Young Researchers Meeting 2012

Size: px
Start display at page:

Download "Young Researchers Meeting 2012"

Transcription

1

2 Karen Verrall Date: 27/03/12

3 Career History Berkeley Nuclear Labs (BNFL Magnox Generation) Environmental & Effluent Monitoring / Waste Radiochemistry Electric Power Research Institute (EPRI) PWR Chemistry Secondment Safety Case Management for Berkeley Site (BNFL Research & Technology) Plant Chemistry Ion Exchange & Filtration, Fuel Storage, Pond Chemistry, Corrosion Monitoring Project Management (Nexia Solutions / NNL) Chemistry & Graphite Team (NNL based at Stonehouse) Seconded to EDF Energy Carbon Deposition Team (Barnwood) Slide 3

4 AGR Coolant Chemistry and Carbon Deposition Overview 4

5 Objectives in Setting AGR Coolant Chemistry Minimise oxidation of the graphite core Minimise carbon deposition on fuel, boilers and in other areas of the circuit Minimise steel oxidation Minimise plant dose rates and radioactive discharges 5

6 Reasons for Selecting CO 2 Reactor Coolant Radiologically compatible - low neutron capture cross section - minimises activation of coolant - reduces discharges Good heat transfer properties at high pressure Reasonably cheap and readily available Reasonably chemically compatible with steel and graphite (when Magnox stations were designed it was thought to be completely compatible!) 6

7 Mechanism of Radiolytic Graphite Oxidation Under intense gamma and/or neutron irradiation CO 2 breaks down to give oxidising species, e.g. CO 3-, and these react with graphite to reduce its density CO 2 γ, n CO + [O] C g + [O] γ, n CO [O] represents oxidising species 7

8 More Protective Coolants for the Graphite Core? CH 4 added to maintain a target concentration of ~230 vpm CH 4 + 3CO 2 2H 2 O + 4CO Increasing CH 4 has significant effects for other parts of the plant Radiolysis of H 2 O results in production of H 2, both of which can lead to steel corrosion Limited by gas by-pass plant drier capacity to remove H 2 O CO oxidised to CO 2 by flow of O 2 onto a catalyst 1.2% CO/280 vpm CH 4 achievable, but increases carbon deposition 8

9 Evolution of AGR Coolants Early Days HPB/HNB started with 0.5% CO and natural CH 4 Needed to increase CH 4 for moderator protection High CH 4 ( vpm) and CO (up to 1.7%) - Significant fuel-pin deposition and heat transfer impairment - Down-rating, early fuel discharges, by-pass plant changes Coolant drawn back to 1.0% CO / 230 vpm CH 4 HRA/HYA/HYB/TOR % CO / vpm CH 4 9

10 Evolution of AGR Coolants Mid-1990s Further coolant optimisation and justification No ideal coolant composition - All coolant compositions capable of depositing, just depends on nickel catalyst availability in steel components and fuel cladding Coolant chemistry is a compromise! 10

11 Deposition Mechanism radiation Ethene (CH 2 =CH 2 ) Methane (CH 4 ) Nickel particle Carbon deposit 11

12 Role of Nickel in Deposition Cross-section of oxidised fuel pin Ni(CO) 4 CH 2 =CH 2 CH 2 =CH 2 Ni Intrinsic catalysis Extrinsic catalysis Ni does not oxidise under reactor conditions, unlike other metals in the alloy. This leaves particles of Ni metal on the fuel pins surface. Unsaturated hydrocarbons are formed from methane radiolysis. Decomposition to form carbon is catalysed by intrinsic nickel. Once some deposit present further decomposition can be catalysed by extrinsic nickel from the coolant. 12

13 Evolution of AGR Coolants Late1990s/Early 2000s Intervention / Prevention Carbonyl sulphide (COS) injection Inhibits catalytic deposit formation in whole circuit - Very effective on boilers (lower temperature) - Some benefit for fuel, especially lower elements Intervention / Clean-Up - O 2 injection Removes deposit Limited to upper parts of boilers - Plans to inject into the cores not pursued 13

14 COS Mechanism (1) 100 vpb and 1.0% CO COS <460 C Nickel particle Nickel sulphide No deposition 14

15 COS Mechanism (2) 100 vpb and 1.0% CO COS >>460 C Sulphur-catalysed loss of nickel Some deposition? Nickel particle COS 460 C Surface layer of sulphur Some deposition 15

16 Consequences of Carbon Deposition for Fuel and Boilers Heat Transfer from fuel pin to coolant is impaired Clad runs hotter than is predicted and can re-crystallise forming a new internal structure, leading to clad ductility changes Reduced Heat Transfer from gas to steam in the boilers 16

17 Carbon Deposition Strategy Diagram UNDERSTAND REMOVE PREVEN further formation T existing burden & / or HARDEN plant to cope PREVENT further formation of carbonaceous deposit to prevent the problem from worsening REMOVE deposit already formed within the plant to minimise challenges to operations HARDEN modify plant to operate comfortably in the presence of deposit (either instead of or in combination with the above) UNDERSTAND deploy further investigation and research to fully underpin possible mitigations for the above 3 areas 17

Research Program on Water Chemistry of Supercritical Pressure Water under Radiation Field

Research Program on Water Chemistry of Supercritical Pressure Water under Radiation Field 14th International Conference on the Properties of Water and Steam in Kyoto Research Program on Water Chemistry of Supercritical Pressure Water under Radiation Field Yosuke Katsumura 1, Kiyoshi Kiuchi

More information

Development of Crud Chemistry Model using MOOSE. Amit Agarwal, Jim Henshaw & John McGurk

Development of Crud Chemistry Model using MOOSE. Amit Agarwal, Jim Henshaw & John McGurk Development of Crud Chemistry Model using MOOSE Amit Agarwal, Jim Henshaw & John McGurk Introduction: MOOSE MOOSE software tool developed by Idaho National Labs MOOSE used for solving partial differential

More information

DERIVATION OF A RADIONUCLIDE INVENTORY FOR IRRADIATED GRAPHITE-CHLORINE-36 INVENTORY DETERMINATION

DERIVATION OF A RADIONUCLIDE INVENTORY FOR IRRADIATED GRAPHITE-CHLORINE-36 INVENTORY DETERMINATION DERIVATION OF A RADIONUCLIDE INVENTORY FOR IRRADIATED GRAPHITE-CHLORINE-36 INVENTORY DETERMINATION F.J. BROWN, J.D. PALMER, P. WOOD United Kingdom Nirex Limited, Harwell, Oxfordshire, United Kingdom Abstract.

More information

GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS

GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS Decomissioning & Waste Management Unit GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS Atoms for the future 27 th -30 th June 2016 Contact : Clémence WEILL clemence.weill@edf.fr

More information

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division Radiation Damage Effects in Solids Kurt Sickafus Los Alamos National Laboratory Materials Science & Technology Division Los Alamos, NM Acknowledgements: Yuri Osetsky, Stuart Maloy, Roger Smith, Scott Lillard,

More information

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name:

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Atomic structure and radioactivity Give a definition for each of these key words: Atom Isotope Proton Neutron Electron Atomic nucleus

More information

UNIT IV NON-CONVENTIONAL ENERGY SOURCES

UNIT IV NON-CONVENTIONAL ENERGY SOURCES POLLACHI INSTITUTE OF ENGINEERING AND TECHNOLOGY POOSARIPATTI, POLLACHI 642 205 DEPARTMENT OF CHEMISTRY ENGINEERING CHEMISTRY I UNIT IV NON-CONVENTIONAL ENERGY SOURCES PART-A 1. Define nuclear fission?

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 21 Reactor Chemistry UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 21 Reactor Chemistry UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 23 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 23 SENSITIVE INFORMATION RECORD Section Number

More information

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor

Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor Tritium Transport and Corrosion Modeling in the Fluoride Salt-Cooled High-Temperature Reactor John D. Stempien, PhD Content Based on Doctoral Thesis Defense Workshop on Tritium Control Salt Lake City,

More information

Tritium Control Using Carbon Outside of Core Stephen T Lam

Tritium Control Using Carbon Outside of Core Stephen T Lam Tritium Control Using Carbon Outside of Core Stephen T Lam Charles Forsberg Ron Ballinger Tritium Overview Generation Thermal neutron transmutation of Li-6 Initially 0.005 wt. % Li-6 in Flibe consumed

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

Reactor Chemistry, Materials and Plant Life Extension (PLEX)

Reactor Chemistry, Materials and Plant Life Extension (PLEX) Reactor Chemistry, Materials and Plant Life Extension (PLEX) Paul Nevitt Technology Manager Reactor Chemistry and Materials Reactor Operations Support paul.nevitt@nnl.co.uk Overview Reactor Chemistry and

More information

Science: Double Award (Modular) Paper 2 Higher Tier [G8205] 1 hour 30 minutes.

Science: Double Award (Modular) Paper 2 Higher Tier [G8205] 1 hour 30 minutes. 71 Centre Number Candidate Number General Certificate of Secondary Education 2011 Science: Double Award (Modular) Paper 2 Higher Tier [G8205] FRIDAY 27 MAY, MORNING TIME 1 hour 30 minutes. INSTRUCTIONS

More information

Review of the primary coolant chemistry at NPP Temelín and its impact on the fuel cladding

Review of the primary coolant chemistry at NPP Temelín and its impact on the fuel cladding Review of the primary coolant chemistry at NPP Temelín and its impact on the fuel cladding M. Mikloš, K. Vonková, J. Kysela Research Centre Řez Ltd, 250 68 Řež, Czech Republic D. Ernst NPP Temelín, Reactor

More information

Nuclear Reactors A REVIEW OF 14C WASTE ARISING FROM THE NUCLEAR INDUSTRY IN THE UNITED KINGDOM. and

Nuclear Reactors A REVIEW OF 14C WASTE ARISING FROM THE NUCLEAR INDUSTRY IN THE UNITED KINGDOM. and A REVIEW OF 14C WASTE ARISING FROM THE NUCLEAR INDUSTRY IN THE UNITED KINGDOM NIALL McNAMARA, MARTIN McCARTNEY Scottish Universities Research and Reactor Centre, Scottish Enterprise Technology Park East

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS Federal Environmental, Industrial and Nuclear Supervision Service Scientific and Engineering Centre for Nuclear and Radiation Safety Scientific and Engineering Centre for Nuclear and Radiation Safety Member

More information

The Effect of Hydrazine Addition on the Formation of Oxygen Molecule by Fast Neutron Radiolysis

The Effect of Hydrazine Addition on the Formation of Oxygen Molecule by Fast Neutron Radiolysis International Conference on Nuclear Energy Technologies and Sciences (2015), Volume 2016 Conference Paper The Effect of Hydrazine Addition on the Formation of Oxygen Molecule by Fast Neutron Radiolysis

More information

Journal of Nuclear Materials

Journal of Nuclear Materials Journal of Nuclear Materials 381 (28) 145 151 Contents lists available at ScienceDirect Journal of Nuclear Materials journal homepage: www.elsevier.com/locate/jnucmat Development of a Young s modulus model

More information

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS L.V. Boccaccini, N. Bekris, R. Meyder and the HCPB Design Team CBBI-13, Santa Barbara, 30th Nov.-2nd Dec. 2005 L.V.

More information

Application Note. InSpector 1000-based CZT Package for Nuclear Power Plant Isotope Mix Analysis

Application Note. InSpector 1000-based CZT Package for Nuclear Power Plant Isotope Mix Analysis Application Note InSpector 1000-based CZT Package for Nuclear Power Plant Isotope Mix Analysis A collaboration between Mirion/Canberra and EDF, owner of 58 Operating Reactor units in France. Background

More information

Welcome FROM PAUL HOWARTH MANAGING DIRECTOR

Welcome FROM PAUL HOWARTH MANAGING DIRECTOR Facilities Welcome FROM PAUL HOWARTH MANAGING DIRECTOR With the nuclear industry experiencing a welcome resurgence, the National Nuclear Laboratory (NNL) is committed to producing better, cheaper and

More information

Correlation between neutrons detected outside the reactor building and fuel melting

Correlation between neutrons detected outside the reactor building and fuel melting Attachment 2-7 Correlation between neutrons detected outside the reactor building and fuel melting 1. Introduction The Fukushima Daiichi Nuclear Power Station (hereinafter referred to as Fukushima Daiichi

More information

B C G H I J. In which section(s) would you find: a) the metals? b) the nonmetals? c) the halogens? d) the actinides? e) the alkaline earth metals?

B C G H I J. In which section(s) would you find: a) the metals? b) the nonmetals? c) the halogens? d) the actinides? e) the alkaline earth metals? Pretest: Nuclear Technology (PSC 4010) 1. A B C D E F G H I J In which section(s) would you find: a) the metals? b) the nonmetals? c) the halogens? d) the actinides? e) the alkaline earth metals? f) the

More information

nuclear chemical change CH4 + 2O2 CO2 + 2H2O carbon dating

nuclear chemical change CH4 + 2O2 CO2 + 2H2O carbon dating Nuclear Chemistry I. What is nuclear chemistry? a. Nuclear changes vs. chemical changes i. A nuclear change is a change in which the nucleons (things in the nucleus) change. For instance, if the number

More information

Isotopes 1. Carbon-12 and Carbon-14 have a different number of. A. Protons B. Neutrons C. Both D. Neither

Isotopes 1. Carbon-12 and Carbon-14 have a different number of. A. Protons B. Neutrons C. Both D. Neither Isotopes 1. Carbon-12 and Carbon-14 have a different number of A. Protons B. Neutrons C. Both D. Neither 2. Which statement is true about an isotope s half life? Radioactive Isotopes A. Isotopes of the

More information

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity #89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity Common Strong Acids Common Strong Bases HCl hydrochloric acid Group #1 + OH HNO 3 nitric acid NaOH, KOH etc. H 2

More information

Science Years 9 to 10

Science Years 9 to 10 Boardworks Contents Guide Boardworks Presentations: Acids and metal oxides 10 slides Reactions of metal oxides with acids. Adapting to changes 9 slides Ways that animals adapt to their habitats. Air pollution

More information

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process MR2014 Symposium, April 8-10, 2014, Studsvik, Nyköping, Sweden Klas Lundgren Arne Larsson Background Studsvik

More information

THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING. China Nuclear Power Engineering Co. Ltd, Beijing , China

THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING. China Nuclear Power Engineering Co. Ltd, Beijing , China Proceedings of the 18th International Conference on Nuclear Engineering ICONE18 May 17-21, 2010, Xi'an, China ICONE18- THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING DENG

More information

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS Hernán G. Meier, Martín Brizuela, Alexis R. A. Maître and Felipe Albornoz INVAP S.E. Comandante Luis Piedra Buena 4950, 8400 San Carlos

More information

Jason T. Harris, Ph.D. Department of Nuclear Engineering and Health Physics

Jason T. Harris, Ph.D. Department of Nuclear Engineering and Health Physics Jason T. Harris, Ph.D. Department of Nuclear Engineering and Health Physics Idaho State University North American Technical Center July 24, 2012 1 2 Commercial Nuclear Power Plants (NPPs) produce gaseous,

More information

In terms of production, nitric acid is the third most widely produced acid across the world.

In terms of production, nitric acid is the third most widely produced acid across the world. In terms of production, nitric acid is the third most widely produced acid across the world. It has a wide range of uses in agriculture, industry and medicine where it is used as a fertiliser and in the

More information

An important fuel is methane, natural gas. The equation for its combustion is as follows. CO 2 + 2H 2 O

An important fuel is methane, natural gas. The equation for its combustion is as follows. CO 2 + 2H 2 O 1 (a Exothermic reactions produce heat energy. An important fuel is methane, natural gas. The equation for its combustion is as follows. CH 4 + 2O 2 CO 2 + 2H 2 O (i) In chemical reactions bonds are broken

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY QUESTION BANK UNIT II -TWOMARKS. UNIT-II NUCLEAR POWER PLANTS:

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY QUESTION BANK UNIT II -TWOMARKS. UNIT-II NUCLEAR POWER PLANTS: -TWOMARKS. UNIT-II NUCLEAR POWER PLANTS: 1.What is meant by radioactivity? It refers to the german name of Radio-Activitat. Radioactivity is the spontaneous disintegration of atomic nuclei. The nucleus

More information

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction Reversible reactions Some reactions do not go to completion we don t get 100% yield because not all of the reactants react to form products. One of the reasons for this is that some reactions are reversible

More information

Atomistic Simulation of Nuclear Materials

Atomistic Simulation of Nuclear Materials BEAR Launch 2013 24 th June 2013 Atomistic Simulation of Nuclear Materials Dr Mark S D Read School of Chemistry Nuclear Education and Research Centre www.chem.bham.ac.uk Birmingham Centre for Nuclear Education

More information

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction?

turbine (a) (i) Which part of the power station provides thermal (heat) energy from a chain reaction? Nuclear fission and radiation 1 The diagram shows parts of a nuclear power station. control rods boiler steam generator electricity out turbine condenser nuclear reactor (a) (i) Which part of the power

More information

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear.

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear. Chemistry 500: Chemistry in Modern Living 1 Topic 5: The Fires of Nuclear Fission Atomic Structure, Nuclear Fission and Fusion, and Nuclear Weapons Chemistry in Context, 2 nd Edition: Chapter 8, Pages

More information

Measurement of the carbon 14 activity at natural level in air samples

Measurement of the carbon 14 activity at natural level in air samples Radioprotection, Suppl. 1, vol. 40 (2005) S791-S796 EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-116 Measurement of the carbon 14 activity at natural level in air samples A. Olivier 1, L. Tenailleau

More information

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning Paper presented at the seminar Decommissioning of nuclear facilities, Studsvik, Nyköping, Sweden, 14-16 September 2010. Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

More information

LVR-15 Reactor Application for Material Testing. Nuclear Research Institute Řež,, plc Reactor Services Division

LVR-15 Reactor Application for Material Testing. Nuclear Research Institute Řež,, plc Reactor Services Division LVR-15 Reactor Application for Material Testing M. Marek,, J.Kysela Kysela,, J.Burian Nuclear Research Institute Řež,, plc Reactor Services Division Research Reactor LVR-15 Light-water moderated and cooled

More information

MECHANICAL ENGINEERING. Five-year M.Sc. studies School of Mechanical Engineering National Technical University of Athens

MECHANICAL ENGINEERING. Five-year M.Sc. studies School of Mechanical Engineering National Technical University of Athens MECHANICAL ENGINEERING Five-year M.Sc. studies School of Mechanical Engineering National Technical University of Athens Athens, September 8, 2010 Semester 1: Mathematics Ia (52h lectures and exercises)

More information

Water Chemistry. Program Overview

Water Chemistry. Program Overview Water Chemistry Program Description Program Overview Water chemistry conditions at nuclear power plants can impact corrosion rates, fuel performance, and radiation management. In light of increasing demands

More information

12 Moderator And Moderator System

12 Moderator And Moderator System 12 Moderator And Moderator System 12.1 Introduction Nuclear fuel produces heat by fission. In the fission process, fissile atoms split after absorbing slow neutrons. This releases fast neutrons and generates

More information

IFE Level 3 Diploma in Fire Science and Fire Safety (VRQ)

IFE Level 3 Diploma in Fire Science and Fire Safety (VRQ) Unit 1: Fire Engineering Science Unit Reference Number: A/505/6005 Introduction This unit focuses on fire engineering science and fire behaviour. The content of the unit has been designed to reflect the

More information

Applications of MCBEND

Applications of MCBEND Serco Assurance Applications of MCBEND Presentation to NPL Workshop on Monte Carlo codes by Pat Cowan The ANSWERS Software Service Serco Assurance Overview The MCBEND Code Traditional Applications Industrial

More information

Nuclear power plants

Nuclear power plants Nuclear power plants Introduction: There is a common trend throughout the world to use nuclear energy as a source of power. This is because of the rapid depletion of conventional energy sources. Transportation

More information

Edexcel Chemistry Checklist

Edexcel Chemistry Checklist Topic 1. Key concepts in chemistry Video: Developing the atomic model Describe how and why the atomic model has changed over time. Describe the difference between the plum-pudding model of the atom and

More information

11. Radioactive Waste Management AP1000 Design Control Document

11. Radioactive Waste Management AP1000 Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Technical note on using JEFF-3.1 and JEFF data to calculate neutron emission from spontaneous fission and (α,n) reactions with FISPIN.

Technical note on using JEFF-3.1 and JEFF data to calculate neutron emission from spontaneous fission and (α,n) reactions with FISPIN. Page 1 of 11 Technical note on using JEFF-3.1 and JEFF-3.1.1 data to calculate neutron emission from spontaneous fission and (α,n) reactions with FISPIN. Nexia Solutions Ltd Dr. Robert W. Mills and Dr.

More information

New Specification 2018 Recurring Exam Questions. How Science Works. C1 - Particles. Atom with the same atomic number and different mass number

New Specification 2018 Recurring Exam Questions. How Science Works. C1 - Particles. Atom with the same atomic number and different mass number How Science Works Why is it important that scientist publish their results? Results can be checked Further evidence can be collected How do scientists publish their work? Scientific conference Scientific

More information

Assessment of the responses to RI-ABWR Definition and Justification for the Radioactive Source Terms in UK ABWR during Normal Operations

Assessment of the responses to RI-ABWR Definition and Justification for the Radioactive Source Terms in UK ABWR during Normal Operations Generic Design Assessment New Reactors Programme Assessment of the responses to RI-ABWR-0001 - Definition and Justification for the Radioactive Source Terms in UK ABWR during Normal Operations Assessment

More information

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1 The term fractional distillation refers to a physical method used to separate various components of crude oil. Fractional distillation uses the different boiling temperatures of each component, or fraction,

More information

PWR Airborne Tritium & Review of RG 1.21 data. S. Sandike June 2014 EnvoNuTek, llc

PWR Airborne Tritium & Review of RG 1.21 data. S. Sandike June 2014 EnvoNuTek, llc PWR Airborne Tritium & Review of RG 1.21 data S. Sandike June 2014 EnvoNuTek, llc PWR Tritium Production, Review Tritium is produced primarily from neutron capture by B-10 in a PWR. Boric acid is added

More information

Technical note. Risks of explosion associated with "red oils" in reprocessing plants

Technical note. Risks of explosion associated with red oils in reprocessing plants Technical note Risks of explosion associated with "red oils" in reprocessing plants This note presents the risks of explosion associated with reactions between TBP (tributylphosphate), its degradation

More information

Topsøe Catalysis Forum 2009

Topsøe Catalysis Forum 2009 Mercury Behaviour in Combustion Flue Gases Topsøe Catalysis Forum 9 Munkerupgaard 7 th -8 th of August 9 Dr. Harald Thorwarth Energie braucht Impulse Introduction clean gas Cr Co Ni Cd As Cu Pb Hg Input

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

A mini review on the chemistry and catalysis of the water gas shift reaction

A mini review on the chemistry and catalysis of the water gas shift reaction A mini review on the chemistry and catalysis of the water gas shift reaction Abstract: Bifunctional/bimetallic catalysts are a set of important catalytic materials that find their applications in many

More information

INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID

INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID INDUSTRIAL CHEMISTRY THE PRODUCTION OF NITRIC ACID Many reactions proceed too slowly under normal conditions of temperature and pressure. Some reactions proceed at very fast rates but produce very small

More information

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors January 15, 2015 Japan Atomic Energy Agency Tanaka Precious Metals Tanaka Holdings Co., Ltd. Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors World

More information

Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin 13566

Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin 13566 Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin 13566 Jonathan N. Bohnsack, David W. James DW James Consulting, LLC 855 Village Center Drive #330 North Oaks, MN 55127 jbohnsack@dwjames.com

More information

Sampling based on Bayesian statistics and scaling factors

Sampling based on Bayesian statistics and scaling factors JRP ENV54 MetroDecom 2nd Workshop EC-JRC Directorate Nuclear Safety and Security Ispra, Italy, 11-12 October 2016 Sampling based on Bayesian statistics and scaling factors P. De Felice (1), S. Jerome (2),

More information

Method to assess the radionuclide inventory of irradiated graphite from UNGG reactors (Uranium Naturel Graphite Gaz)

Method to assess the radionuclide inventory of irradiated graphite from UNGG reactors (Uranium Naturel Graphite Gaz) Method to assess the radionuclide inventory of irradiated graphite from UNGG reactors (Uranium Naturel Graphite Gaz) B. PONCET/EDF-CIDEN SCIENTIFIC CONFERENCE Uranium Graphite Reactors Decommissioning

More information

ISO Standard of Waste Activity Evaluation Method for Contaminated and Activated waste

ISO Standard of Waste Activity Evaluation Method for Contaminated and Activated waste ISO Standard of Waste Activity Evaluation Method for Contaminated and Activated waste November / 2012, IAEA LABONET in Brussels, Belgium M. Kashiwagi Developing Activity Evaluation Method for DTM nuclides:

More information

AP1000 European 11. Radioactive Waste Management Design Control Document

AP1000 European 11. Radioactive Waste Management Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

Introducing nuclear fission The Fizzics Organization

Introducing nuclear fission The Fizzics Organization Nuclear Fission is the splitting of the nucleus of an atom into two or more parts by hitting it with a small particle, almost always a neutron (a proton would be repelled from the positive nucleus and

More information

Propanone can be formed when glucose comes into contact with bacteria in the absence of air. Deduce the role of the bacteria in this reaction.

Propanone can be formed when glucose comes into contact with bacteria in the absence of air. Deduce the role of the bacteria in this reaction. Q1.(a) Propanone can be formed when glucose comes into contact with bacteria in the absence of air. Balance the following equation for this reaction of glucose to form propanone, carbon dioxide and water....c

More information

Synthesis and Sustainable Chemistry

Synthesis and Sustainable Chemistry Synthesis and Sustainable Chemistry Considering % yield and % Atom Economy: high % yield means very efficient conversion from reactants to products increasing % yield means more efficient use of starting

More information

Step 2 Assessment of the Reactor Chemistry of Hitachi GE s UK Advanced Boiling Water Reactor (UK ABWR)

Step 2 Assessment of the Reactor Chemistry of Hitachi GE s UK Advanced Boiling Water Reactor (UK ABWR) GDA Step 2 Assessment of the Reactor Chemistry of Hitachi GE s UK Advanced Boiling Water Reactor (UK ABWR) Civil Nuclear Reactor Build - Generic Design Assessment Step 2 Assessment of the Reactor Chemistry

More information

Decay heat calculations. A study of their validation and accuracy.

Decay heat calculations. A study of their validation and accuracy. Decay heat calculations A study of their validation and accuracy. Presented by : Dr. Robert W. Mills, UK National Nuclear Laboratory. Date: 01/10/09 The UK National Nuclear Laboratory The NNL (www.nnl.co.uk)

More information

Radiation damage I. Steve Fitzgerald.

Radiation damage I. Steve Fitzgerald. Radiation damage I Steve Fitzgerald http://defects.materials.ox.ac.uk/ Firstly an apology Radiation damage is a vast area of research I cannot hope to cover much in any detail I will try and introduce

More information

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy Catalysts Definition: Catalysts increase reaction rates without getting used up. Explanation: They do this by providing an alternative route or mechanism with a lower Comparison of the activation energies

More information

Luminescent Oxygen Sensor for Monitoring of Nuclear Primary Water Cycles

Luminescent Oxygen Sensor for Monitoring of Nuclear Primary Water Cycles Luminescent Oxygen Sensor for Monitoring of Nuclear Primary Water Cycles Frank A. Dunand Nicolas Ledermann Serge Hediger Max Haller Christoph Weber ABSTRACT When we introduced a luminescent sensor to measure

More information

Name: Nuclear Practice Test Ms. DeSerio

Name: Nuclear Practice Test Ms. DeSerio Name: Nuclear Practice Test Ms. DeSerio 1. Which nuclear emission has the greatest mass and the least penetrating power? 1) an alpha particle 2) a beta particle 3) a neutron 4) a positron 2. The nucleus

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of

(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of (a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations Introduction Fluid catalytic cracking (FCC) is a major unit operation in refineries around the world. FCC is used to convert

More information

ETA Recovery Process with Ion Exchange and Evaporation

ETA Recovery Process with Ion Exchange and Evaporation ETA Recovery Process with Ion Exchange and Evaporation IN HYOUNG RHEE, HYUN KYOUNG AHN, HYUN JUN JUNG Department of Energy and Environmental Engineering Soonchunhyang University 646 Eupnae-ri Shinchang-myeon

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Selected Topics from Modern Physics

Selected Topics from Modern Physics Selected Topics from Modern Physics 1. According to the special theory of relativity, if a 30-year old astronaut sent on a space mission is accelerated to speeds close to that of light, and then returns

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

Fission Reactors. Alternatives Inappropriate. Fission Reactors

Fission Reactors. Alternatives Inappropriate. Fission Reactors Page 1 of 5 Fission Reactors The Polywell Reactor Nuclear Reactions Alternatives Inappropriate Hidden Costs of Carbon Web Site Home Page Fission Reactors There are about 438 Neutron Fission Power Reactors

More information

1 What is used in the production of ethanol from ethene? hydrogen and oxygen. oxygen only. steam. yeast

1 What is used in the production of ethanol from ethene? hydrogen and oxygen. oxygen only. steam. yeast What is used in the production of ethanol from ethene? hydrogen and oxygen oxygen only steam yeast 2 Which term describes the formation of ethanol from glucose? cracking distillation polymerisation 3 Which

More information

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 D.G. Lee, G.H. Jeong, W.Z. Oh, K.W. Lee Korea Atomic Energy Research Institute Korea ABSTRACT Irradiated

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

Júlio Takehiro Marumo. Nuclear and Energy Research Institute, IPEN CNEN/SP, Brazil

Júlio Takehiro Marumo. Nuclear and Energy Research Institute, IPEN CNEN/SP, Brazil Júlio Takehiro Marumo Nuclear and Energy Research Institute, IPEN CNEN/SP, Brazil Introduction Brazil State of São Paulo City of São Paulo Reactor IEA-R1 Source: http://www.relevobr.cnpm.embrapa.br Source:

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

Nuclear Science Merit Badge Workbook

Nuclear Science Merit Badge Workbook Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. This Workbook can help you organize your thoughts as you prepare to meet with your merit badge counselor.

More information

Background Tritium in Environmental Water Samples. Paul Snead NCHPS Fall Meeting November 2, 2006

Background Tritium in Environmental Water Samples. Paul Snead NCHPS Fall Meeting November 2, 2006 Background Tritium in Environmental Water Samples Paul Snead NCHPS Fall Meeting November 2, 2006 Tritium Basics Tritium ( 3 H) is a radioactive isotope of hydrogen Nucleus has one proton and two neutrons

More information

What do we know from GCSE?

What do we know from GCSE? Radioactivity jessica.wade08@imperial.ac.uk www.makingphysicsfun.com Department of Physics & Centre for Plastic Electronics, Imperial College London Faculty of Natural & Mathematical Sciences, King s College

More information

RADIOACTIVE WASTE CHARACTERIZATION IN BELGIUM. Tractebel Ariane Avenue, 7 B-1200, Brussels, Belgium ABSTRACT

RADIOACTIVE WASTE CHARACTERIZATION IN BELGIUM. Tractebel Ariane Avenue, 7 B-1200, Brussels, Belgium ABSTRACT RADIOACTIVE WASTE CHARACTERIZATION IN BELGIUM Serge Vanderperre, Christine Vanhaeverbeek, Koen Mannaerts, Baudouin Centner, Philippe Beguin and Michel Detilleux Tractebel Ariane Avenue, 7 B-1200, Brussels,

More information

IGCSE Co-ordinated Sciences Chemistry Glossary

IGCSE Co-ordinated Sciences Chemistry Glossary IGCSE Co-ordinated Sciences Chemistry Glossary acid = any substance that produces hydrogen ions, H+, when dissolved in water acidic solution = a solution with a ph less than 7 acid rain = rain with a ph

More information

IEC Tritium Standard

IEC Tritium Standard detect and identify IEC 62303 Tritium Standard Dr. Alfred Klett Berthold Technologies, Bad Wildbad, Germany 21 st Annual Air Monitoring Users Group (AMUG) Meeting Palace Station Hotel, Las Vegas, Nevada,

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

Design constraints Maximum clad temperature, linear power rating

Design constraints Maximum clad temperature, linear power rating Design constraints Maximum clad temperature, linear power rating K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 7

More information