COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN

Size: px
Start display at page:

Download "COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN"

Transcription

1 COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN David Pine Department of Physics New York University 2012 Boulder Summer School 24 July 2012 Boulder, Colorado

2 Outline of lectures on colloids Lecture 1: Today Overview of colloids (sizes, materials) Selfassembly of colloids: (colloidal liquids, crystals, & glasses) photonic crystals (& the diamond lattice) need for directional interactions van der Waals interactions (fluctuating electric dipoles) Electrostatic interaction: PoissonBoltzmann & DebyeHückel, DLVO Depletion interaction DNA hybridization Lecture II: Tomorrow Lock & key colloids Colloids with valence Colloidal molecules: to infinity and beyond

3 What are colloids? Small particles suspended in a liquid Brownian motion is important COLLOIDS: Diameters ~ 5 nm to 5 μm suspended thermally Materials plastic (PS, PMMA,...) inorganic (SiO2, TiO2,...) semiconductor (CdSe,...) metal (Au, Ag,...) Stabilized against aggregation by charge surfactants polymer brushes

4 Self assembly of charged colloids Electrically charged colloids spontaneously form ordered structures charged polystyrene spheres in methanol (90%) water (10%) (d = 91 nm) glass BF BCC FCC liquid Crystallization driven by repulsive interactions Sirota et al. PRL 62, 1524 (1989)

5 Selfassembly of hard spheres liquid fcc xtal Hardsphere phase diagram (athermal) a~λ 49.4% 54.5% 74% max packing fraction Crystallization driven by entropy colloidal crystal with lattice constant ~ 0.5 µm

6 Interesting optical properties Bragg scattering from different crystalline planes produce different colors Bragg scattering of light Gem quality opal from Australia Natural opals consist of tiny FCC ordered glass spheres (~200 nm) These structures (FCC, BCC) are nice but we would like to make others, such as...

7 Diamond crystal structure Photonic band structure for diamond light out band gap light in! = ck waveguide with sharp turns Ho et al. PRL 65, 3152 (1990) Twenty years and counting: No one can make this 3d structure on the nm length scale.

8 Why is assembling the diamond structure so hard? BCC 68% FCC 74% (densest sphere packing) diamond need directional interactions 34%

9 I believe that if we can learn to make structures from colloids with the control available to make molecules, that is, if we can design and control the structure of materials on the nm scale, it will have enormous practical applications... in photonics, optics, electronics, solar cells, and many other technologies. One key will be to develop colloids with directional interactions that can mimic atoms with valence... CO2 CH4 SO2

10 Intro to colloidal interactions Van der Waals (fluctuation electric dipoles) Screened Coulomb (DebyeHückel) Polymer brush ( steric repulsion) Depletion attraction } DLVO* * Derjaguin Landau Verway Overbeek ssdna hybridization

11 van der Waals: fluctuating electric dipoles p 2 p 1 r U(r) = p 1 p 2 E(r) = 1 3(p ˆr)ˆr 4 0 r 3 3(p 1 ˆr)(p 2 ˆr) r 3 p p 2 = 2 E 1 (r) induced dipole U(r) = p1 2 E 1 (r) 3(p 1 ˆr)( 2 E 1 (r) ˆr) r r 6

12 van der Waals interaction U(r) ' A Ham 2 Z V A Z V B 1 r 6 dv AdV B (fluctuating induced dipole) A Ham ' 3k BT 2 X! A m A m B m B m Ret(l) visible light travels 0.5 μm in one period (indexmatching reduces vdw interaction) A m B l (!) =1 X j a j 1 i! j X j b j (! j 2! 2 ) i j! U pp p 1p 2 r 3 p 2 E 1 (r) 1 r 3 relaxation times resonance frequencies damping rates ) U pp 1 r 6 contributions greatest near optical/uv frequencies

13 U(r) 2 U(r) ' van der Waals interaction A Ham 2 U(r) = A Ham 6 ' A Ham 12 ' 16A Ham 9 1 h = 1 r Z (between two spheres) V A Z V B 1 r 6 dv AdV B apple 2 (r/a) (r/a) 2 ln a h, for h a 2a a 6 r 6, for r a 1 r 6 (fluctuating induced dipole) 1 4 (r/a) 2 a h 3 r/a h = r 2a or weaker For 1 micron spheres at contact: r U(2a) visible light travels 0.5 μm in one period a 10 3 k B T

14 Screened Coulomb U(r) screened Coulomb DLVO 2 ' l B k B T e applea 2 Z 2 e appler 1applea r 3 r/a Bjerrum length l B = e 2 r k B T Debye screening length apple 1 = s r 0 k B T P i z2 i e2 c 0 i

15 Screened Coulomb van der Waals (DLVO theory) k B T for stability U(r) 2 screened Coulomb DLVO van der Waals ' l B k B T e applea 2 Z 2 e appler 1applea r 3 r/a Bjerrum length l B = e 2 r k B T Debye screening length apple 1 = s r 0 k B T P i z2 i e2 c 0 i

16 Screened Coulomb van der Waals (DLVO theory) brush k B T for stability U(r) 2 screened Coulomb DLVO van der Waals ' l B k B T e applea 2 Z 2 e appler 1applea r 3 r/a Bjerrum length l B = e 2 r k B T Debye screening length apple 1 = s r 0 k B T P i z2 i e2 c 0 i

17 Depletion interaction Solvent Asakura & Oosawa, J. Chem. Phys. 22, 1255 (1954).

18 Citation time line for original paper on the depletion interaction Asakura & Oosawa, J. Chem. Phys. 22, 1255 (1954). Total citations = 1399

19 singlestranded DNA (ssdna) doublestranded DNA 5 sticky ssdna ends closeup of sticky ends G T C C A A G C T C T A G G A T biotinstreptavidin anchor 4 DNA bases Thymine Adenine } TA (WC pair) sticky ends melt (come apart) near Tm = 40 C Tm depends on number (and kind) of base pairs specificity only complementary strands link: can program sticky ends by sequence of bases recognition Guanine Cytosine } GC (WC pair)

20 DNAcoated colloids singlestranded sticky ends ~10 bases doublestranded DNA (50 bases 20 nm) flexible PEG linker strand biotinstreptavidinbiotin link surfactant (PEOPPOPEO Pluronic F127) ~1 μm diameter polystyrene sphere (colloid)

21 DNA hybridization interaction interaction energy U TOTAL U brush U vdwaals B 2L A particle separation 2L ~1 μm diameter polystyrene sphere (colloid) U DNA

22 Tomorrow Colloids with directional interactions Pacman particles Colloids with valence

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials.

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials. The forces of nature: 1. Strong forces hold protons and neutrons together (exchange of mesons) 2. Weak interactions are involved in some kinds of radioactive decay (β-decay) 3. Coulombic or electrostatic

More information

Colloidal Crystal: emergence of long range order from colloidal fluid

Colloidal Crystal: emergence of long range order from colloidal fluid Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Module 8: "Stability of Colloids" Lecture 37: "" The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template

Module 8: Stability of Colloids Lecture 37:  The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template The Lecture Contains: DLVO Theory Effect of Concentration file:///e /courses/colloid_interface_science/lecture37/37_1.htm[6/16/2012 1:02:12 PM] Studying the stability of colloids is an important topic

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications History of Nanotechnology: Time Line Democritus in ancient Greece: concept of atom 1900 : Rutherford : discovery of atomic nucleus The first TEM was

More information

Depletion forces induced by spherical depletion agents

Depletion forces induced by spherical depletion agents Depletion forces induced by spherical depletion agents Laurent Helden Jules Mikhael. Physikalisches Institut Universität Stuttgart Model system for hard core interactions accessible fortirm-measurements.

More information

Liquid crystal phase transitions in dispersions of rod-like colloidal particles

Liquid crystal phase transitions in dispersions of rod-like colloidal particles J. Phys.: Condens. Matter 8 (1996) 9451 9456. Printed in the UK Liquid crystal phase transitions in dispersions of rod-like colloidal particles M P B van Bruggen, F M van der Kooij and HNWLekkerkerker

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties

Intermolecular Forces, Liquids, Solids. IM Forces and Physical Properties Intermolecular Forces, Liquids, Solids Interactions Between Molecules: What does it take to separate two (or more) molecules from one another? or What holds molecules close to one another? Structure/Property

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Experimental Colloids I (and I)

Experimental Colloids I (and I) Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab Boulder Summer School 7/24/17 Experimental Colloids I (and I) Dave Weitz Harvard http://www.seas.harvard.edu/projects/weitzlab

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information DNA-Programmable Nanoparticle Crystallization Sung Yong Park,* 1 Abigail K. R. Lytton-Jean,* 1 Byeongdu Lee 2, Steven Weigand 3, George C. Schatz 1 and Chad A. Mirkin 1 1 Department

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Colloidal Fluids, Glasses, and Crystals

Colloidal Fluids, Glasses, and Crystals Colloidal Fluids, Glasses, and Crystals Pierre Wiltzius Beckman Institute for Advanced Science and Technology University of Illinois, Urbana-Champaign wiltzius@uiuc.edu Thermodynamics of Hard Spheres

More information

Direct observation of dynamical heterogeneities near the attraction driven glass

Direct observation of dynamical heterogeneities near the attraction driven glass Direct observation of dynamical heterogeneities near the attraction driven glass Maria Kilfoil McGill University Co-worker: Yongxiang Gao, PhD student http://www.physics.mcgill.ca/~kilfoil Dynamical heterogeneity

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for anoscale. This journal is The Royal Society of Chemistry 2014 Supporting information On-demand shape and size purification of nanoparticle based on surface area

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Chapter 2: INTERMOLECULAR BONDING (4rd session)

Chapter 2: INTERMOLECULAR BONDING (4rd session) Chapter 2: INTERMOLECULAR BONDING (4rd session) ISSUES TO ADDRESS... Secondary bonding The structure of crystalline solids 1 REVIEW OF PREVIOUS SESSION Bonding forces & energies Interatomic vs. intermolecular

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved.

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved. IMFA s intermolecular forces of attraction 2014 Chez Chem, LLC All rights reserved. **London Dispersion Forces Also know as Van der Waals forces A momentary non symmetrical electron distribution that can

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Physical chemistry of surfaces

Physical chemistry of surfaces Physical chemistry of surfaces Nanostructures possess a large fraction of surface atoms per unit volume. The physical and chemical properties of surfaces have great importance when describing general properties

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997 Depletion forces between two spheres in a rod solution. K. Yaman, C. Jeppesen, C. M. Marques arxiv:cond-mat/9708069v1 [cond-mat.soft] 9 Aug 1997 Department of Physics, U.C.S.B., CA 93106 9530, U.S.A. Materials

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

Surface interactions part 1: Van der Waals Forces

Surface interactions part 1: Van der Waals Forces CHEM-E150 Interfacial Phenomena in Biobased Systems Surface interactions part 1: Van der Waals Forces Monika Österberg Spring 018 Content Colloidal stability van der Waals Forces Surface Forces and their

More information

Intermolecular Forces & Condensed Phases

Intermolecular Forces & Condensed Phases Intermolecular Forces & Condensed Phases CHEM 107 T. Hughbanks READING We will discuss some of Chapter 5 that we skipped earlier (Van der Waals equation, pp. 145-8), but this is just a segue into intermolecular

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension

Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension 7 Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension We study the phase behaviour and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive

More information

Stone Age (40,000 to 100,000 yrs ago): Stone tools, clay pots, skin

Stone Age (40,000 to 100,000 yrs ago): Stone tools, clay pots, skin UTM UNIVERSITI TEKNOLOGI MALAYSIA COURSE LEARNING OBJECTIVES Introduce the field of Materials Science and Engineering 1. INTRODUCTION & ATOMIC STRUCTURE Provide introduction to the classification of materials

More information

Scale, structure and behaviour

Scale, structure and behaviour Scale, structure and behaviour Lecture 2 MTX9100 Nanomaterjalid OUTLINE -How are crystals structured? -Why and how does nanoworld differ from the world we live in? -When does size matter? What is the smallest

More information

Fundamental Interactions: 6 Forces

Fundamental Interactions: 6 Forces Fundamental Interactions: 6 Forces In nuclear and high-energy physics 6 fundamental forces are recognized, which describe the structure of matter. - the strong interaction - the weak interaction act inside

More information

States of Matter SM VI. Liquids & Solids. Liquids. Description of. Vapor Pressure. if IMF then VP, b.p.

States of Matter SM VI. Liquids & Solids. Liquids. Description of. Vapor Pressure. if IMF then VP, b.p. chem101/3, wi2010 po 20 1 States of Matter SM VI Description of Liquids & Solids chem101/3, wi2010 po 20 2 Liquids molecules slide along in close contact attraction due to various IMF s can diffuse, but

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids?

What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? States of Mattter What factors affect whether something is a solid, liquid or gas? What actually happens (breaks) when you melt various types of solids? What external factors affect whether something is

More information

Self-Assembly. Self-Assembly of Colloids.

Self-Assembly. Self-Assembly of Colloids. Self-Assembly Lecture 5-6 Self-Assembly of Colloids. Liquid crystallinity Colloidal Stability and Phases The range of forces attractive and repelling forces exists between the colloidal particles van der

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Lecture 2. Fundamentals and Theories of Self-Assembly

Lecture 2. Fundamentals and Theories of Self-Assembly 10.524 Lecture 2. Fundamentals and Theories of Self-Assembly Instructor: Prof. Zhiyong Gu (Chemical Engineering & UML CHN/NCOE Nanomanufacturing Center) Lecture 2: Fundamentals and Theories of Self-Assembly

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase:

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: Dispersion systems 1/20 Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: coarse dispersion (suspension), > 1 µm colloid 1 µm

More information

Rheology of Dispersions

Rheology of Dispersions Rheology of Dispersions Outline BASF AG Hard particles Interactions among colloidal particles Repulsive particles Particle size distribution Shear thickening Attractive particles Prof. Dr. N. Willenbacher

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Jean-François Dufrêche

Jean-François Dufrêche Jean-François Dufrêche! Entropy and Temperature A fifth force in the nature? E TS Rudolf Clausius (Koszalin, 1822 - Bonn, 1888) Entropy = η τροπη = the transformation Thermodynamics In mechanics Equilibrium

More information

CORE MOLIT ACTIVITIES at a glance

CORE MOLIT ACTIVITIES at a glance CORE MOLIT ACTIVITIES at a glance 1. Amplification of Biochemical Signals: The ELISA Test http://molit.concord.org/database/activities/248.html The shape of molecules affects the way they function. A test

More information

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces)

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement,

More information

Various approximations for describing electrons in metals, starting with the simplest: E=0 jellium model = particle in a box

Various approximations for describing electrons in metals, starting with the simplest: E=0 jellium model = particle in a box ) Metallic Bond The outer electrons are weakly bound. They roam freely in the space between the atoms and thus are able to conduct electricity. They can be approximated by free electrons in a constant,

More information

Attraction or repulsion between charged colloids? A connection with Debye Hückel theory

Attraction or repulsion between charged colloids? A connection with Debye Hückel theory J. Phys.: Condens. Matter 12 (2000) A263 A267. Printed in the UK PII: S0953-8984(00)07724-9 Attraction or repulsion between charged colloids? A connection with Debye Hückel theory René van Roij H H Wills

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid)

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid) MPIP-Mainz T.Still,W.Cheng,N.Gomopoulos G.F FORTH Heraklion G.F Sculpture by E.Sempere (Madrid) Cubic arrays of hollow stainless-steel cylinders [diameter: 2.9 cm and lattice constant:a=0 cm] Minimum sound

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus

More information

Electrostatic Forces & The Electrical Double Layer

Electrostatic Forces & The Electrical Double Layer Electrostatic Forces & The Electrical Double Layer Dry Clay Swollen Clay Repulsive electrostatics control swelling of clays in water LiquidSolid Interface; Colloids Separation techniques such as : column

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265 Superparamagnetic nanoparticle arrays for magnetically tunable photonics Josh Kurzman Materials 265 Superparamagnetism In SPM regime, thermal energy sufficient to overcome spin reversal barrier T B Below

More information

Interdisciplinary Nanoscience Center University of Aarhus, Denmark. Design and Imaging. Assistant Professor.

Interdisciplinary Nanoscience Center University of Aarhus, Denmark. Design and Imaging. Assistant Professor. Interdisciplinary Nanoscience Center University of Aarhus, Denmark Design and Imaging DNA Nanostructures Assistant Professor Wael Mamdouh wael@inano.dk Molecular Self-assembly Synthesis, SPM microscopy,

More information

Topic 04 Bonding 4.3 Intermolecular Forces. IB Chemistry T04D05

Topic 04 Bonding 4.3 Intermolecular Forces. IB Chemistry T04D05 Topic 04 Bonding 4.3 Intermolecular orces IB Chemistry T04D05 Intermolecular orces 2 hrs 4.3.1 Describe the types of intermolecular forces (attractions between molecules that have temporary dipoles, permanent

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Petr Pracna J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic, Prague ZiF Cooperation

More information

Defects in Self Assembled Colloidal Crystals

Defects in Self Assembled Colloidal Crystals Defects in Self Assembled Colloidal Crystals Y. K. Koh 1, L. K. Teh 2, C. C. Wong 1,2 1. Advanced Materials for Micro and Nano Systems, Singapore-MIT Alliance 2. School of Materials Enginnering, Nanyang

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

Olle Inganäs: Polymers structure and dynamics. Polymer physics

Olle Inganäs: Polymers structure and dynamics. Polymer physics Polymer physics Polymers are macromolecules formed by many identical monomers, connected through covalent bonds, to make a linear chain of mers a polymer. The length of the chain specifies the weight of

More information

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding CHAPTER 1 Atoms and bonding The periodic table Ionic bonding Covalent bonding Metallic bonding van der Waals bonding Atoms and bonding In order to understand the physics of semiconductor (s/c) devices,

More information

Self-Assembly of Colloidal Particles

Self-Assembly of Colloidal Particles Self-Assembly of Colloidal Particles Prerna Sharma Colloidal dispersions are suspensions of micron-sized solid particles in a solvent like water or oil. Self-assembly is a widely used approach to create

More information

Chem Hughbanks Exam 3A, Solutions

Chem Hughbanks Exam 3A, Solutions Chem 107 - Hughbanks Exam 3A, Solutions Name (Print) UIN # Section 503 Exam 3, Version # A On the last page of this exam, you ve been given a periodic table and some physical constants. You ll probably

More information

Why Is Molecular Interaction Important in Our Life

Why Is Molecular Interaction Important in Our Life Why Is Molecular Interaction Important in ur Life QuLiS and Graduate School of Science iroshima University http://www.nabit.hiroshima-u.ac.jp/iwatasue/indexe.htm Suehiro Iwata Sept. 29, 2007 Department

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Biocompatible and Functionalized Silk Opals Sunghwan Kim, Alexander N. Mitropoulos, Joshua D. Spitzberg, Hu Tao, David L. Kaplan, and Fiorenzo G. Omenetto (*) (*) To whom

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

DNA-Scaffolded Self-Assembling Nano-Circuitry

DNA-Scaffolded Self-Assembling Nano-Circuitry DNA-Scaffolded Self-Assembling Nano-Circuitry An Ongoing Research Project with Dr. Soha Hassoun Presentation by Brandon Lucia and Laura Smith DNA-Scaffolded... DNA is special type of molecule Made of a

More information

Nanoscale Transport Phenomena at the Interface of Hard and Soft Matter

Nanoscale Transport Phenomena at the Interface of Hard and Soft Matter Nanoscale Transport Phenomena at the Interface of Hard and Soft Matter Arun Majumdar Department of Mechanical Engineering University of California Berkeley, CA 94720 Abstract Hard and soft matter can be

More information

1) Here we review the various types of interactions that can take place between and among molecules.

1) Here we review the various types of interactions that can take place between and among molecules. Chem 431A-L02-W'05 page 1 of 6 Chem 431A-L02-W'05 Summary of lecture topics discussed in lecture 2-3: 1) Here we review the various types of interactions that can take place between and among molecules.

More information

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Name: Chemical properties are related only to chemical composition; physical properties are related to chemical composition AND the

More information

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Journal of Colloid and Interface Science 263 (2003) 156 161 www.elsevier.com/locate/jcis The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Haohao

More information

The four forces of nature. Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) Force- and potential curves

The four forces of nature. Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) Force- and potential curves Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) The four forces of nature Strong interaction Holds neutrons and protons together in atomic nuclei. Weak interaction β and elementary

More information

Bottom Up Synthesis: Organic Colloids and Nano Particles Polymer latex dispersions

Bottom Up Synthesis: Organic Colloids and Nano Particles Polymer latex dispersions Bottom Up Synthesis: Organic Colloids and Nano Particles Polymer latex dispersions Global production of synthetic polymers 2000: ca. 190 Mio. t ca. 200 Bio. sales Global production of synthetic polymers,

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Theory of knowledge: Aim 3: Use naming conventions to name ionic compounds.

Theory of knowledge: Aim 3: Use naming conventions to name ionic compounds. Core 44 Essential idea: Ionic compounds consist of ions held together in lattice structures by ionic bonds. 4.1 Ionic bonding and structure Use theories to explain natural phenomena molten ionic compounds

More information

Plastic Electronics. Joaquim Puigdollers.

Plastic Electronics. Joaquim Puigdollers. Plastic Electronics Joaquim Puigdollers Joaquim.puigdollers@upc.edu Nobel Prize Chemistry 2000 Origins Technological Interest First products.. MONOCROMATIC PHILIPS Today Future Technological interest Low

More information

Cavity QED induced colloidal attraction?

Cavity QED induced colloidal attraction? Cavity QED induced colloidal attraction? T. V. Prevenslik 14B, Brilliance Court, Discovery Bay, Hong Kong Abstract - The paradox of why like-charge macroions having weak van der Waals attraction condense

More information

Department of Chemistry University of Texas at Austin

Department of Chemistry University of Texas at Austin Physical Equilibria Unit Activity - Thinking About Solutions A major goal for this class is for you to learn the concept of macro/micro thinking or Thinking Like a Chemist. Thinking like a chemist is the

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Chem Hughbanks Exam 3, April 19, 2012

Chem Hughbanks Exam 3, April 19, 2012 Chem 107 - Hughbanks Exam 3, April 19, 2012 Name (Print) UIN # Section 503 Exam 3, Version # A On the last page of this exam, you ve been given a periodic table and some physical constants. You ll probably

More information