January 30, 2018 Chemistry 328N

Size: px
Start display at page:

Download "January 30, 2018 Chemistry 328N"

Transcription

1 Lecture 4 Some More nmr January 30, 2018

2 Tricks for solving unknowns Review. Empirical formula is lowest common denominator ratio of atomic composition From Homework: unknown has an empirical formula of C 4 H 9.a single high field peak in the 1 H nmr and a molecular ion at M/Z = 114..propose a structure..and predict the M/Z of the most intense fragment you expect to see in the mass spectrum

3 Energy Hz Resonance can be achieved by changing the magnetic field strength at constant frequency or by changing frequency at constant magnetic field strength Field Strength T

4 Nuclear Magnetic Resonance The circulation of electrons around a nucleus in an applied field is called diamagnetic current. This current generates a field that opposes the applied field...diamagnetic nuclear shielding results. Lenz s Law?? The difference in resonance frequencies between the various hydrogen nuclei within a molecule is due to shielding/deshielding is very small but very important

5 Conditions for Resonance It is the frequency of the radiation and the NET field at the nucleus that matters. The NET field is the sum of all incident magnetic fields including those from: The Giant Magnet (applied field) Diamagnetic Shielding field (electrons) Coupling (spin fields of adjacent nuclei) credit card strips, earth s field, etc..

6 Chemical Shift The difference in resonance frequencies for hydrogens in CH 3 Cl compared to CH 3 Br under an applied field of 2.34T is only 35.5Hz, which is 0.35 parts per million (ppm) compared with the irradiating frequency 35 Hz = 0.35 = 0.35 ppm 100 x 106Hz 10 6 Here, 35Hz is the difference in resonance frequency and 100MHz is the 1 H resonance frequency for B=2.34T and = MHz / Tesla

7 Calculating Chemical Shift At 7.05 T, a resonance is at 715 Hz (from TMS) 1. What is the spectrometer frequency? 2. What is the chemical shift in ppm???

8 Chemical Shift Depends on several things (1) electronegativity of nearby atoms, (2) the hybridization of adjacent atoms, and (3) magnetic induction within an adjacent pi bond (1) Electronegativity CH 3 -X CH 3 F CH 3 OH CH 3 Cl CH 3 Br CH 3 I (CH 3 ) 4 C (C H 3 ) 4 Si Electronegativity of X d of H (by definition

9 Chemical Shift (2) The Hybridization of C Effects 1 H chemical Shift Hybrid sp 3 sp sp 2 Type of H Name d RCH 3 RC CH R 2 C=CH 2 alkyl acetylenic vinylic This seems like a Mystery!!

10 Chemical Shift Magnetic induction in pi bonds of a. a carbon-carbon triple bond shields an acetylenic hydrogen and shifts its signal upfield (to the right) to a smaller d value carbon-carbon double bond deshields vinylic a hydrogens and shifts their signal downfield (to the left) to a larger d value

11 Chemical Shift - 1 H-NMR Type of H (C H 3 ) 4 Si RCH 3 d Type of H ROH RCH 2 OR d RCH 2 R R 3 CH R 2 NH O R 2 C=CRC HR 2 RC CH ArC H RCCH 3 O RCCH 2 R

12 Chemical Shift - 1 H-NMR Type of H d Type of H d O RCOC H O RCOC H 2 R RCH 2 I RCH 2 Br RCH 2 Cl RCH 2 F R 2 C=C H 2 R 2 C=C HR ArH O RCH O RCOH

13 is this arrow correct for electron flow??? Induced field opposes big magnet inside the ring

14 Some Confusing Definitions The Right-Hand Rule #2 determines the direction of the magnetic field aroud a currentcarrying wire and vice-versa BUT. When using the Right-Hand Rules, it is important to remember that the rules assume charges move in a conventional current (the hypthetical flow of positive charges). In order to apply the Right-Hand Rule to a moving negative charge, the direction of charge flow must be reversed--.or use your LEFT hand.

15 Outside the ring the induced field helps big magnet

16 1 H-nmr spectrum of benzene

17 Integration H 3 C O H 3 C CH 3 O CH 3 9 linear units linear units up field

18 Equivalent Hydrogens Have exactly the same chemical environment Cl Cl CH 3 CH 3 CH Cl O C C 1,1-Dichloroethane Cyclopentanone H H (Z)-1-Chloropropene Cyclohexene

19 How many equivalent hydrogens?? Cl Cl H Cl This looks easy but it is not!!

20 Changing Spectrometers If the resonance of the peak on a 7.05 T instrument is 715 Hz, what will the resonance frequency be at 23.5 T What is the resonance in ppm at 7.05 T? What is the resonance in ppm at 23.5 T?

21 Chemical shift in ppm (d) is independent of the size of the magnet.! d Down Field Frequency Field Up Field

22 Ethyl Acetate H 3 C O CH 3 4 O

23 Signal Splitting Huh?? Why??? What is going on here?? What a mess!! Signal splitting: splitting of an NMR signal into a set of peaks by the influence of neighboring nonequivalent hydrogens This splitting business is actually rich in information it is a wonderful thing!

24 Origins of Signal Splitting When the chemical shift of one nucleus is influenced by the spin of another, the two are said to be coupled Consider nonequivalent hydrogens H a and H b on adjacent carbons the chemical shift of H a is influenced by whether the spin of H b is aligned with or against the applied field Y Ha Hb C C X

25 Origins of Signal Splitting B 0 H b Magnetic field of H b subtracts from the applied field; H b signal appears at a higher applied field H a H b Magnetic field of H b adds to the applied field; H a signal appears at a lower applied field Remember it is the NET field that counts

26 The signal of Ha is split into two peaks of equal area (a doublet) J ab J ab = coupling constant

27 Origins of signal splitting no neighbors one spin two spins three spins

28 Relative Intensity of Peaks singlet double triplet quartet quintete sextete Pascal s triangle The binomial coefficients

29 The N+1 Rule The 1 H-NMR signal of a hydrogen or set of equivalent hydrogens is split into (N + 1) peaks by a set of N equivalent neighboring hydrogens All neighboring hydrogens in the analysis must have the same chemical shift (magnetically equivalent) If this condition is not met, a graphical tree or second order analysis must be used to predict the splitting pattern. We will explore this condition later

30 Who needs DNA??

Lecture 5 Still More nmr

Lecture 5 Still More nmr Lecture 5 Still More nmr three spins February 5, 2019 Supplemental Problem Chlorocyclobutane Origins of Signal Splitting B 0 H b Magnetic field of H b subtracts from the applied field; H b signal appears

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Lecture 2 nmr Spectroscopy

Lecture 2 nmr Spectroscopy Lecture 2 nmr Spectroscopy Pages 427 430 and Chapter 13 Molecular Spectroscopy Molecular spectroscopy: the study of the frequencies of electromagnetic radiation that are absorbed or emitted by substances

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Organic Chemistry, First Edition Janice Gorzynski Smith University of Hawaii Chapter 5 Lecture Outline Introduction to NMR Two common types of NMR spectroscopy are used to characterize organic structure:

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L15 Page1 Instrumental Chemical Analysis Nuclear Magnetic Resonance Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 1 st semester, 2017/2018 Nuclear Magnetic

More information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 14. Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 14 Nuclear Magnetic Resonance Spectroscopy Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an NMR spectrometer? See sect 15.1 Chapter 15: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even

More information

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. Chapter 13: Nuclear magnetic resonance spectroscopy NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. 13.2 The nature of

More information

16.1 Introduction to NMR. Spectroscopy

16.1 Introduction to NMR. Spectroscopy 16.1 Introduction to NMR What is spectroscopy? Spectroscopy NUCLEAR MAGNETIC RESNANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves

More information

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1 Chapter 9 Nuclear Magnetic Resonance Ch. 9-1 1. Introduction Classic methods for organic structure determination Boiling point Refractive index Solubility tests Functional group tests Derivative preparation

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (I) AFB QO I 2007/08 2 1 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade,

More information

NMR = Nuclear Magnetic Resonance

NMR = Nuclear Magnetic Resonance NMR = Nuclear Magnetic Resonance NMR spectroscopy is the most powerful technique available to organic chemists for determining molecular structures. Looks at nuclei with odd mass numbers or odd number

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

More information

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift Dr. Sapna Gupta Introduction NMR is the most powerful tool available for organic structure determination.

More information

NMR Spectroscopy. Chapter 19

NMR Spectroscopy. Chapter 19 NMR Spectroscopy Chapter 19 Nuclear Magnetic Resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an spectrometer? See sect 16.1 Chapter 16: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even number

More information

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR) Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR) !E = h" Electromagnetic radiation is absorbed when the energy of photon corresponds

More information

C NMR Spectroscopy

C NMR Spectroscopy 13.14 13 C NMR Spectroscopy 1 H and 13 C NMR compared: both give us information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens or nonequivalent carbons) both give us information

More information

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W CHEM 2423. Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W Short Answer 1. For a nucleus to exhibit the nuclear magnetic resonance phenomenon, it must be magnetic. Magnetic nuclei include: a. all

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an spectrometer? See sect 16.1 Chapter 16: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even number

More information

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013 What is spectroscopy? NUCLEAR MAGNETIC RESONANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves an interaction between electromagnetic

More information

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field. 1) Which of the following CANNOT be probed by an spectrometer? See sect 15.1 Chapter 15: 1 A) nucleus with odd number of protons & odd number of neutrons B) nucleus with odd number of protons &even number

More information

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Purpose: This is an exercise to introduce the use of nuclear magnetic resonance spectroscopy, in conjunction with infrared spectroscopy, to determine

More information

Analysis of NMR Spectra Part 2

Analysis of NMR Spectra Part 2 Analysis of NMR Spectra Part 2-1- Analysis of NMR Spectra Part 2 "Things should be made as simple as possible, but not any simpler." Albert Einstein 1.1 Review of Basic NMR Concepts NMR analysis is a complex

More information

Chapter 16 Nuclear Magnetic Resonance Spectroscopy

Chapter 16 Nuclear Magnetic Resonance Spectroscopy hapter 16 Nuclear Magnetic Resonance Spectroscopy The Spinning Proton A spinning proton generates a magnetic field, resembling that of a small bar magnet. An odd number of protons in the nucleus creates

More information

- 1/2. = kb o = hνν + 1/2. B o increasing magnetic field strength. degenerate at B o = 0

- 1/2. = kb o = hνν + 1/2. B o increasing magnetic field strength. degenerate at B o = 0 NMR EXPERIMENT When magnetically active nuclei are placed into an external magnetic field, the magnetic fields align themselves with the external field into two orientations. During the experiment, electromagnetic

More information

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY A STUDENT SHOULD BE ABLE TO: 1. Identify and explain the processes involved in proton ( 1 H) and carbon-13 ( 13 C) nuclear magnetic resonance

More information

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 13 Structure t Determination: ti Nuclear Magnetic Resonance Spectroscopy Revisions by Dr. Daniel Holmes MSU Paul D. Adams University of Arkansas

More information

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination Chung-Ming Sun Department of Applied Chemistry National Chiao Tung University Hualien 300, Taiwan Introduction NMR (Nuclear Magnetic

More information

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface NMR Nuclear Magnetic Resonance Spectroscopy p. 83 a hydrogen nucleus (a proton) has a charge, spread over the surface a spinning charge produces a magnetic moment (a vector = direction + magnitude) along

More information

1. neopentyl benzene. 4 of 6

1. neopentyl benzene. 4 of 6 I. 1 H NMR spectroscopy A. Theory 1. The protons and neutrons in atomic nuclei spin, as does the nucleus itself 2. The circulation of nuclear charge can generate a nuclear magnetic moment, u, along the

More information

Experiment 2 - NMR Spectroscopy

Experiment 2 - NMR Spectroscopy Experiment 2 - NMR Spectroscopy OBJECTIVE to understand the important role of nuclear magnetic resonance spectroscopy in the study of the structures of organic compounds to develop an understanding of

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. Like IR spectroscopy,

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy William. Brown Christopher S. Foote Brent L. Iverson Eric Anslyn http://academic.cengage.com/chemistry/brown Chapter 13 Nuclear Magnetic Resonance Spectroscopy William. Brown Beloit College Two Nobel Prizes

More information

Lecture 3 NMR Spectroscopy. January 26, 2016 Chemistry 328N

Lecture 3 NMR Spectroscopy. January 26, 2016 Chemistry 328N Lecture 3 NMR Spectroscopy January 26, 2016 Please see me after class Enrollment issue Hugo Nicolas Eichner Nurbol Kaliyev E = hn Energy per photon Frequency Wave Length Electromagnetic Radiation Important

More information

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Skills: Draw structure IR: match bond type to IR peak NMR: ID number of non-equivalent H s, relate peak splitting to

More information

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

Structure Determination: Nuclear Magnetic Resonance Spectroscopy Structure Determination: Nuclear Magnetic Resonance Spectroscopy Why This Chapter? NMR is the most valuable spectroscopic technique used for structure determination More advanced NMR techniques are used

More information

Module 13: Chemical Shift and Its Measurement

Module 13: Chemical Shift and Its Measurement Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M13_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Shielding and deshielding

More information

Chapter 13: Molecular Spectroscopy

Chapter 13: Molecular Spectroscopy Chapter 13: Molecular Spectroscopy Electromagnetic Radiation E = hν h = Planck s Constant (6.63 x 10-34 J. s) ν = frequency (s -1 ) c = νλ λ = wavelength (nm) Energy is proportional to frequency Spectrum

More information

The Use of NMR Spectroscopy

The Use of NMR Spectroscopy Spektroskopi Molekul Organik (SMO): Nuclear Magnetic Resonance (NMR) Spectroscopy All is adopted from McMurry s Organic Chemistry The Use of NMR Spectroscopy Used to determine relative location of atoms

More information

11. Proton NMR (text , 12.11, 12.12)

11. Proton NMR (text , 12.11, 12.12) 2009, Department of Chemistry, The University of Western Ontario 11.1 11. Proton NMR (text 12.6 12.9, 12.11, 12.12) A. Proton Signals Like 13 C, 1 H atoms have spins of ±½, and when they are placed in

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) E E increases with increasing magnetic field strength Boltzmann distribution at thermal equilibrium: N (m=-1/2) /N (m=+1/2) = e ( E/kT) with E = γ(h/2π)b o NMR Physical

More information

Nuclear spin and the splitting of energy levels in a magnetic field

Nuclear spin and the splitting of energy levels in a magnetic field Nuclear spin and the splitting of energy levels in a magnetic field Top 3 list for 13 C NMR Interpretation 1. Symmetry 2. Chemical Shifts 3. Multiplicity 13 C NMR of C 3 O 1 NMR of C 3 O 13 C NMR of C

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic Spectroscopy in Organic Chemistry Spectroscopy Spectrum dealing with light, or more specifically, radiation Scope to see Organic Spectroscopy therefore deals with examining how organic molecules interact

More information

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field: Spin-Spin Splitting in Alkanes The signal arising from a proton or set of protons is split into (N+1) lines by the presence of N adjacent nuclei Example 1: Bromoethane The resonance frequency of the H

More information

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE.

ORGANIC - BROWN 8E CH NUCLEAR MAGNETIC RESONANCE. !! www.clutchprep.com CONCEPT: 1 H NUCLEAR MAGNETIC RESONANCE- GENERAL FEATURES 1 H (Proton) NMR is a powerful instrumental method that identifies protons in slightly different electronic environments

More information

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) Spectroscopy Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) A)From a structure: B)From a molecular formula, C c H h N n O o X x, Formula for saturated hydrocarbons: Subtract the

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy 13 Nuclear Magnetic Resonance Spectroscopy Solutions to In-Text Problems 13.1 (b) Apply Eq. 13.2b with = 360 MHz. chemical shift in Hz = δ = (4.40)(360) = 1584 Hz 13.2 (b) Follow the same procedure used

More information

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR 3.15 Nuclear Magnetic Resonance Spectroscopy, NMR What is Nuclear Magnetic Resonance - NMR Developed by chemists and physicists together it works by the interaction of magnetic properties of certain nuclei

More information

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2)

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) NMR spectra of some simple molecules Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) N S H 0 H o Because the protons have a magnetic field associated with them, the field changes as across

More information

Tuesday, January 13, NMR Spectroscopy

Tuesday, January 13, NMR Spectroscopy NMR Spectroscopy NMR Phenomenon Nuclear Magnetic Resonance µ A spinning charged particle generates a magnetic field. A nucleus with a spin angular momentum will generate a magnetic moment (μ). If these

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Yale Chemistry 800 MHz Supercooled Magnet. Nuclear Magnetic Resonance

Yale Chemistry 800 MHz Supercooled Magnet. Nuclear Magnetic Resonance Yale Chemistry 800 Mz Supercooled Magnet Nuclear Magnetic Resonance B o Atomic nuclei in The absence of a magnetic field Atomic nuclei in the presence of a magnetic field α spin - with the field β spin

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Lecture Notes Chem 51A S. King

Lecture Notes Chem 51A S. King Lecture Notes hem 51A S. King hapter 14 Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy uses energy in the radiowave portion of the electromagnetic spectrum. The nuclei

More information

Other problems to work: 3-Chloropentane (diastereotopic H s), 1- chloropentane.

Other problems to work: 3-Chloropentane (diastereotopic H s), 1- chloropentane. Let s look at some specific examples. Dichloroacetaldehyde, l 2 HHO, has two inequivalent toms, H1 and H2. We expect to see two resonances, one at around δ 10.5 ppm and one around δ 5.5 ppm. (The H2 resonance

More information

Chapter 14 Spectroscopy

Chapter 14 Spectroscopy hapter 14 Spectroscopy There are four major analytical techniques used for identifying the structure of organic molecules 1. Nuclear Magnetic Resonance or NMR is the single most important technique for

More information

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra 1 Interpreting NMR spectra There are two kinds: Low-resolution NMR spectra High-resolution NMR spectra In both cases the horizontal scale is labelled in terms of chemical shift, δ, and increases from right

More information

In a solution, there are thousands of atoms generating magnetic fields, all in random directions.

In a solution, there are thousands of atoms generating magnetic fields, all in random directions. Nuclear Magnetic Resonance Spectroscopy: Purpose: onnectivity, Map of - framework Process: In nuclear magnetic resonance spectroscopy, we are studying nuclei. onsider this circle to represent a nucleus

More information

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD The following guidelines should be helpful in assigning a structure from NMR (both PMR and CMR) and IR data. At the end of this

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

1,1,2-Tribromoethane. Spin-Spin Coupling

1,1,2-Tribromoethane. Spin-Spin Coupling NMR Spin oupling Spin-Spin oupling Spectra usually much more complicated than a series of single lines, one for each type of hydrogen. Peaks are often split into a number of smaller peaks, sometimes with

More information

Nuclear Spin States. NMR Phenomenon. NMR Instrumentation. NMR Active Nuclei. Nuclear Magnetic Resonance

Nuclear Spin States. NMR Phenomenon. NMR Instrumentation. NMR Active Nuclei. Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR Phenomenon µ A spinning charged particle generates a magnetic field. A nucleus with a spin angular momentum will generate a magnetic moment (!). E Nuclear Spin States aligned

More information

CHEM311 FALL 2005 Practice Exam #3

CHEM311 FALL 2005 Practice Exam #3 EM311 FALL 2005 Practice Exam #3 Instructions: This is a multiple choice / short answer practice exam. For the multiple-choice questions, there may be more than one correct answer. If so, then circle as

More information

Proton NMR. Four Questions

Proton NMR. Four Questions Proton NMR Four Questions How many signals? Equivalence Where on spectrum? Chemical Shift How big? Integration Shape? Splitting (coupling) 1 Proton NMR Shifts Basic Correlation Chart How many 1 H signals?

More information

Chapter 18: NMR Spectroscopy

Chapter 18: NMR Spectroscopy The most important tool of the chemist for the determination of molecular structure is Nuclear Magnetic Resonance Spectroscopy, or NMR spectroscopy. NMR spectra are acquired on a special instrument called

More information

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad NMR Spectroscopy for 1 st B.Tech Lecture -1 Indian Institute of Technology, Dhanbad by Dr. R P John & Dr. C. Halder INTRODUCTION Nucleus of any atom has protons and neutrons Both Proton and Neutron has

More information

Nuclear Magnetic Resonance Spectroscopy (NMR)

Nuclear Magnetic Resonance Spectroscopy (NMR) OCR Chemistry A 432 Spectroscopy (NMR) What is it? An instrumental method that gives very detailed structural information about molecules. It can tell us - how many of certain types of atom a molecule

More information

In a solution, there are thousands of atoms generating magnetic fields, all in random directions.

In a solution, there are thousands of atoms generating magnetic fields, all in random directions. Nuclear Magnetic Resonance Spectroscopy: Purpose: onnectivity, Map of - framework Process: In nuclear magnetic resonance spectroscopy, we are studying nuclei. onsider this circle to represent a nucleus

More information

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Features: Used to identify products of reactions Also gives information about chemical environment, connectivity and bonding of nuclei Requirements: Pure or mostly

More information

Chapter 13 Spectroscopy

Chapter 13 Spectroscopy hapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation

More information

To Do s. Answer Keys are available in CHB204H

To Do s. Answer Keys are available in CHB204H To Do s Read Chapters 2, 3 & 4. Complete the end-of-chapter problems, 2-1, 2-2, 2-3 and 2-4 Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Complete the end-of-chapter problems, 4-1, 4-2,

More information

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet NMR SPECTROSCOPY This section will discuss the basics of NMR (nuclear magnetic resonance) spectroscopy. Most of the section will discuss mainly 1H or proton spectroscopy but the most popular nuclei in

More information

To Do s. Answer Keys are available in CHB204H

To Do s. Answer Keys are available in CHB204H To Do s Read Chapters 2, 3 & 4. Complete the end-of-chapter problems, 2-1, 2-2, 2-3 and 2-4 Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Complete the end-of-chapter problems, 4-1, 4-2,

More information

CHEM311 FALL 2005 Practice Exam #3

CHEM311 FALL 2005 Practice Exam #3 CHEM311 FALL 2005 Practice Exam #3 Instructions: This is a multiple choice / short answer practice exam. For the multiple-choice questions, there may be more than one correct answer. If so, then circle

More information

IR, MS, UV, NMR SPECTROSCOPY

IR, MS, UV, NMR SPECTROSCOPY CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET All Sections CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET General Instructions for the 318 Spectroscopy Problem Set Consult the Lab Manual,

More information

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set

Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set Organic Chemistry 321 Workshop: Spectroscopy NMR-IR Problem Set 1. Draw an NMR spectrum for each of the following compounds. Indicate each peak by a single vertical line (for example, a quartet would be

More information

HWeb27 ( ; )

HWeb27 ( ; ) HWeb27 (9.1-9.2; 9.12-9.18) 28.1. Which of the following cannot be determined about a compound by mass spectrometry? [a]. boiling point [b]. molecular formula [c]. presence of heavy isotopes (e.g., 2 H,

More information

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NMR Spectroscopy 1 NULEAR MAGNETI RESONANE SPETROSOPY Involves interaction of materials with the low-energy radiowave region of the electromagnetic spectrum Origin of Spectra Theory All nuclei possess

More information

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy An 1 NMR FID of ethanol Note: Problems with italicized numbers

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy Team Members: Unknown # CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy Purpose: You will learn how to predict the NMR data for organic molecules, organize this data

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Chapter 5 Nuclear Magnetic Resonance Spectroscopy http://www.yteach.co.uk/page.php/resources/view_all?id=nuclear_magnetic _resonance_nmr_spectroscopy_spin_spectrometer_spectrum_proton_t_pag e_5&from=search

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (II) AFB QO I 2007/08 2 1 Adaptado de Organic Chemistry, 6th Edition; L.G. Wade,

More information

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H Read Chapter 3. To Do s Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Answer Keys are available in CB204 NMR Chemical Shifts Further Discussion A set of spectral data is reported when

More information

Magnetic Nuclei other than 1 H

Magnetic Nuclei other than 1 H Magnetic Nuclei other than 1 H 2 H (Deuterium): I = 1 H,D-Exchange might be used to simplify 1 H-NMR spectra since H-D couplings are generally small; - - - -O- - - -D 2 -O- triplet of triplets slightly

More information

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules hapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the s and s of a molecules Nuclei are positively charged and spin on an axis; they create a tiny magnetic field + + Not all

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Clickers. a. I watched all 5 videos b. The dog ate my iphone

Clickers. a. I watched all 5 videos b. The dog ate my iphone Clickers a. I watched all 5 videos b. The dog ate my iphone 40% 33% 33% 40% 59% 67% of you: Watch youtube! PRBLEMS: Complete end of chapter 13 problems 1 10 from Lab Manual Answers 1 NMR Protons (nucleus

More information

(Refer Slide Time: 1:03)

(Refer Slide Time: 1:03) Principles and Applications of NMR spectroscopy Professor Hanudatta S. Atreya NMR Research Centre Indian Institute of Science Bangalore Module 1 Lecture No 05 Welcome back! In the last class we looked

More information

ORGANIC SPECTROSCOPY NOTES

ORGANIC SPECTROSCOPY NOTES - 1 - ORGANIC SPECTROSCOPY NOTES Basics of Spectroscopy UV/vis, IR and NMR are all types of Absorption Spectroscopy, where EM radiation corresponding to exactly the energy of specific excitations in molecules

More information

CH 3. mirror plane. CH c d

CH 3. mirror plane. CH c d CAPTER 20 Practice Exercises 20.1 The index of hydrogen deficiency is two. The structural possibilities include two double bonds, a double do 20.3 (a) As this is an alkane, it contains only C and and has

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 31: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part III CHE_P12_M31 TABLE OF CONTENTS 1.

More information

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I Department of Chemistry SUNY/Oneonta Chem 221 - Organic Chemistry I Examination #4 - ANSWERS - December 11, 2000 Answer to question #32 corrected 12/13/00, 8:30pm. INSTRUCTIONS This examination is in multiple

More information

CHEM 322 Laboratory Methods in Organic Chemistry. Introduction to NMR Spectroscopy

CHEM 322 Laboratory Methods in Organic Chemistry. Introduction to NMR Spectroscopy EM 322 Laboratory Methods in Organic hemistry Introduction to NMR Spectroscopy What structural information does NMR spectroscopy provide? 1) hemical shift (δ) data reveals the molecular (functional group)

More information

Background: In this chapter we will discuss the interaction of molecules with a magnetic field.

Background: In this chapter we will discuss the interaction of molecules with a magnetic field. Chapter 4 NMR Background: In this chapter we will discuss the interaction of molecules with a magnetic field. * Nuclear Spin Angular Momenta - recall electrons & spin -- our spin functions are and which

More information

Lecture 03 Nuclear Magnetic Resonance Spectroscopy Principle and Application in Structure Elucidation

Lecture 03 Nuclear Magnetic Resonance Spectroscopy Principle and Application in Structure Elucidation Application of Spectroscopic Methods in Molecular Structure Determination Prof. S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras Lecture 03 Nuclear Magnetic Resonance Spectroscopy

More information