemistry 431 Problem Set 9 Fall 2018 Solutions Chemistry 43 rolem Set 9 Fll 8 Solutions. A certin gs oeys the eqution of stte Vm 4 where nd re numericl constnts. Derive n expression for the criticl volume of the gs in terms of. = ( ) + 4 Vm 5 ( V m

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

Shear Degradation and Possible viscoelastic properties of High Molecular Weight Oil Drag Reducer Polymers

Shear Degradation and Possible viscoelastic properties of High Molecular Weight Oil Drag Reducer Polymers ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 Sher Degrdtion nd Possible viscoelstic properties of High Moleculr Weight Oil Drg Reducer Polymers A.A. Hmoud, C. Elissen, C. Idsøe nd T.

More information

1 Part II: Numerical Integration

1 Part II: Numerical Integration Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

More information

The heat budget of the atmosphere and the greenhouse effect

The heat budget of the atmosphere and the greenhouse effect The het budget of the tmosphere nd the greenhouse effect 1. Solr rdition 1.1 Solr constnt The rdition coming from the sun is clled solr rdition (shortwve rdition). Most of the solr rdition is visible light

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Hints for Exercise 1 on: Current and Resistance

Hints for Exercise 1 on: Current and Resistance Hints for Exercise 1 on: Current nd Resistnce Review the concepts of: electric current, conventionl current flow direction, current density, crrier drift velocity, crrier numer density, Ohm s lw, electric

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Math 116 Calculus II

Math 116 Calculus II Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines

Study Guide Final Exam. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines Msschusetts Institute of Technology Deprtment of Physics 8.0T Fll 004 Study Guide Finl Exm The finl exm will consist of two sections. Section : multiple choice concept questions. There my be few concept

More information

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O IAPWS R-7 The Interntionl Assocition for the Properties of Wter nd Stem Lucerne, Sitzerlnd August 7 Relese on the Ioniztion Constnt of H O 7 The Interntionl Assocition for the Properties of Wter nd Stem

More information

Experiment 9: DETERMINATION OF WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION

Experiment 9: DETERMINATION OF WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION Experiment 9: DETERMINATION OF WEAK ACID IONIZATION CONSTANT & PROPERTIES OF A BUFFERED SOLUTION Purpose: Prt I: The cid ioniztion constnt of wek cid is to be determined, nd the cid is identified ccordingly.

More information

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum? Which of the following summrises the chnge in wve chrcteristics on going from infr-red to ultrviolet in the electromgnetic spectrum? frequency speed (in vcuum) decreses decreses decreses remins constnt

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

Emission of K -, L - and M - Auger Electrons from Cu Atoms. Abstract

Emission of K -, L - and M - Auger Electrons from Cu Atoms. Abstract Emission of K -, L - nd M - uger Electrons from Cu toms Mohmed ssd bdel-rouf Physics Deprtment, Science College, UEU, l in 17551, United rb Emirtes ssd@ueu.c.e bstrct The emission of uger electrons from

More information

Math 42 Chapter 7 Practice Problems Set B

Math 42 Chapter 7 Practice Problems Set B Mth 42 Chpter 7 Prctice Problems Set B 1. Which of the following functions is solution of the differentil eqution dy dx = 4xy? () y = e 4x (c) y = e 2x2 (e) y = e 2x (g) y = 4e2x2 (b) y = 4x (d) y = 4x

More information

MAT 168: Calculus II with Analytic Geometry. James V. Lambers

MAT 168: Calculus II with Analytic Geometry. James V. Lambers MAT 68: Clculus II with Anlytic Geometry Jmes V. Lmbers Februry 7, Contents Integrls 5. Introduction............................ 5.. Differentil Clculus nd Quotient Formuls...... 5.. Integrl Clculus nd

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

SESSION 2 Exponential and Logarithmic Functions. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 2 Exponential and Logarithmic Functions. Math 30-1 R 3. (Revisit, Review and Revive) Mth 0-1 R (Revisit, Review nd Revive) SESSION Eponentil nd Logrithmic Functions 1 Eponentil nd Logrithmic Functions Key Concepts The Eponent Lws m n 1 n n m m n m n m mn m m m m mn m m m b n b b b Simplify

More information

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jen M Stndrd Problem Set 3 Solutions 1 Verify for the prticle in one-dimensionl box by explicit integrtion tht the wvefunction ψ ( x) π x is normlized To verify tht ψ ( x) is normlized,

More information

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0 Notes for Cosmology course, fll 2005 Cosmic Dynmics Prelude [ ds 2 = c 2 dt 2 +(t) 2 dx 2 ] + x 2 dω 2 = c 2 dt 2 +(t) [ 2 dr 2 + S 1 κx 2 /R0 2 κ (r) 2 dω 2] nd x = S κ (r) = r, R 0 sin(r/r 0 ), R 0 sinh(r/r

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once.

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once. Exercises 341 Flow of Chrge (pge 681) potentil difference 1 Chrge flows when there is between the ends of conductor 2 Explin wht would hppen if Vn de Grff genertor chrged to high potentil ws connected

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 16 CHAPTER 16 CHAPTER 16 1. The number of electrons is N = Q/e = ( 30.0 10 6 C)/( 1.60 10 19 C/electrons) = 1.88 10 14 electrons.. The mgnitude of the Coulomb force is Q /r. If we divide the epressions for the two forces,

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information