Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Size: px
Start display at page:

Download "Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization"

Transcription

1 HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization Tilo Seydel Institut Max von Laue Paul Langevin Outline: (1) Proteins in solution: crowding and salts, biological motivation (2) Charge-tuning and phase diagrams, liquid-liquid phase separation (LLPS) (3) Small-angle scattering (x-rays and neutrons) (4) Interaction potentials (5) Proteins and colloid physics, clusters, [ patchy colloids,] crystallization (6) Complementary methods: Neutron spectroscopy and light scattering (7) Summary and outlook Acknowledgement: Group of Frank Schreiber, Institute of Applied Physics, University of Tübingen

2 (1) Proteins in solution: crowding and salts, biological motivation Macromolecular crowding in living cells Watercolor by David S. Goodsell Proteins as an essential component Figure from: PhD thesis M.Hennig

3 (1) Proteins in solution: crowding and salts, biological motivation BSA in water + YCl3

4 (2) Charge-tuning and phase diagrams, liquid-liquid phase separation (LLPS) Complex phase diagrams in protein solutions: Solution regime at low salt concentration Precipitate regime involving a liquid-liquid phase separation at intermediate concentrations Reentrant dissolution at very high salt concentration Rising salt concentration F.Zhang et al., Phys.Rev.Lett. Vol.101, p (2008)

5 (2) Charge-tuning and phase diagrams, liquid-liquid phase separation (LLPS) Salt concentration Schematic of a phase diagram of a protein solution F.Zhang et al., Soft Matter, 2012, 8, Protein concentration D.Soraruf et al., Soft Matter, 2014, 10, 894

6 (2) Charge-tuning and phase diagrams, liquid-liquid phase separation (LLPS) Correlation length increase when approaching c* Static Light Scattering on BSA proteins in water 0.39mM Correlation length 0.38mM 0.33mM YCl3 salt concentration D.Soraruf et al., Soft Matter, 2014, 10, 894 Correlation length obtained from SLS via the Zimm equation from the inverse scattering ratio (details beyond the scope):

7 (2) Charge-tuning and phase diagrams, liquid-liquid phase separation (LLPS) Schematic of a phase diagram of a protein solution (in more detail) F.Zhang et al., Soft Matter, 2012, 8,

8 (2) Charge-tuning and phase diagrams, liquid-liquid phase separation (LLPS) Tuning the protein surface charge is the fundamental mechanism behind the phase diagrams F.Roosen-Runge et al., J.Phys.Chem.B 117, 577 (2013)

9 (3) Small-angle scattering (x-rays and neutrons) In the case of neutrons: Small-angle scattering: The principle Figure from: wikipedia Figure from: wikipedia Figure from: M.Hennig, PhD thesis, University of Tuebingen 2011

10 (3) Small-angle scattering (x-rays and neutrons) Small-angle scattering: Example data: Bovine Serum Albumin (BSA) in water F.Zhang et al., J. Phys. Chem. B, Vol. 111, No. 1, 2007 Dilute solution Obtain the shape (form factor): Polar semiaxis a=1.8+/-0.05nm Equatorial semiaxis: b=4.6+/-0.15nm F.Roosen-Runge et al., PNAS Vol.118, p (2011)

11 (3) Small-angle scattering (x-rays and neutrons) Small-angle scattering from more complex solutions: Hierarchy of correlation lengths Structural hierarchy of BLG solutions in the re-entrant regime revealed by SAXS. The peak and shoulders in the SAXS curve at q = 2.2, 1.8 and 0.3 nm-1 correspond to the monomer monomer correlation, the form factor of a dimer, and the cluster, respectively. F.Zhang et al., Faraday Discuss., 2012, 159,

12 (3) Small-angle scattering (x-rays and neutrons) Measured intensity in small-angle scattering from protein solutions: Number of protein molecules per unit volume Electron (SAXS) or scattering length density (SANS) difference between protein and solvent Volume of a single protein Form factor Structure factor Dilute solution => form factor Structure factor Fourier transform of the spherically averaged pair correlation function g(r):

13 (3) Small-angle scattering (x-rays and neutrons) Center-to-center distance of BSA molecules in water obtained from SAXS data Low volume fraction Increasing charge screening High volume fraction Protein volume fraction 1 ϕcsp 3 r c c ( ϕ ) 2 a where a=2.8nm and ϕ csp = π F.Roosen-Runge et al., Biochimica et Biophysica Acta 1804 (2010) Gap between two molecules less than diameter

14 (4) Interaction potentials Measured intensity in small-angle scattering from protein solutions: Number of protein molecules per unit volume Electron (SAXS) or scattering length density (SANS) difference between protein and solvent Volume of a single protein Form factor Structure factor Obtain the structure factor using a known form factor Structure factor Fourier transform of the spherically averaged pair correlation function g(r):

15 (4) Interaction potentials Scattering function structure factor interaction potential Structure factor: Radial distribution function indirect part Total correlation function: direct (short-ranged) ( influence of #1 on a third molecule, which in turn affects molecule #2 ) Density Integrate over positions of particle #3 Definition: Ornstein Zernike equation - describes how a correlation between two molecules is calculated (a rigorous derivation is difficult!) Direct correlation function using the mean spherical approximation closure relation : J.B.Hayter, J.Penfold; Molecular Physics 42, 109 (1981) Interaction potential => This is how the interaction potential enters! A set has closure under an operation if performance of that operation on members of the set always produces a member of the same set.

16 (4) Interaction potentials Interaction potential of a pair of protein molecules: Hard sphere screened Coulomb van der Waals attractive F.Zhang et al., J. Phys. Chem. B, Vol. 111, No. 1, 2007 depletion due to excluded volume of salt ions protein self-association

17 (4) Interaction potentials Square-well potential at high salt concentration (high charge screening), net attractive potential: van der Waals interactions excluded volume interactions hydration forces hydrophobic forces with well-depth and well-width given in multiples of the particle diameter (2R) Hard-sphere structure factor at moderate ionic strength predominant hard sphere (excluded volume) interactions In this case, the Percus-Yevick (PY) closure is used to numerically solve the Ornstein-Zernike equation F.Zhang et al., J. Phys. Chem. B, Vol. 111, No. 1, 2007 and references therein

18 (4) Interaction potentials Effect of crowding and salt SAXS on BSA in water F.Zhang et al., J. Phys. Chem. B, Vol. 111, No. 1, 2007

19 (4) Interaction potentials Screened Coulomb vs. cp Square-well Fit to previous slide left Structure factors for BSA + NaCl in water Square-well Screened Coulomb vs. cs F.Zhang et al., J. Phys. Chem. B, Vol. 111, No. 1, 2007 Contribution of hard sphere potential to overall structure factor

20 (4) Interaction potentials - Small-angle scattering and virial expansion Using the virial expansion of the osmotic pressure, one obtains the second viral coefficient B2 as a measure of the integrated strength of the interaction Structure factor in the low-q limit: The effective potential between two proteins separated by a distance r ensembleaveraged over the remaining proteins in solution is described by the potential of mean force, reading Analogously to the second virial coefficient, Bw characterizes the nature of the potential of mean force, in other words: Bw < 0 and Bw > 0 indicate that attraction and repulsion are dominating, respectively. Consequently, S(q-> 0) < 1 indicates that the protein solution is controlled by repulsion, while S(q -> 0) > 1 is a sign that attraction prevails. M.Hennig, PhD thesis, University of Tuebingen, 2011

21 (5) Proteins and colloid physics, clusters, [ patchy colloids,] crystallization Equilibrium clusters or intermediate-range order? Cluster formation in protein solutions Cluster peak SANS T=25oC Monomer peak T=5oC A.Stradner et al., Nature vol.432, p.425 (2004) Lysozyme 169mg/ml (open symbols) and 254 mg/ml (filled symbols) in water No change of the cluster peak position upon increasing concentration from 3 mg/ml to 273 mg/ml, indicating an invariance of the cluster number density and a linear dependence of the protein association number on concentration. A.Stradner et al., Nature vol.432, p.425 (2004)

22 (5) Proteins and colloid physics, clusters, [ patchy colloids,] crystallization Equilibrium clusters or intermediate-range order? Cluster formation in protein solutions Cluster peak SANS T=25oC Monomer peak T=5oC A.Stradner et al., Nature vol.432, p.425 (2004) Lysozyme 169mg/ml (open symbols) and 254 mg/ml (filled symbols) in water Interpretation ambiguous: The results may also be modeled by the form and structure factors of individual lysozyme particles using an interaction potential involving short-range attraction and long-range repulsion, not requiring the assumption of equilibrium clusters. A.Shukla et al., PNAS vol. 105, p.5075 (2008)

23 (5) Proteins and colloid physics, clusters, [ patchy colloids,] crystallization Neutron spin-echo on Lysozyme in aqueous solution The deviation from simple Brownian diffusion corroborates the presence of dynamic clusters. Q 0.08 Å-1, radius Lysozyme 33 Å Y.Liu et al., J. Phys. Chem. B 2011, 115,

24 (5) Proteins and colloid physics, clusters, [ patchy colloids,] crystallization Crystallization pathways The dashed line corresponds to a tie-line of a pair of solutions after LLPS. When the attractive well-width, Δ, is significantly smaller than the diameter of the particle, σ, (Δ/σ < 0.25), the phase behavior can be described by the phase diagram (b). The typical feature of the phase diagram is a metastable liquid liquid coexistence (L+L) below the gas crystal line (G+C). Free energy landscape of classical (a) vs. non-classical pathway (b) of nucleation. ΔGS-I in (b) represents the free energy difference between the intermediate state and the initial supersaturated solution. F.Zhang et al., Pure Appl. Chem. 2014; 86(2):

25 (5) Proteins and colloid physics, clusters, [ patchy colloids,] crystallization SAXS curves at different temperatures during cooling. Crystallization occurs below 25 C. The intensity of the maximum at q = 2.2 nm-1 decreases with lowering temperature, and the low q intensity increases steadily. Bragg peaks appearing in the intermediate q range have been indexed using the crystal structure. The curves are shifted upward for clarity. The inset shows the 2D scattering pattern at 10 C. F.Zhang et al., Faraday Discuss., 2012, 159,

26 (6) Complementary methods: Neutron spectroscopy and light scattering Protein dynamics: Center-of-mass short-time self-diffusion and internal diffusion M.Grimaldo et al., J. Phys. Chem. B 2014, 118,

27 (6) Complementary methods: Neutron spectroscopy and light scattering DLS DLS SLS DLS D.Soraruf et al., Soft Matter, 2014, 10, (a) Diffusion coefficient D1 corresponding to the faster component resulting from the two-exponential fit (symbols). The solid line is a linear fit to the entire dataset. (b) Diffusion coefficient D2 corresponding to the slower component resulting from the two-exponential fit (symbols). The solid line is a fit of a heuristic two-state model to the entire dataset. (c) Normalized inverse scattering intensity (symbols) and linear fit (solid line). (d) Weight ratio of the fast and the sum of both fast and slow components in the fit, measured at Θ = 60O. Vertical dashed lines are guides to the eye. The error bars are the 95% confidence limits from the fits. When not visible, the error bars are smaller than the symbols.

28 (7) Summary and outlook Crowding Complex phase diagrams SAXS/SANS Outlook: Dynamics

Fajun Zhang, Roland Roth, Marcell Wolf, Felix Roosen-Runge, Maximilian W. A. Skoda, Robert M. J. Jacobs, Michael Stzuckie and Frank Schreiber

Fajun Zhang, Roland Roth, Marcell Wolf, Felix Roosen-Runge, Maximilian W. A. Skoda, Robert M. J. Jacobs, Michael Stzuckie and Frank Schreiber Soft Matter, 2012, 8, 1313 Fajun Zhang, Roland Roth, Marcell Wolf, Felix Roosen-Runge, Maximilian W. A. Skoda, Robert M. J. Jacobs, Michael Stzuckie and Frank Schreiber Universität Tübingen, Institut für

More information

Meet Our Uncle: 12 Stability Applications on One Platform

Meet Our Uncle: 12 Stability Applications on One Platform Tech Note Meet Our Uncle: 12 Stability Applications on One Platform Uncle is an all-in-one stability platform that enables twelve different applications with one instrument. Fluorescence, static light

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

Lin Jin, Yang-Xin Yu, Guang-Hua Gao

Lin Jin, Yang-Xin Yu, Guang-Hua Gao Journal of Colloid and Interface Science 304 (2006) 77 83 www.elsevier.com/locate/jcis A molecular-thermodynamic model for the interactions between globular proteins in aqueous solutions: Applications

More information

Structure and phase behaviour of colloidal dispersions. Remco Tuinier

Structure and phase behaviour of colloidal dispersions. Remco Tuinier Structure and phase behaviour of colloidal dispersions Remco Tuinier Yesterday: Phase behaviour of fluids and colloidal dispersions Colloids are everywhere Hard sphere fluid at the base understanding fluids

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

Introduction to Biological Small Angle Scattering

Introduction to Biological Small Angle Scattering Introduction to Biological Small Angle Scattering Tom Grant, Ph.D. Staff Scientist BioXFEL Science and Technology Center Hauptman-Woodward Institute Buffalo, New York, USA tgrant@hwi.buffalo.edu SAXS Literature

More information

Structural Evolution of Aqueous Zirconium Acetate by Time-Resolved SAXS and Rheology. Yunjie Xu

Structural Evolution of Aqueous Zirconium Acetate by Time-Resolved SAXS and Rheology. Yunjie Xu Structural Evolution of Aqueous Zirconium Acetate by Time-Resolved SAXS and Rheology Yunjie Xu 1 Outline 1.Experiment Methods -Chemical synthesis -SAXS measurement 2. SAXS Modeling 3. Results 4. Conclusions

More information

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Introduction. The electromagnetic spectrum. visible 10-16 10-10 10-8 10-4 10-2 10 4 (l m) g-rays X-rays UV IR micro wave Long radio waves 400

More information

Protein Synthetic Lipid Interactions

Protein Synthetic Lipid Interactions Acta Biophysica Romana 2006 22-24 Febbraio Università di Roma - Tor Vergata Protein Synthetic Lipid Interactions Silvia Tardioli and Adalberto Bonincontro CNISM-Dipartimento di Fisica Camillo La Mesa Dipartimento

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

Protein-Protein Interaction Measurement: Balancing Complete Characterization with High- Throughput Capability in Formulation Development

Protein-Protein Interaction Measurement: Balancing Complete Characterization with High- Throughput Capability in Formulation Development Protein-Protein Interaction Measurement: Balancing Complete Characterization with High- Throughput Capability in Formulation Development Introduction High throughput screening in the world of pharmaceutical

More information

An Introduction to namic Light Scattering by Macromole cules

An Introduction to namic Light Scattering by Macromole cules An Introduction to namic Light Scattering by Macromole cules Kenneth S. Schmitz Department of Chemistry University of Missouri-Kansas Kansas City, Missouri City ACADEMIC PRESS, INC. Harcourt Brace Jovanovich,

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The States of Matter The state a substance is in at a particular temperature and pressure depends on two antagonistic entities: The kinetic energy of the particles The strength

More information

Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature

Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature Radhakrishnan Ranjini, Murukeshan Vadakke Matham *, Nam-Trung Nguyen Department of Mechanical and Aerospace

More information

Protein Protein Interactions in Dilute to Concentrated Solutions: α Chymotrypsinogen in Acidic Conditions

Protein Protein Interactions in Dilute to Concentrated Solutions: α Chymotrypsinogen in Acidic Conditions This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/jpcb Protein

More information

Macromolecular Crowding

Macromolecular Crowding Macromolecular Crowding Keng-Hwee Chiam Mathematical and Theoretical Biology Group Goodsell (1994) Macromolecular Crowding, Oct. 15, 2003 p.1/33 Outline What: introduction, definition Why: implications

More information

We have considered how Coulombic attractions and repulsions help to organize electrons in atoms and ions.

We have considered how Coulombic attractions and repulsions help to organize electrons in atoms and ions. CHEM 2060 Lecture 10: Electrostatics L10-1 Electrostatics of Atoms & Molecules We have considered how Coulombic attractions and repulsions help to organize electrons in atoms and ions. We now look at Coulombic

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution A. Wittemann, B. Haupt, University of Bayreuth E. Breininger, T. Neumann, M. Rastätter, N. Dingenouts, University of Karlsruhe

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Aqueous solutions. Solubility of different compounds in water

Aqueous solutions. Solubility of different compounds in water Aqueous solutions Solubility of different compounds in water The dissolution of molecules into water (in any solvent actually) causes a volume change of the solution; the size of this volume change is

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Structure and Dynamics at the Nanoscale Probed by XPCS. Alec Sandy X-Ray Science Division Argonne National Laboratory

Structure and Dynamics at the Nanoscale Probed by XPCS. Alec Sandy X-Ray Science Division Argonne National Laboratory Structure and Dynamics at the Nanoscale Probed by XPCS Alec Sandy X-Ray Science Division Argonne National Laboratory Outline Motivation XPCS XPCS at beamline 8-ID at the APS Selected XPCS results from

More information

ID14-EH3. Adam Round

ID14-EH3. Adam Round Bio-SAXS @ ID14-EH3 Adam Round Contents What can be obtained from Bio-SAXS Measurable parameters Modelling strategies How to collect data at Bio-SAXS Procedure Data collection tests Data Verification and

More information

Modeling Biomolecular Systems II. BME 540 David Sept

Modeling Biomolecular Systems II. BME 540 David Sept Modeling Biomolecular Systems II BME 540 David Sept Introduction Why do we perform simulations? What makes simulations possible? How do we perform simulations? What types of things/systems do we simulate?

More information

Dr.Abel MORENO CARCAMO Instituto de Química, UNAM. address:

Dr.Abel MORENO CARCAMO Instituto de Química, UNAM.  address: Dr.Abel MORENO CARCAMO Instituto de Química, UNAM. E-mail address: carcamo@sunam.mx When? Understanding the macromolecular scale in time for crystal growth phenomena It is typical for crystal growth that

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN

COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN COLLOIDAL SELF ASSEMBLY I: INTERACTIONS & PACMEN David Pine Department of Physics New York University 2012 Boulder Summer School 24 July 2012 Boulder, Colorado Outline of lectures on colloids Lecture 1:

More information

Polyelectrolyte Solution Rheology. Institute of Solid State Physics SOFT Workshop August 9, 2010

Polyelectrolyte Solution Rheology. Institute of Solid State Physics SOFT Workshop August 9, 2010 Polyelectrolyte Solution Rheology Institute of Solid State Physics SOFT Workshop August 9, 2010 1976 de Gennes model for semidilute polyelectrolytes r > ξ: SCREENED ELECTROSTATICS A random walk of correlation

More information

Colloidal Crystal: emergence of long range order from colloidal fluid

Colloidal Crystal: emergence of long range order from colloidal fluid Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

THERMODYNAMIC MODELING OF PROTEIN INTERACTIONS AND PHASE BEHAVIOR. Leigh Jian Quang

THERMODYNAMIC MODELING OF PROTEIN INTERACTIONS AND PHASE BEHAVIOR. Leigh Jian Quang THERMODYNAMIC MODELING OF PROTEIN INTERACTIONS AND PHASE BEHAVIOR by Leigh Jian Quang A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Measuring nanoparticle properties: experiences from NPL Caterina Minelli

Measuring nanoparticle properties: experiences from NPL Caterina Minelli Measuring nanoparticle properties: experiences from NPL Caterina Minelli Measurement of Particles Types of materials: Metal Examples: Silver Gold Palladium Platinum Semiconductor Examples: Quantum Dots

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory APS/123-QED godfrin@udel.edu) Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory Jonas Riest and Gerhard Nägele Forschungszentrum

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

Time-Dependent Statistical Mechanics 1. Introduction

Time-Dependent Statistical Mechanics 1. Introduction Time-Dependent Statistical Mechanics 1. Introduction c Hans C. Andersen Announcements September 24, 2009 Lecture 1 9/22/09 1 Topics of concern in the course We shall be concerned with the time dependent

More information

A.% by mass (like % composition)

A.% by mass (like % composition) Solutions; Colloids Key Words Solute Solvent Solubility effervescence Miscible saturated Supersaturated (metastable system)- a cooled solution contains more solute than it would at equilibrium, desolvation=

More information

Formation of valine microcrystals through rapid antisolvent precipitation

Formation of valine microcrystals through rapid antisolvent precipitation Formation of valine microcrystals through rapid antisolvent precipitation Miroslav Variny a, Sandra Alvarez de Miguel b, Barry D. Moore c, Jan Sefcik b a Department of Chemical and Biochemical Engineering,

More information

Crystal nucleation for a model of globular proteins

Crystal nucleation for a model of globular proteins JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 17 1 MAY 2004 Crystal nucleation for a model of globular proteins Andrey Shiryayev and James D. Gunton Department of Physics, Lehigh University, Bethlehem,

More information

Part 8. Special Topic: Light Scattering

Part 8. Special Topic: Light Scattering Part 8. Special Topic: Light Scattering Light scattering occurs when polarizable particles in a sample are placed in the oscillating electric field of a beam of light. The varying field induces oscillating

More information

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels From Polymer Gel Nanoparticles to Nanostructured Bulk Gels Zhibing Hu Departments of Physics and Chemistry, University of North Texas Denton, TX 76203, U. S. A. Phone: 940-565 -4583, FAX: 940-565-4824,

More information

Chem 1075 Chapter 14 Solutions Lecture Outline

Chem 1075 Chapter 14 Solutions Lecture Outline Chem 1075 Chapter 14 Solutions Lecture Outline Slide 2 Solutions A solution is a. A solution is composed of a dissolved in a. Solutions exist in all three physical states: Slide 3 Polar Molecules When

More information

Small Angle X-ray Scattering (SAXS)

Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) We have considered that Bragg's Law, d = λ/(2 sinθ), supports a minimum size of measurement of λ/2 in a diffraction experiment (limiting sphere of inverse space) but

More information

arxiv: v1 [cond-mat.soft] 22 Jan 2010

arxiv: v1 [cond-mat.soft] 22 Jan 2010 Competing interactions in arrested states of colloidal clays B. Ruzicka 1, L. Zulian 2, E. Zaccarelli 1, R. Angelini 1, M. Sztucki 3, A. Moussaïd 3, and G. Ruocco 1 1 SOFT INFM-CNR and Dipartimento di

More information

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE

Properties of Solutions. Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson UNIT III STUDY GUIDE UNIT III STUDY GUIDE Properties of Solutions Course Learning Outcomes for Unit III Upon completion of this unit, students should be able to: 1. Describe how enthalpy and entropy changes affect solution

More information

The Liquid State ~~& R-E-S-O-N-A-N-C-E-I--Ju-n-e The Arrangement of Atoms.

The Liquid State ~~& R-E-S-O-N-A-N-C-E-I--Ju-n-e The Arrangement of Atoms. The Liquid State 1. The Arrangement of Atoms K R Rao The liquid state of matter is of great practical importance. The arrangement of atoms in a liquid is more disordered than in a crystal, and can be studied

More information

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys

Liquid in liquid: ethanol in water. Solid in liquid: any salt in water. Solid in solid: brass, bronze, and all alloys 1 of 6 I. The solution process Solutions, colloids, and suspensions Solution: homogeneous mixture, equally dispersed at the molecular level, uniform throughout in its physical and chemical properties Colloid:

More information

Elena Jordan, #, Felix Roosen-Runge,*,#,, Sara Leibfarth, Fajun Zhang,*, Michael Sztucki, Andreas Hildebrandt, Oliver Kohlbacher, and Frank Schreiber

Elena Jordan, #, Felix Roosen-Runge,*,#,, Sara Leibfarth, Fajun Zhang,*, Michael Sztucki, Andreas Hildebrandt, Oliver Kohlbacher, and Frank Schreiber pubs.acs.org/jpcb Competing Salt Effects on Phase Behavior of Protein Solutions: Tailoring of Protein Interaction by the Binding of Multivalent Ions and Charge Screening Elena Jordan, #, Felix Roosen-Runge,*,#,,

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

Multiscale Diffusion Modeling in Charged and Crowded Biological Environments

Multiscale Diffusion Modeling in Charged and Crowded Biological Environments Multiscale Diffusion Modeling in Charged and Crowded Biological Environments Andrew Gillette Department of Mathematics University of Arizona joint work with Pete Kekenes-Huskey (U. Kentucky) and J. Andrew

More information

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Structural Biology Shape Dynamic Light Scattering Electron Microscopy Small Angle X-ray Scattering Cryo-Electron Microscopy Wide Angle X- ray

More information

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Preview Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Section 1 Types of Mixtures Objectives Distinguish between electrolytes and nonelectrolytes. List three different

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

Title Super- and subcritical hydration of Thermodynamics of hydration Author(s) Matubayasi, N; Nakahara, M Citation JOURNAL OF CHEMICAL PHYSICS (2000), 8109 Issue Date 2000-05-08 URL http://hdl.handle.net/2433/50350

More information

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials.

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials. The forces of nature: 1. Strong forces hold protons and neutrons together (exchange of mesons) 2. Weak interactions are involved in some kinds of radioactive decay (β-decay) 3. Coulombic or electrostatic

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 5 Aleksey Kocherzhenko February 10, 2015" Last time " Diffusion, effusion, and molecular collisions" Diffusion" Effusion" Graham s law: " " " 1 2 r / M " (@ fixed T

More information

Important practical questions:

Important practical questions: Colloidal stability Important practical questions: - Does dispersion change when T, P or... is changed? - If T, P or... is changed and the dispersion phase separates, what are then the final products?

More information

Molecular and Biological Matter Nano-Science in Motion

Molecular and Biological Matter Nano-Science in Motion Molecular and Biological Matter Nano-Science in Motion F D n+1 n n-1 1 Frank Schreiber http://www.soft-matter.uni-tuebingen.de Molecular and Biological Matter Nano-Science in Motion Welche Themen gibt

More information

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved.

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved. IMFA s intermolecular forces of attraction 2014 Chez Chem, LLC All rights reserved. **London Dispersion Forces Also know as Van der Waals forces A momentary non symmetrical electron distribution that can

More information

2. 1. D 0 = k B T. k B T. , r Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

2. 1. D 0 = k B T. k B T. , r Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 2 2004 11 ( FENXI HUAXU E) Chinese Journal of Analytical Chemistry 11 1421 1425 (, 51061),,,,,, 0. 5 mol/ L, DLVO,,,, Z P = - 9. 0 e Hamaker = 2. 8 k B T,,, 1,,,,, p H,, ;, 2, [1 ],, Wu [2 ],,,, DLVO 2

More information

Electrolytes. Chapter Basics = = 131 2[ ]. (c) From both of the above = = 120 8[

Electrolytes. Chapter Basics = = 131 2[ ]. (c) From both of the above = = 120 8[ Chapter 1 Electrolytes 1.1 Basics Here we consider species that dissociate into positively and negatively charged species in solution. 1. Consider: 1 H (g) + 1 Cl (g) + ()+ () = { } = (+ )+ ( ) = 167[

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Mixtures and Solutions

Mixtures and Solutions Mixtures and Solutions Section 14.1 Heterogeneous and Homogeneous Mixtures In your textbook, read about suspensions and colloids. For each statement below, write true or false. 1. A solution is a mixture

More information

Measurements of protein electrophoretic mobility using the Zetasizer Nano ZSP

Measurements of protein electrophoretic mobility using the Zetasizer Nano ZSP Measurements of protein electrophoretic mobility using the Zetasizer Nano ZSP Introduction Zetasizer Nano is the market leader in dynamic and electrophoretic light scattering technology for measurements

More information

Kolligative Eigenschaften der Makromolekülen

Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften (colligere = sammeln) Gefrierpunkterniedrigung, Siedepunkterhöhung, Dampfdruckerniedrigung, Osmotischer Druck Kolligative Eigenschaften

More information

Small Angle X-Ray Solution Scattering of Biological Macromolecules

Small Angle X-Ray Solution Scattering of Biological Macromolecules Small Angle X-Ray Solution Scattering of Biological Macromolecules Emre Brookes UltraScan Workshop 15 June 2014 Overview Experimental method Sample preparation Experimental data analysis Experimental method

More information

New Perspective on structure and bonding in water using XAS and XRS

New Perspective on structure and bonding in water using XAS and XRS New Perspective on structure and bonding in water using XAS and XRS Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University, Sweden R. Ludwig Angew. Chem. 40, 1808 (2001)

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

Elementary Lectures in Statistical Mechanics

Elementary Lectures in Statistical Mechanics George DJ. Phillies Elementary Lectures in Statistical Mechanics With 51 Illustrations Springer Contents Preface References v vii I Fundamentals: Separable Classical Systems 1 Lecture 1. Introduction 3

More information

Chapter 13. Properties of Solutions. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 13. Properties of Solutions. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 13 Properties of John D. Bookstaver St. Charles Community College Cottleville, MO are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed

More information

Multi-phase Spin crossover in Fe(ptz) 6 (BF 4 ) 2

Multi-phase Spin crossover in Fe(ptz) 6 (BF 4 ) 2 Multi-phase Spin crossover in Fe(ptz) 6 (BF 4 ) 2 Neutron diffraction & optical investigations under pressure collaboration with C. Ecolivet (GMCM, Rennes) J. Jeftic (ENSCR, Rennes) J.F. Létard (ICMCB,

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

Measuring particle aggregation rates by light scattering

Measuring particle aggregation rates by light scattering Measuring particle aggregation rates by light scattering Gregor Trefalt, Istvan Szilagyi, Michal Borkovec Email. gregor.trefalt@unige.ch, istvan.szilagyi@unige.ch, michal.borkovec@unige.ch Introduction

More information

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Name: Class: _ Date: _ 2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1) In what

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

Phys 102 Lecture 2 Coulomb s Law & Electric Dipoles

Phys 102 Lecture 2 Coulomb s Law & Electric Dipoles Phys 102 Lecture 2 Coulomb s Law & Electric Dipoles 1 Today we will... Get practice using Coulomb s law & vector addition Learn about electric dipoles Apply these concepts! Molecular interactions Polar

More information

Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS 2010/11, Univ. Mainz

Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS 2010/11, Univ. Mainz Theory of liquids and polymers Prof. Dr. Walter Schirmacher, WS /, Univ. Mainz Contents Introduction Structure of Liquids. Molecular distribution functions.................................. Scattering

More information

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study

Gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Gold-poly(N-isopropylacrylamide) core-shell colloids with

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Solutions

Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Solutions Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 13 Properties of Dr. Ayman Nafady John D. Bookstaver St. Charles Community College Cottleville,

More information

The role of cluster formation and metastable liquid liquid phase separation in protein crystallization

The role of cluster formation and metastable liquid liquid phase separation in protein crystallization PAPER www.rsc.org/faraday_d Faraday Discussions The role of cluster formation and metastable liquid liquid phase separation in protein crystallization Fajun Zhang,* a Felix Roosen-Runge, a Andrea Sauter,

More information

Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution

Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution Pedro H. C. Camargo, Thenner S. Rodrigues, Anderson G. M. da Silva and Jiale Wang Abstract The controlled synthesis of metallic nanomaterials

More information

Meet Stunner: The one-shot protein concentration and sizing combo

Meet Stunner: The one-shot protein concentration and sizing combo TECH NOTE Meet Stunner: The one-shot protein concentration and sizing combo Introduction What if you could get a better read on the quality of your biologics and use less sample at the same time? Stunner

More information

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms? Earth Solid Earth Rocks Minerals Atoms How to make a mineral from the start of atoms? Formation of ions Ions excess or deficit of electrons relative to protons Anions net negative charge Cations net

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Critical Depletion Force

Critical Depletion Force XCVI CONGRESSO NAZIONALE SOCIETA ITALIANA DI FISICA BOLOGNA 20-24 settembre 2010 Critical Depletion Force Stefano BUZZACCARO Prof. Roberto PIAZZA Politecnico di Milano Prof. Alberto PAROLA Jader COLOMBO

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension

Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension 7 Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension We study the phase behaviour and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive

More information