Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier

Size: px
Start display at page:

Download "Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier"

Transcription

1 SUPPLEMENTARY INFORMATION DOI: /NGEO2204 Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier Timothy D. James*, Tavi Murray, Nick Selmes, Kilian Scharrer and Martin O Leary Glaciology Group, Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom Supplementary Methods Helheim Glacier is a major outlet of the Greenland Ice Sheet draining an area of ~52,000 km 2 (ref. 1). Its recent behaviour has been under much scrutiny due to reports of acceleration 2, 3, 4, retreat and thinning 4 found to occur quasi-synchronously with other marine-terminating glaciers in the southeast 1, 4. As Helheim is the closest major outlet glacier to southeast Greenland s main settlement, Tasiilaq, it has been a primary target of data collection efforts over the last decade. DEM Error Assessment The quality of topographic data of a dynamic surface like the calving margin of Helheim Glacier is difficult to quantify. For the terrestrial imagery, the photogrammetric block adjustment uses measured points and camera calibration information to predict the location and attitude of the cameras whose positions were surveyed with differential global positioning system data (dgps) providing an indication of the quality of the image block adjustment. The root mean square error (RMSE) of the predicted camera positions (Table S1) were <2m in XY and sub-metre in Z indicating a high relative accuracy between DEMs. Comparison to dgps camera positions give the absolute accuracy of the DEMs. Typically, NATURE GEOSCIENCE 1

2 error due to the image correlation stage of DEM generation is evaluated by comparing the data to a ground truth data set, which is of course not available here. Therefore, we conservatively estimate the error of our DEMs at ±5 m in the vertical and ±5 m horizontal at the calving front but degrading quickly with distance from the cameras. We base these estimates on the block adjustment results and the ability of our DEMs to resolve the daily flow of the glacier which is expected to be ~20 m day -1. Bed Topography Glacier behaviour is largely driven by bed topography especially at the marine terminus 5. Radar Depth Sounder lines have been flown at Helheim by the Center for the Remote Sensing of Ice Sheets (CReSIS) since 2001 and two gridded DEM products have been produced from these data. The CReSIS composite bed product ( and the Bamber bed elevation data set for Greenland 6, 7 provide gridded bed data sets for the Helheim catchment. However, the glacier bed beneath a heavily crevassed surface is notoriously difficult to measure from radar backscatter and signal loss from the rough surface. Due to the consequent sparse data in the vicinity of the calving front, we use only actual data points from CReSIS flightline product rather than the gridded bed products. Bed DEM root mean square error is quoted for the full data set as ~46 m based on radar line crossover analysis. However, in vicinity of the terminus, error can be up to 200 m (Figure S8). The most recent radar flightlines, 2011 and 2013, use the newer Multichannel Coherent Radar Depth Sounder (MCoRDS) developed for improved performance over crevassed ice where weak and ambiguous bed echoes are problematic. However, the still large uncertainty is complicated by the fact that where the glacier bed is not in contact with the fjord bed (i.e. 2

3 at the calving front), the radar images the ice base, not the fjord bed. We interpret the upturned end of the 2013 line to be the bottom of the rotating calving section shown in the surface profile. While we expect the data from the newer instrument to be more accurate than the older data, the 2001 line (used in ref. 8) was flown when the glacier was further advanced, thicker and slower, which may provide better conditions for imaging the bed. 3

4 Supplementary Results Figure S1 Example of a DEM generated from stereo terrestrial photography. (a) DEM presented in shaded-relief and coloured by elevation. (b) Corresponding oblique terrestrial photograph with a similar viewing angle to (a). Movie S2 Time-lapse video of calving event at Helheim Glacier. This video captures a major calving event at Helheim on 12 July 2010 in 10 second time-lapse imagery between 18:40 and 20:10 UTC. The main event was followed by a smaller event (at 00:56) on the south side of the fjord in which sudden ice fracturing prior to the event can be seen. 4

5 Figure S3 Image feature tracking prior to the 14 July :00-18:00 UTC calving event. This event involved the whole front except a small section on the south (left) side of the fjord. Larger error is visible due to the poor lighting conditions, however, the movement of the front is still clearly visible. Note also that the front on the north (right) side is sufficiently lifted to obscure the depression. 5

6 Figure S4 Image feature tracking prior to the 19 July :00-00:00 UTC calving event. This event involved the southern (left) third of the glacier and a small section on the north (right) shore. 6

7 Figure S5 Image feature tracking prior to the 12 Aug :00-23:00 UTC calving event. This event involved the full glacier width and was unique in that the southern section (red line) produced an overturning iceberg whereas the northern section (blue line) produced two large tabular icebergs. While the frontal uplift was only seen ahead of the overturning calving event, a surface depression formed across the entire calving width. On the south side 7

8 where the iceberg overturned, the width of the calving section was much narrower in the direction of ice flow than the tabular calving section ice on the north side. Figure S6 Interactive annotated time-lapse of the evolution of the Helheim calving front. View using fit-to-screen and the arrow keys to navigate forward and backward through time-series. 8

9 Figure S7 ASTER satellite image showing rotated front section. An ASTER image from 18 July 2004 shows the surface of Helheim three days prior to a large calving event 8. Contours highlight the surface depression and lifted front caused by the rotation of the front section. In places the calving front is >30 m higher than the elevation of the depression and the calving face itself can be seen clearly from the satellite platform indicating that significant rotation has already occurred. A large rift (700 m x 140 m) has formed where the ice failed at the most depressed point of the surface. The red dot shows the point of lowest elevation; ~90 m above geoid, ~40 m above sea-level. No water was visible in the crevasses at the calving front in these images. 9

10 Figure S8 Bed data at the Helheim calving margin. Blue circles represent bed elevation measurements from the most recent CReSIS bed product, the Helheim Composite (HHC, see Supplemental Methods, Bed Topography). Blue squares with same depth colouration are 2001 depths presented in ref. 8. Discrepancies in bed depth between flightlines are shown at crossover points as pink circles. Grey dots represent points that occur in the HHC product but where only surface measurements are available. White line shows location of Figure 2 profiles. Background is an 08 July 2010 ASTER scene. 10

11 Table S1 Photogrammetric block adjustment results. Root mean square errors (RMSE in meters) are provided for the predicted camera positions relative to their mean and relative camera positions measured by dgps. RMSE X RMSE Y RMSE Z Camera 1 Relative Camera 2 Relative Camera 1 DGPS Camera 2 DGPS Supplementary References 1. Murray T., Scharrer K., James T. D., Dye S. R., Hanna E., Booth A. D., et al. Ocean regulation of glacier dynamics in south-east Greenland and implications for ice-sheet mass changes. J. Geophys. Res.-Earth 115, doi: /2009JF (2010). 2. Luckman A., Murray T., de Lange R.& Hanna E. Rapid and synchronous icedynamic changes in East Greenland. Geophys. Res. Lett. 33, L03503, doi: /02005GL (2006). 3. Rignot E.& Kanagaratnam P. Changes in the velocity structure of the Greenland ice sheet. Science 311, (2006). 4. Howat I. M., Joughin I., Fahnestock M., Smith B. E.& Scambos T. A. Synchronous retreat and acceleration of southeast Greenland outlet glaciers : ice dynamics and coupling to climate. J. Glaciol. 54, (2008). 5. Vieli A.& Nick F. M. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys. 32, (2011). 11

12 6. Allen C. IceBridge MCoRDS L3 Gridded Ice Thickness, Surface, and Bottom. Version 2. Helheim_2008_2012_Composite., Bamber J. L., Griggs J. A., Hurkmans R. T. W. L., Dowdeswell J. A., Gogineni S. P., Howat I., et al. A new bed elevation data set for Greenland. The Cryosphere 7, (2013). 8. Joughin I., Howat I., Alley R. B., Ekstrom G., Fahnestock M., Moon T., et al. Icefront variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res. 113, F01004 (2008). 12

Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus

Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus PUBLISHED ONLINE: JANUARY 2 DOI:./NGEO Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus Faezeh M. Nick 1 *, Andreas Vieli 1, Ian M. Howat 2 and Ian Joughin The recent

More information

Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations

Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L17505, doi:10.1029/2008gl034496, 2008 Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations Ian M.

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs Future sea-level rise from Greenland s main outlet glaciers in a warming climate Journal Item How

More information

Changes in ice front position on Greenland s outlet glaciers from 1992 to 2007

Changes in ice front position on Greenland s outlet glaciers from 1992 to 2007 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jf000927, 2008 Changes in ice front position on Greenland s outlet glaciers from 1992 to 2007 Twila Moon 1 and Ian Joughin 2 Received 24 October

More information

Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland

Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland Journal of Glaciology, Vol. 61, No. 225, 2015 doi: 10.3189/2015JoG14J128 137 Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland J.R. CARR, 1,2,3 A. VIELI, 4 C.R. STOKES,

More information

Interaction Between the Warm Subsurface Atlantic Water in the Sermilik Fjord and Helheim Glacier in Southeast Greenland

Interaction Between the Warm Subsurface Atlantic Water in the Sermilik Fjord and Helheim Glacier in Southeast Greenland Interaction Between the Warm Subsurface Atlantic Water in the Sermilik Fjord and Helheim Glacier in Southeast Greenland Ola M. Johannessen, Alexander Korablev, Victoria Miles, Martin W. Miles & Knut E.

More information

Ice dynamics from Earth observations

Ice dynamics from Earth observations Ice dynamics from Earth observations Twila Moon Bristol Glaciology Centre Geographical Sciences University of Bristol twila.moon@bristol.ac.uk www.twilamoon.com 1 When you have mapped the ice sheets once

More information

Supraglacial Lake Formation and What it Means for Greenland s Future

Supraglacial Lake Formation and What it Means for Greenland s Future Supraglacial Lake Formation and What it Means for Greenland s Future GreenPeace Ulyana Nadia Horodyskyj GEOG 5271 questions of interest How, when and where do these lakes form in Greenland? How do these

More information

Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications

Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications Surv Geophys (211) 32:437 458 DOI 1.17/s1712-11-9132-4 Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications Andreas Vieli Faezeh M. Nick Received: 5 November

More information

Mass balance of the Greenland ice sheet from 1958 to 2007

Mass balance of the Greenland ice sheet from 1958 to 2007 GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L20502, doi:10.1029/2008gl035417, 2008 Mass balance of the Greenland ice sheet from 1958 to 2007 E. Rignot, 1,2 J. E. Box, 3 E. Burgess, 4 and E. Hanna 5 Received

More information

Increased flow speed on a large East Antarctic outlet glacier due to subglacial floods

Increased flow speed on a large East Antarctic outlet glacier due to subglacial floods Increased flow speed on a large East Antarctic outlet glacier due to subglacial floods LETTERS LEIGH A. STEARNS *, BENJAMIN E. SMITH AND GORDON S. HAMILTON Climate Change Institute, University of Maine,

More information

Basal topography and thinning rates of Petermann Gletscher, northern Greenland, measured by ground-based phase-sensitive radar

Basal topography and thinning rates of Petermann Gletscher, northern Greenland, measured by ground-based phase-sensitive radar Basal topography and thinning rates of Petermann Gletscher, northern Greenland, measured by ground-based phase-sensitive radar Craig Stewart British Antarctic Survey, Natural Environment Research Council,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1887 Diverse calving patterns linked to glacier geometry J. N. Bassis and S. Jacobs 1. Supplementary Figures (a) (b) (c) Supplementary Figure S1 Schematic of

More information

Stable dynamics in a Greenland tidewater glacier over 26 years despite reported thinning

Stable dynamics in a Greenland tidewater glacier over 26 years despite reported thinning Annals of Glaciology 53(60) 2012 doi: 10.3189/2102AoG60A076 241 Stable dynamics in a Greenland tidewater glacier over 26 years despite reported thinning Suzanne L. BEVAN, 1 Tavi MURRAY, 1 Adrian J. LUCKMAN,

More information

Waking Giants: Ice Sheets in a Warming World

Waking Giants: Ice Sheets in a Warming World Waking Giants: Ice Sheets in a Warming World Dr. Robert Bindschadler Chief Scien6st Hydrospheric and Biospheric Sciences Laboratory NASA Goddard Space Flight Center Robert.A.Bindschadler@nasa.gov Ice Sheets

More information

Modelling meltwater delivery to the ice-bed interface through fractures at the margin of the Greenland Ice Sheet

Modelling meltwater delivery to the ice-bed interface through fractures at the margin of the Greenland Ice Sheet Modelling meltwater delivery to the ice-bed interface through fractures at the margin of the Greenland Ice Sheet Caroline Clason, Douglas Mair & Peter Nienow CESM Land Ice Working Group Meeting, January

More information

Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry

Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry Journal of Glaciology, Vol. 61, No. 226, 2015 doi: 10.3189/2015JoG14J173 301 Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry Denis VOYTENKO,

More information

Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland

Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L22501, doi:10.1029/2008gl035281, 2008 Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland

More information

TEACHER PAGE Trial Version

TEACHER PAGE Trial Version TEACHER PAGE Trial Version * After completion of the lesson, please take a moment to fill out the feedback form on our web site (https://www.cresis.ku.edu/education/k-12/online-data-portal)* Lesson Title:

More information

High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data

High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data Journal of Glaciology, Vol. 59, No. 218, 2013 doi: 10.3189/2013JoG12J235 1015 High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data M. MORLIGHEM,

More information

Satellite archives reveal abrupt changes in behavior of Helheim Glacier, southeast Greenland

Satellite archives reveal abrupt changes in behavior of Helheim Glacier, southeast Greenland Journal of Glaciology (2016), 62(231) 137 146 doi: 10.1017/jog.2016.24 The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.

More information

Auxiliary Material Submission for Paper 2008gl Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland

Auxiliary Material Submission for Paper 2008gl Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland Auxiliary Material Submission for Paper 28gl35281 Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland Jason Amundson (1), Martin Truffer (1), Martin Luethi

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information.

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. Title Increased future sea level rise due to rapid decay o Author(s)Greve, Ralf CitationProceedings of the First International Symposium on Issue Date 008--04 Doc URL http://hdl.handle.net/5/4868 Type

More information

Accelerating ice loss from the fastest Greenland and Antarctic glaciers

Accelerating ice loss from the fastest Greenland and Antarctic glaciers GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl047304, 2011 Accelerating ice loss from the fastest Greenland and Antarctic glaciers R. Thomas, 1 E. Frederick, 1 J. Li, 2 W. Krabill, 1 S. Manizade,

More information

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding arxiv:0905.07v [physics.geo-ph] May 009 Ralf Greve Shin Sugiyama Institute of Low Temperature Science, Hokkaido

More information

Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L24503, doi:10.1029/2008gl036127, 2008 Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim

More information

The Wedge, Grease and Heat: Why Ice Sheets Hate Water

The Wedge, Grease and Heat: Why Ice Sheets Hate Water The Wedge, Grease and Heat: Why Ice Sheets Hate Water Dr. Robert Bindschadler Chief Scientist Laboratory for Hydrospheric and Biospheric Sciences NASA Goddard Space Flight Center Robert.A.Bindschadler@nasa.gov

More information

Optical Remote sensing of the Cryosphere: Focus on velocity mapping

Optical Remote sensing of the Cryosphere: Focus on velocity mapping Optical Remote sensing of the Cryosphere: Focus on velocity mapping Dr. Alexandra Messerli Norwegian Polar Institute ESA Remote Sensing of the Cryosphere Training Course 12 th June 2018 Longyearbyen, Svalbard

More information

Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet

Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1977 Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet 1. Satellite imagery for all ice shelves Supplementary Figure S1.

More information

Snow cover measurement and variation analysis

Snow cover measurement and variation analysis Snow cover measurement and variation analysis Konosuke Sugiura / Associate Professor, University of Toyama Fig.1 The rapid progression of snow cover extent in the northern hemisphere in October 2012. Red:

More information

Simulation of the evolution of Breidamerkurjökull in the late Holocene

Simulation of the evolution of Breidamerkurjökull in the late Holocene Chapter 4 Simulation of the evolution of Breidamerkurjökull in the late Holocene We have simulated the advance and retreat of Breidamerkurjökull, a tidewater glacier in Iceland, by means of a 1-D numerical

More information

Ocean Ice Interactions: A

Ocean Ice Interactions: A Ocean Ice Interactions: A Cryospheric Perspective Tony Payne a.j.payne@bristol.ac.uk Steph Cornford, Rupert Gladstone and Dan Martin (LLNL) KISS short course Sept. 2013 Slide number 1/37 Outline Evidence

More information

Measuring recent dynamic behaviour of Svalbard glaciers to investigate calving and surging

Measuring recent dynamic behaviour of Svalbard glaciers to investigate calving and surging Measuring recent dynamic behaviour of Svalbard glaciers to investigate calving and surging Adrian Luckman, Swansea University, UNIS Doug Benn, Heidi Sevestre, University of St Andrews Suzanne Bevan, Swansea

More information

ESC 3704 Spring 2012 In-Class Exercise #1 KEY

ESC 3704 Spring 2012 In-Class Exercise #1 KEY ESC 3704 Spring 2012 In-Class Exercise #1 KEY The video On Thin Ice, narrated by Martin Atkin, will be shown in class. Answer the questions as the movie progresses, then write answers to the discussion

More information

Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry

Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36,, doi:10.1029/2009gl039527, 2009 Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry J. A. Griggs 1 and J.

More information

SCIENTIFIC REPORT NERC GEF

SCIENTIFIC REPORT NERC GEF SCIENTIFIC REPORT NERC GEF Loan 927 Measuring changes in the dynamics of Pine Island Glacier, Antarctica A.M. Smith & E.C. King, British Antarctic Survey (BAS) pp J.B.T. Scott ABSTRACT A brief period of

More information

Glacial Earthquakes in Greenland and Antarctica

Glacial Earthquakes in Greenland and Antarctica Annu. Rev. Earth Planet. Sci. 2010. 38:467 91 First published online as a Review in Advance on February 25, 2010 The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org This

More information

Observations of sea ice and ice sheet interaction in Greenland and the Antarctic Peninsula

Observations of sea ice and ice sheet interaction in Greenland and the Antarctic Peninsula Observations of sea ice and ice sheet interaction in Greenland and the Antarctic Peninsula Twila Moon 1,2, Ted Scambos 1, Mark Fahnestock 3, Ian Joughin 2, Ben Smith 2, Terry Haran 1, Marin Klinger 1,

More information

UNSTOPPABLE COLLAPSE OF THE WEST ANTARCTIC ICE SHEET IS NOT HAPPENING

UNSTOPPABLE COLLAPSE OF THE WEST ANTARCTIC ICE SHEET IS NOT HAPPENING UNSTOPPABLE COLLAPSE OF THE WEST ANTARCTIC ICE SHEET IS NOT HAPPENING Dr. Don J. Easterbrook, Western Washington University, Bellingham, WA May 19, 2014 A New York Times headline reads Scientists Warn

More information

Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East Antarctica

Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East Antarctica GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16503, doi:10.1029/2008gl034728, 2008 Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East

More information

Subglacial Control on Glacier Flow in Northern Greenland

Subglacial Control on Glacier Flow in Northern Greenland Subglacial Control on Glacier Flow in Northern Greenland Beáta Csathó (University at Buffalo, SUNY, Buffalo, NY), C.J. van der Veen (U. of Kansas, Lawrence, KS) Ralph van Frese and Tim Leftwich (The Ohio

More information

Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland

Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE, VOL. 118, 382 395, doi:1.129/212jf2515, 213 Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland R. Rosenau,

More information

Comparison of four calving laws to model Greenland outlet glaciers

Comparison of four calving laws to model Greenland outlet glaciers The Cryosphere Discuss., https://doi.org/1.194/tc-218-132 Discussion started: 23 July 218 c Author(s) 218. CC BY 4. License. Comparison of four calving laws to model Greenland outlet glaciers Youngmin

More information

Durham E-Theses. Synchronous terminus change of East Antarctic outlet glaciers linked to climatic forcing MILES, BERTIE

Durham E-Theses. Synchronous terminus change of East Antarctic outlet glaciers linked to climatic forcing MILES, BERTIE Durham E-Theses Synchronous terminus change of East Antarctic outlet glaciers linked to climatic forcing MILES, BERTIE How to cite: MILES, BERTIE (2013) Synchronous terminus change of East Antarctic outlet

More information

Fjord Circulation and Thermal Forcing in the Ice-Proximal Region

Fjord Circulation and Thermal Forcing in the Ice-Proximal Region Fjord Circulation and Thermal Forcing in the Ice-Proximal Region Saffia Hossainzadeh, Prof. Slawek Tulaczyk, Connor Williams RASM Project Meeting University of Arizona November 14-16, 2012 Introduction

More information

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY Florian Müller (1), Helmut Rott (2) (1) ENVEO IT, Environmental Earth Observation GmbH, Technikerstrasse 21a,

More information

Ice-stream stability on a reverse bed slope

Ice-stream stability on a reverse bed slope SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1600 Supplementary Information: Ice stream stability on a reverse bed Ice-stream stability on a reverse bed slope slope Stewart S.R. Jamieson 1, Andreas Vieli

More information

APPLICATION OF AIRCRAFT LASER ALTIMETRY TO GLACIER AND ICE CAP MASS BALANCE STUDIES

APPLICATION OF AIRCRAFT LASER ALTIMETRY TO GLACIER AND ICE CAP MASS BALANCE STUDIES APPLICATION OF AIRCRAFT LASER ALTIMETRY TO GLACIER AND ICE CAP MASS BALANCE STUDIES W. Abdalati and W.B. Krabill Laboratory for Hydrospheric Processes NASA Goddard Space Flight Center U.S.A. waleed.abdalati@gsfc.nasa.gov

More information

Extensive Retreat of Greenland Tidewater Glaciers,

Extensive Retreat of Greenland Tidewater Glaciers, Extensive Retreat of Greenland Tidewater Glaciers, 2000 2010 Author(s): T. Murray, K. Scharrer, N. Selmes, A. D. Booth, T. D. James, S. L. Bevan, J. Bradley, S. Cook, L. Cordero Llana, Y. Drocourt, L.

More information

Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland

Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland 76 Journal of Glaciology, Vol. 61, No. 225, 2015 doi: 10.3189/2015JoG13J235 Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland Ryan CASSOTTO,

More information

Continued evolution of Jakobshavn Isbrae following its rapid speedup

Continued evolution of Jakobshavn Isbrae following its rapid speedup Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jf001023, 2008 Continued evolution of Jakobshavn Isbrae following its rapid speedup Ian Joughin, 1 Ian M. Howat,

More information

Structure from Motion Photogrammetry for 3D Reconstruction of Crater Glacier on Mount St. Helens, Washington, USA

Structure from Motion Photogrammetry for 3D Reconstruction of Crater Glacier on Mount St. Helens, Washington, USA Julian Cross GEOG 593 Department of Geography Portland State University 12/5/16 Structure from Motion Photogrammetry for 3D Reconstruction of Crater Glacier on Mount St. Helens, Washington, USA Abstract:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO1218 Supplementary information Ice speed of a calving glacier modulated by small fluctuations in basal water pressure Shin Sugiyama 1, Pedro Skvarca 2, Nozomu Naito

More information

Mass loss from the Greenland ice sheet (GrIS) is regionally

Mass loss from the Greenland ice sheet (GrIS) is regionally ARTICLES PUBLISHED ONLINE: 6 MARCH 24 DOI:.38/NCLIMATE26 Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming Shfaqat A. Khan *, Kurt H. Kjær 2, Michael Bevis 3, Jonathan

More information

Spatial and temporal variations in Greenland glacial-earthquake activity,

Spatial and temporal variations in Greenland glacial-earthquake activity, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jf002412, 2012 Spatial and temporal variations in Greenland glacial-earthquake activity, 1993 2010 Stephen A. Veitch 1 and Meredith Nettles 1

More information

Ground-based interferometric radar for velocity and calving-rate measurements of the tidewater glacier at Kronebreen, Svalbard

Ground-based interferometric radar for velocity and calving-rate measurements of the tidewater glacier at Kronebreen, Svalbard Annals of Glaciology 50 2009 47 Ground-based interferometric radar for velocity and calving-rate measurements of the tidewater glacier at Kronebreen, Svalbard C. ROLSTAD, 1 R. NORLAND 2 1 Department of

More information

Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis

Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jf002110, 2012 Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis

More information

Greenland marine-terminating glacier area changes:

Greenland marine-terminating glacier area changes: Annals of Glaciology 52(59) 2011 91 Greenland marine-terminating glacier area changes: 2000 2010 Jason E. BOX, 1,2 David T. DECKER 2 1 Department of Geography, The Ohio State University, 1036 Derby Hall,

More information

Cronfa - Swansea University Open Access Repository

Cronfa - Swansea University Open Access Repository Cronfa - Swansea University Open Access Repository This is an author produced version of a paper published in : The Cryosphere Cronfa URL for this paper: http://cronfa.swan.ac.uk/record/cronfa21912 Paper:

More information

Did changes in the Subpolar North Atlantic trigger the recent mass loss from the Greenland Ice Sheet?

Did changes in the Subpolar North Atlantic trigger the recent mass loss from the Greenland Ice Sheet? Did changes in the Subpolar North Atlantic trigger the recent mass loss from the Greenland Ice Sheet? Fiammetta Straneo (Woods Hole Oceanographic Institution) Gordon Hamilton (University of Maine) Ruth

More information

High-resolution ice-thickness mapping in South Greenland

High-resolution ice-thickness mapping in South Greenland 64 Annals of Glaciology 55(67) 2014 doi: 10.3189/2014AoG67A088 High-resolution ice-thickness mapping in South Greenland M. MORLIGHEM, 1 E. RIGNOT, 1;2 J. MOUGINOT, 1 H. SEROUSSI, 2 E. LAROUR 2 1 Department

More information

Thwaites and Pine Island Glaciers of Antarctica and the Prospect of Rapid Sea Level Rise

Thwaites and Pine Island Glaciers of Antarctica and the Prospect of Rapid Sea Level Rise Thwaites and Pine Island Glaciers of Antarctica and the Prospect of Rapid Sea Level Rise Thomas Mortlock and Paul Somerville, Risk Frontiers The Thwaites and Pine Island glaciers in Antarctica are flowing

More information

Summary for the Greenland ice sheet

Summary for the Greenland ice sheet Contribution of Greenland and Antarctica to future sea level change Catherine Ritz, Gaël Durand, Fabien Gillet-Chaulet, Olivier Gagliardini, Vincent Peyaud EDGe team, LGGE, CNRS/UJF Grenoble, France Ice

More information

Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glacier

Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glacier JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jf000551, 2007 Controls on advance of tidewater glaciers: Results from numerical modeling applied to Columbia Glacier F. M. Nick, 1,2 C. J. van

More information

Using Radar Sounder and Altimeter Data

Using Radar Sounder and Altimeter Data 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice

Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice 468, 913 931 doi:10.1098/rspa.2011.0422 Published online 23 November 2011 Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice BY J. N. BASSIS 1,2, * AND

More information

Cronfa - Swansea University Open Access Repository

Cronfa - Swansea University Open Access Repository Cronfa - Swansea University Open Access Repository This is an author produced version of a paper published in: Journal of Geophysical Research: Earth Surface Cronfa URL for this paper: http://cronfa.swan.ac.uk/record/cronfa31728

More information

Non-linear retreat of Jakobshavn Isbræ since the Little Ice Age controlled by geometry

Non-linear retreat of Jakobshavn Isbræ since the Little Ice Age controlled by geometry The Cryosphere Discuss., https://doi.org/.194/tc-17-11 Discussion started: 2 September 17 Non-linear retreat of Jakobshavn Isbræ since the Little Ice Age controlled by geometry Nadine Steiger 1, Kerim

More information

Figure 3.1: Illustration showing the bathymetry s role for the tsunami propagation following the earth quake 26 December 2004 outside of Sumatra.

Figure 3.1: Illustration showing the bathymetry s role for the tsunami propagation following the earth quake 26 December 2004 outside of Sumatra. Figure 3.1: Illustration showing the bathymetry s role for the tsunami propagation following the earth quake 26 December 2004 outside of Sumatra. The left globe shows the seafloor bathymetry as portrayed

More information

Determining the spatio-temporal distribution of 20th Century Antarctic Peninsula glacier mass change

Determining the spatio-temporal distribution of 20th Century Antarctic Peninsula glacier mass change Determining the spatio-temporal distribution of 20th Century Antarctic Peninsula glacier mass change Jon Mills, Pauline Miller, Matthias Kunz School of Civil Engineering & Geosciences / Centre for Earth

More information

Climate Regimes of the Arctic

Climate Regimes of the Arctic Climate Regimes of the Arctic The climate of Greenland, recent changes and the ice sheet mass balance Map of Greenland, showing elevation and the location of GC- Net automatic weather stations (+), expedition

More information

DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA

DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA TIAN Xin (1), LIAO Mingsheng (1), ZHOU Chunxia (2), ZHOU Yu (3) (1) State Key Laboratory of Information Engineering

More information

BELISSIMA: BELgian Ice Sheet- Shelf Ice Measurements in Antarctica

BELISSIMA: BELgian Ice Sheet- Shelf Ice Measurements in Antarctica BELISSIMA: BELgian Ice Sheet- Shelf Ice Measurements in Antarctica Frank PATTYN 1, Jean-Louis TISON 1, Denis SAMYN 1, Kenichi MATSUOKA², Howard CONWAY², Bryn HUBBARD³ (1)Laboratoire de Glaciologie, DSTE,

More information

Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise

Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl046583, 2011 Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise E. Rignot, 1,2 I. Velicogna, 1,2 M. R.

More information

Ice flux divergence anomalies on 79north Glacier, Greenland

Ice flux divergence anomalies on 79north Glacier, Greenland GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl047338, 2011 Ice flux divergence anomalies on 79north Glacier, Greenland H. Seroussi, 1,2 M. Morlighem, 1,2 E. Rignot, 1,3 E. Larour, 1 D. Aubry,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.108/ngeo75 This section includes additional information for the model parameters as well as the results of a set of sensitivity experiments to illustrate the dependence

More information

VIDEO/LASER HELICOPTER SENSOR TO COLLECT PACK ICE PROPERTIES FOR VALIDATION OF RADARSAT SAR BACKSCATTER VALUES

VIDEO/LASER HELICOPTER SENSOR TO COLLECT PACK ICE PROPERTIES FOR VALIDATION OF RADARSAT SAR BACKSCATTER VALUES VIDEO/LASER HELICOPTER SENSOR TO COLLECT PACK ICE PROPERTIES FOR VALIDATION OF RADARSAT SAR BACKSCATTER VALUES S.J. Prinsenberg 1, I.K. Peterson 1 and L. Lalumiere 2 1 Bedford Institute of Oceanography,

More information

Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf Supplementary Information

Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf Supplementary Information Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf Supplementary Information 1 Supplementary Figure 1: (a) Upper and (b) lower surface of an englacial lake surveyed by

More information

Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska

Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1 6, doi:10.1002/grl.51011, 2013 Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska Roman J Motyka, 1,2 William P Dryer, 1,2 Jason Amundson,

More information

The Seasonal Evolution of Sea Ice Floe Size Distribution

The Seasonal Evolution of Sea Ice Floe Size Distribution DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Seasonal Evolution of Sea Ice Floe Size Distribution Jacqueline A. Richter-Menge and Donald K. Perovich CRREL 72 Lyme

More information

Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet

Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet Journal of Glaciology, Vol. 59, No. 216, 2013 doi:10.3189/2013jog12j143 687 Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet Andrew A.W. FITZPATRICK,

More information

Letter. Small-scale topographically-controlled glacier flow switching in an expanding proglacial lake at Breiðamerkurjökull, SE Iceland

Letter. Small-scale topographically-controlled glacier flow switching in an expanding proglacial lake at Breiðamerkurjökull, SE Iceland Journal of Glaciology (2017), 63(240) 745 750 doi: 10.1017/jog.2017.22 The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.

More information

Spread of ice mass loss into northwest Greenland observed by GRACE and GPS

Spread of ice mass loss into northwest Greenland observed by GRACE and GPS Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042460, 2010 Spread of ice mass loss into northwest Greenland observed by GRACE and GPS Shfaqat Abbas Khan, 1 John

More information

A unifying framework for iceberg-calving models

A unifying framework for iceberg-calving models 822 Journal of Glaciology, Vol. 56, No. 199, 2010 A unifying framework for iceberg-calving models Jason M. AMUNDSON, Martin TRUFFER Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive,

More information

Glacier Elevation, Volume and Mass Change

Glacier Elevation, Volume and Mass Change 8/8/12 Glacier Elevation, Volume and Mass Change 1 Outline: Elevation, Volume and Mass Change ① Elevation change fundamentals ② Elevation measurement platforms ③ Calculating elevation change ④ Calculating

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI: /, JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1002/, 1 2 3 Annual down-glacier drainage of lakes and water-filled crevasses at Helheim Glacier, south east Greenland A. Everett 1, T. Murray 1,

More information

Using Ice Thickness and Bed Topography to Pick Field Sites Near Swiss Camp, Greenland

Using Ice Thickness and Bed Topography to Pick Field Sites Near Swiss Camp, Greenland Lauren Andrews 6 May 2010 GEO 386G: GIS final project Using Ice Thickness and Bed Topography to Pick Field Sites Near Swiss Camp, Greenland Problem Formulation My primary goal for this project is to map

More information

We greatly appreciate the thoughtful comments from the reviewers. According to the reviewer s comments, we revised the original manuscript.

We greatly appreciate the thoughtful comments from the reviewers. According to the reviewer s comments, we revised the original manuscript. Response to the reviews of TC-2018-108 The potential of sea ice leads as a predictor for seasonal Arctic sea ice extent prediction by Yuanyuan Zhang, Xiao Cheng, Jiping Liu, and Fengming Hui We greatly

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 09 January 2018 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Carr, R. and Stokes, C.R.

More information

Tidewater glacier fluctuations in central East Greenland coastal and fjord regions (1980s 2005)

Tidewater glacier fluctuations in central East Greenland coastal and fjord regions (1980s 2005) Annals of Glaciology 53(60) 2012 doi: 10.3189/2012AoG60A030 35 Tidewater glacier fluctuations in central East Greenland coastal and fjord regions (1980s 2005) Hester JISKOOT, 1 Dan JUHLIN, 1 Heather ST

More information

Recent changes in high-latitude glaciers, ice caps and ice sheets

Recent changes in high-latitude glaciers, ice caps and ice sheets Recent changes in high-latitude glaciers, ice caps and ice sheets Waleed Abdalati NASA/Goddard Space Flight Center, Greenbelt, Maryland The glaciers and ice sheets of the world contain enough ice to raise

More information

Danish Meteorological Institute

Danish Meteorological Institute Ministry of Climate and Energy Climate Change: Facts-Scenarios What can we learn from the ice sheets? Guðfinna Aðalgeirsdóttir www.dmi.dk/dmi/dkc08-06 Copenhagen 2008 page 1 of 11 Colophone Serial title:

More information

The State of the cryosphere

The State of the cryosphere The State of the cryosphere Course outline Introduction The cryosphere; what is it? The Earth; a unique planet Cryospheric components Classifications Lecture outlines The State of the cryosphere The State

More information

Ice Sheets and Glaciers

Ice Sheets and Glaciers Ice Sheets and Glaciers Technical University of Denmark Kees van der Veen Department of Geography University of Kansas Why are glaciers and ice sheets important? Large volume of fresh water stored in ice

More information

Thwaites and Pine Island Glaciers of Antarctica and the Prospect of Rapid Sea Level Rise

Thwaites and Pine Island Glaciers of Antarctica and the Prospect of Rapid Sea Level Rise Thwaites and Pine Island Glaciers of Antarctica and the Prospect of Rapid Sea Level Rise Thomas Mortlock and Paul Somerville, Risk Frontiers; Tony Wong, University of Colorado at Boulder, USA, and; Alexander

More information

Swath Mode Altimetry. Noel Gourmelen

Swath Mode Altimetry. Noel Gourmelen Swath Mode Altimetry Noel Gourmelen 1 Outline Background Impact case studies: Topography Rates of surface elevation change 2 Products and applications of radar altimetry over Ice Sheet, Ice Caps, Glaciers:

More information

LETTERS. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets

LETTERS. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets doi:10.1038/nature08471 Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets Hamish D. Pritchard 1, Robert J. Arthern 1, David G. Vaughan 1 & Laura A. Edwards 2 Many glaciers

More information

Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations

Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations Journal of Glaciology (2017), 63(240) 691 702 doi: 10.1017/jog.2017.41 The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.

More information

UC Irvine UC Irvine Previously Published Works

UC Irvine UC Irvine Previously Published Works UC Irvine UC Irvine Previously Published Works Title Undercutting of marine-terminating glaciers in West Greenland Permalink https://escholarship.org/uc/item/28j711jc Journal Geophysical Research Letters,

More information

Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland

Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland Journal of Glaciology (2016), 62(236) 1104 1114 doi: 10.1017/jog.2016.83 The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.

More information