Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms

Size: px
Start display at page:

Download "Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms"

Transcription

1 Chapter 23 Voltammetry Voltammetry and Polarograph Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Voltammetry Usually when the working electrode is solid, e.g., Pt, Au, GC. Polarograph A special term used for the voltammetry carried out with a (liquid) MURCURY electrode. Voltammogram The plot of the electrode current as a function of potential. Polarographic curves -- Voltammograms Tl + Typical polarographic curves (dependence of current I on the voltage E applied to the electrodes; lower curve - the supporting solution of ammonium chloride and hydroxide containing small amounts of cadmium, zinc and manganese, upper curve - the same after addition of small amount of thallium. 1

2 Mercury Droplet Electrode Electrochemical Cell Supporting electrolyte: alkali metal salt does not react with electrodes but can reduce the effect of migration and lower the resistance of the solution. Working electrode: place where redox occurs, surface area few mm 2 to limit current flow. Reference electrode: constant potential reference Counter (Auxiliary) electrode: inert material, plays no part in redox but completes circuit 2-Electrode vs. 3-Electrode Cell 2-electrode cell is OK in potentiometry-- very small i Now in voltammetry, measuring (big) i vs. applied E, but (1) Potential drops when current is taken from electrode due to solution resistance (ir drop): The actual E WE is smaller than E Appl (vs E Ref. E ) (2) Large i passes the ref. electrode instability of the reference potential (not constant) WE i E Appl R REF. E E E ir E Appl WE Ref.E E E E ir Appl Ref.E WE or E (vs E ) E ir Appl Ref.E WE E E (vs E ) ir WE Appl Ref.E 2

3 Advantages of 3- over 2-electrode Cell System Remember: In 3-electrode cell system, electrochemical cell current passes between WE and Counter electrode 3-electrode system 1. Provides great flexibility in location of the reference and the working electrodes and minimizes the effect of solution ir drop. 2. Virtually has no current passes through the reference electrode. Potentiostat Voltage source that drives the cell Supplies whatever voltage needed between working and counter electrodes to maintain specific voltage between working and reference electrode Very high impedance (so that current passes though the reference electrode is minimized) ~NOTE~ Almost all current carried between working and counter electrodes Voltage measured between working and reference electrodes Analyte dissolved in cell not at electrode surface! 3

4 Potential Excitations vs Voltammogram/Polarograms Staircase Voltammetry Square Wave Voltammetry Electrodes Mercury electrodes (liquid) dropping mercury electrode, hanging mercury drop electrode, static mercury drop electrode. Solid electrodes: mm in diameters, Pt, Au, GC. Micro(Ultramicro) electrodes: m in diameter: Pt, Au, Carbon fiber. Solid/liquid electrode: Mercury film electrodes, carbon paste electrode. Chemically modified electrodes ITO electrode (Transparent glass coated with In- SnO 2 4

5 Dropping Mercury Electrode (DME) Hanging Mercury Drop Electrode (HMDE) Static Mercury Drop Electrode Electrode material vs. Potential Window Potential window varies with material/solution due to overpotentials 5

6 Advantages of Mercury Electrodes A more reproducible surface No polish needed easy to prepare More negative potentials can be attained in aqueous systems due to overpotentials Amalgamation with heavy metals (e.g., lead and cadmium) preconcentration of metal ions very high sensitivity in stripping voltammetry n+ n+ M E E + ne M(Hg) M [Red on Hg] [OX] (+Hg) (Preconcentration Stripping) Disadvantages of Mercury Electrode Hg easily oxidized, limited use as anode (E < +0.4 V) 2Hg + 2Cl - Hg 2 Cl 2 + 2e non-faradaic residual currents (Impurities and charging current limit detection to >10-5 M cumbersome to use (toxic mercury) sometimes produce current maxima for unclear reasons maxima suppressor is needed to add In the rest of the chapter, all discussions are based on solid electrodes. X = 0 (Ox + ne Red) (reversible) 6

7 (A - ) (A) A is reduced to A - at potential E 2 i: Current F: Faraday constant A: area of electrode D: Diffusion Coefficient : diffusion layer thickness = ( Dt) 1/2 Flux Cottrell Equation i co co Do( ) x 0 Do( ) x 0, δ Dt nfa x δ * * * co 0 co 0 Doco D o( ) D o( ) δ Dt i nfa Dc nfad c Dt t * 1/2 * o o o o 1/2 1/2 7

8 Diffusion Layer Thickness D = 1x10-5 cm 2 /s δ Dt Diffusion layer m) Time, t (s) Sampled Current Voltammetry (Normal Pulse Voltammetry) 8

9 Voltammogram for a Reversible (Nernstian) Reaction Half-wave Potential (Qualitative) Limiting Current (Quantitative) i l or i d i l /2 (E-E o )/V RT i i( ) RT D E E E E 1/2 l o' R 1/2 ln 1/2 ln 1/2 nf i( ) nf Do Hydrodynamic Voltammetry Voltammetry in which analyte solution is kept in continuous motion. Two ways: Stirring the solution, and rotating the electrode. Rotating-disk electrode Electrode Rotator Flow patterns and regions of interest near the working electrode in hydrodynamic voltammetry 9

10 Linear Scan (Sweep) Voltammetry Peak-shaped i~e profile Cyclic Voltammetry Cyclic Voltammograms for a Reversible Reaction i / i 1.0 pc pa o ( Epa Epc) 57 mv/n at 25 C (independent of the scan rate) 0' E = ( Epa Epc) / 2 3/2 1/2 * 1/2 ip = constant n ADo cov o 5 (at 25 C, constant = ) 10

11 Diffusion Controlled Reversible Process For electrode adsorption process i p v Stripping Voltammetry Electrode: Hg film Detection: DPV-- Differential Pulse Voltammetry. Cd (Ultra)microelectrodes 11

12 UME Radial Diffusion Macro-disk Electrode Planar Diffusion 12

13 UMEs Applications Measure electrochemical behavior without added electrolyte (a small i small ir 0) Bioanalytical Applications. Scanning Electrochemical Microscopy imaging & chemical information, fast electron transfer rate measurement. 13

Chapter 25. Voltammetry

Chapter 25. Voltammetry Chapter 5. Voltammetry Excitation Signal in Voltammetry Voltammetric Instrumentation Hydrodynamic Voltammetry Cyclic Voltammetry Pulse Voltammetry High-Frequency and High-Speed Voltammetry Application

More information

Electroanalytical Chemistry techniques covered to date

Electroanalytical Chemistry techniques covered to date Electroanalytical Chemistry techniques covered to date Potentiometry based on galvanic cell Controlled Potential Electrolysis electrolytic Chronoamperometry electrolytic cell Chronopotentiometry electrolytic

More information

Unit 2 B Voltammetry and Polarography

Unit 2 B Voltammetry and Polarography Unit 2 B Voltammetry and Polarography Voltammetric methods of Analysis What is Voltammetry? A time-dependent potential is applied to an electrochemical cell, and the current flowing through the cell is

More information

POLAROGRAPHY/ VOLTAMMETRY

POLAROGRAPHY/ VOLTAMMETRY POLAROGRAPHY/ VOLTAMMETRY Introduction Instrumentation, common techniques Direct Current (DC) polarography Mercury electrodes (DME, SMDE, HMDE) Polarographic currents Tast polarography Ilkovič equation

More information

POLAROGRAPHY/ VOLTAMMETRY

POLAROGRAPHY/ VOLTAMMETRY POLAROGRAPHY/ VOLTAMMETRY Introduction Instrumentation, common techniques Direct Current (DC) polarography Mercury electrodes (DME, SMDE, HMDE) Polarographic currents Tast polarography Ilkovič equation

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

Voltammetry. Voltammetry. An Introduction in Theory. Metrohm Ltd. CH-9100 Herisau Switzerland

Voltammetry. Voltammetry. An Introduction in Theory. Metrohm Ltd. CH-9100 Herisau Switzerland An Introduction in Theory Metrohm Ltd. CH-9100 Herisau Switzerland Overview What is? Electrode Types Voltammetric Techniques Measurement Modes Calibration Techniques Advantages of Summary = Volt-Am(pero)-Metry

More information

ANALYSIS OF LEAD IN SEAWATER

ANALYSIS OF LEAD IN SEAWATER ANALYSIS OF LEAD IN SEAWATER BY DIFFERENTIAL PULSE POLAROGRAPHY Introduction Electrochemical methods of analysis can be used for the quantitative analysis of any electroactive species any species that

More information

Lecture 3. Electrochemical Sensing.

Lecture 3. Electrochemical Sensing. Lecture 3 Potential-Controlled Techniques in Electrochemical Sensing. Enzymatic Electrodes. Cyclic voltammetry The most widely used technique for acquiring quantitative information about e/chemical reaction

More information

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells Chapter 22 Bulk Electrolysis: Electrogravimetry and Coulometry Definition Bulk Electrolysis deals with methods that involve electrolysis producing a quantitative change in oxidation state Example: In a

More information

Current based methods

Current based methods Current based methods Amperometric and voltammetric sensors More significant influence on analytical parameters (sensitivity, selectivity, interferences elimination) kind of method, potential range, electrode

More information

239 Lecture #4 of 18

239 Lecture #4 of 18 Lecture #4 of 18 239 240 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

Basic Concepts in Electrochemistry

Basic Concepts in Electrochemistry Basic Concepts in Electrochemistry 1 Electrochemical Cell Electrons Current + - Voltage Source ANODE Current CATHODE 2 Fuel Cell Electrons (2 e) Current - + Electrical Load ANODE Current CATHODE H 2 2H

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass Voltammetry Methods based on an electrolytic cell Apply potential or current to electrochemical cell & concentrations change at electrode surface due to oxidation & reduction reactions Can have 2 or 3

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Subject: A Review of Techniques for Electrochemical Analysis

Subject: A Review of Techniques for Electrochemical Analysis Application Note E-4 Subject: A Review of Techniques for Electrochemical Analysis INTRODUCTION Electrochemistry is the study of the chemical response of a system to an electrical stimulation. The scientist

More information

n. log a ox a red

n. log a ox a red Amperometry &Voltammetry Non-equilibrium electrochemistry! Based on Electrolytic Cells---apply external voltage to pair of electrodes to force rxn to occur--get current flow---current α [conc] o E elect

More information

STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE

STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE Int. J. Chem. Sci.: 8(3), 2010, 1511-1516 STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE PRASHANT MEHTA * and R. S. SINDAL a National Law University,

More information

CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES

CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES Int. J. Chem. Sci.: 8(1), 2010, 345-350 CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES PRASHANT MEHTA * and R. S. SINDAL a National Law University, NH # 65, Nagour

More information

206 Lecture #4 of 17

206 Lecture #4 of 17 Lecture #4 of 17 206 207 Q: What s in this set of lectures? A: B&F Chapters 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section 1.2: Charging interfaces

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Electrogravimetry. All Cu is plated out Nothing else plates out

Electrogravimetry. All Cu is plated out Nothing else plates out Electrogravimetry Apply potential to cause a soluble species to reduce or deposit on a solid electrode e.g., reduce Cu 2+ onto Pt cathode Cu 2+ (aq) + 2 e - Cu (metal on Pt) Change in weight of dried cathode

More information

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry

Galvanic Cells Spontaneous Electrochemistry. Electrolytic Cells Backwards Electrochemistry Today Galvanic Cells Spontaneous Electrochemistry Electrolytic Cells Backwards Electrochemistry Balancing Redox Reactions There is a method (actually several) Learn one (4.10-4.12) Practice (worksheet)

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Amperometric biosensors

Amperometric biosensors Electrochemical biosensors II: Amperometric biosensors Lecture 2 Amperometric Sensors: Problem formulation amperometric techniques have some selectivity as every RedOx reaction has it s own characteristic

More information

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Cyclic Voltammetry Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Introduction Cyclic voltammetry (CV) is a popular electroanalytical technique for its relative simplicity

More information

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary ELECTROCHEMISTRY I The science concerned with the study of electron transfer across phase boundary Electrode: Is a conducting material immersed in a media. Electrode potential: Is the potential difference

More information

NTEGRA for EC PRESENTATION

NTEGRA for EC PRESENTATION NTEGRA for EC PRESENTATION Application Purpose: In-situ control/modification of the surface morphology of single crystal and polycrystal electrodes (samples) during electrochemical process (in situ) in

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is

Electrochemistry. Michael Faraday s law of electromagnetic induction says that whenever a conductor is Surname 1 Name Course Instructor Date Electrochemistry 1. Faraday s Law Michael Faraday s law of electromagnetic induction says that whenever a conductor is positioned in a changeable magnetic field emf

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Unit 2 Electrochemical methods of Analysis

Unit 2 Electrochemical methods of Analysis Unit 2 Electrochemical methods of Analysis Recall from Freshman Chemistry: Oxidation: Loss of electrons or increase in the oxidation number Fe 2 e - Fe 3 Reduction: Gain of electrons or decreases in the

More information

Experiment 1C. The Rotating Ring-Disk Electrode

Experiment 1C. The Rotating Ring-Disk Electrode Experiment 1C The Rotating Ring-Disk Electrode Experiment Overview When one sets the potential of an electrode away from the equilibrium potential, a current flows. The amount a potential deviates away

More information

Chapter 24. Electrogravimetry and Coulometry

Chapter 24. Electrogravimetry and Coulometry Chapter 24 Electrogravimetry and Coulometry Dynamic Electrochemical Methods of analysis Electrolysis Electrogravimetric and Coulometric Methods For a cell to do any useful work or for an electrolysis to

More information

Electrochemistry in Nonaqueous Solutions

Electrochemistry in Nonaqueous Solutions К. Izutsu Electrochemistry in Nonaqueous Solutions WILEY-VCH Contents Preface V Part I Fundamentals of Chemistry in Non-Aqueous Solutions: Electrochemical Aspects 1 Properties of Solvents and Solvent Classification

More information

690 Lecture #10 of 18

690 Lecture #10 of 18 Lecture #10 of 18 690 691 Q: What s in this set of lectures? A: B&F Chapters 4 & 5 main concepts: Section 4.4.2: Section 5.1: Section 5.2: Section 5.3 & 5.9: Fick s Second Law of Diffusion Overview of

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

CHEM 540 ADVANCED ANALYTICAL CHEMISTRY

CHEM 540 ADVANCED ANALYTICAL CHEMISTRY CHEM 540 ADVANCED ANALYTICAL CHEMISTRY CHEM 540 KFUPM CHEM 540, Advanced Analytical Chemistry CHEMISTRY DEPT. Credit hours: 3 Fall 2006/2007 ( Term 061) DR A.M.Y. JABER Room 261F, Tel 2611 Office hours

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Redox Titration. Properties of Umass Boston

Redox Titration. Properties of Umass Boston Redox Titration Redox Titration Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ Redox titration is based on the redox reaction (oxidation-reduction) between analyte and titrant. Position of the end point Determine the end

More information

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production Supporting Information Templated electrochemical fabrication of hollow molybdenum sulfide micro and nanostructures with catalytic properties for hydrogen production Adriano Ambrosi, Martin Pumera* Division

More information

Chapter 6 Potential Sweep Methods

Chapter 6 Potential Sweep Methods Chapter 6 Potential Sweep Methods Linear Sweep Voltammetry E Perturbation signal: E(t) E i + υt E i E f υ = scan rate = ± V/s Time Ox + e - Red i p α C o i 0 /2 i p E (vs. ref) Macroelectrodes: max. 1000

More information

The challenges of field sensors for trace metal detection. Chris Searle Product Manager Trace2o Ltd

The challenges of field sensors for trace metal detection. Chris Searle Product Manager Trace2o Ltd The challenges of field sensors for trace metal detection Chris Searle Product Manager Trace2o Ltd What is a heavy metal and why is it necessary to determine concentration? Tends to be categorised as Metallic

More information

Electrochemical Techniques: Cyclic Voltammetry

Electrochemical Techniques: Cyclic Voltammetry Electrochemical Techniques: Cyclic Voltammetry Cyclic Voltammetry of Ferrocene Carboxylic Acid 1. Aims To use cyclic voltammetry to investigate the solution electrochemistry of a simple redox couple. 2.

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Oxidation/Reduction Reactions Transfer of electrons in solution from one reactant to another. Ce +4 + Fe +2 Ce +3 + Fe +3 Ce +4 and Fe 3+ Fe 2+ and Ce 3+

More information

1298 Lecture #18 of 18

1298 Lecture #18 of 18 Lecture #18 of 18 1298 1299 Q: What s in this set of lectures? A: B&F Chapters 9, 10, and 6 main concepts: Sections 9.1 9.4: Sections 10.1 10.4: Rotating (Ring-)Disk Electrochemistry Electrochemical Impedance

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Electrochemical Cells

Electrochemical Cells Electrochemical Cells There are two types: Galvanic and Electrolytic Galvanic Cell: a cell in which a is used to produce electrical energy, i.e., Chemical energy is transformed into Electrical energy.

More information

possesses negative potential & undergoes oxidation preferably act as ANODE

possesses negative potential & undergoes oxidation preferably act as ANODE ELECTROCHEMISTRY Introduction: Electrochemistry is the area of Chemistry dealing with the interconversion of electrical energy and chemical energy. There are many applications of this in every day life.

More information

CHAPTER 1: INTRODUCTION. In this book, we will look at some of the fun analytical. things that electrochemists have done and are currently doing.

CHAPTER 1: INTRODUCTION. In this book, we will look at some of the fun analytical. things that electrochemists have done and are currently doing. CHAPTER 1: NTRODUCTON n this book, we will look at some of the fun analytical things that electrochemists have done and are currently doing. We start with inorganic electrochemistry which allows us to

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY FC ANALYSES TECHNIQUES

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY FC ANALYSES TECHNIQUES MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY Fuel Cell Analyses Methods NFCRC DR. JACK BROUWER MAE 214 Lecture #11 Spring, 2005 FC ANALYSES TECHNIQUES Potential Sweep Methods Linear Sweep Voltammetry (I-V)

More information

Voltammetric Techniques

Voltammetric Techniques Chapter 37 Voltammetric Techniques Samuel P. Kounaves Tufts University Department of Chemistry Summary General Uses Quantitative determination of organic and inorganic compounds in aqueous and nonaqueous

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

Solved Examples On Electrochemistry

Solved Examples On Electrochemistry Solved Examples On Electrochemistry Example 1. Find the charge in coulomb on 1 g-ion of Charge on one ion of N 3- = 3 1.6 10-19 coulomb Thus, charge on one g-ion of N 3- = 3 1.6 10-19 6.02 10 23 = 2.89

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

DigiElch 8 from ElchSoft

DigiElch 8 from ElchSoft Redefining Electrochemical Measurement DigiElch 8 from ElchSoft Electrochemical Simulation Software DigiElch 8 from ElchSoft is a simulation program for electrochemical experiments. DigiElch 8 offers a

More information

2. Define what is meant by an oxidizing and reducing agent. Give a good example of each.

2. Define what is meant by an oxidizing and reducing agent. Give a good example of each. In-class Questions Electrochemistry 1. Define what is meant by oxidation and reduction. 2. Define what is meant by an oxidizing and reducing agent. Give a good example of each. 3. Define what is meant

More information

CHAPTER 6. ELECTROCHEMICAL OSCILLATIONS IN METHANOL OXIDATION

CHAPTER 6. ELECTROCHEMICAL OSCILLATIONS IN METHANOL OXIDATION CHAPTER 6. ELECTROCHEMICAL OSCILLATIONS IN METHANOL OXIDATION 143 CHAPTER 6. ELECTROCHEMICAL OSCILLATIONS IN METHANOL OXIDATION 6.1 Introduction Based on the previous three experimental chapters dealing

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Components of output signal in Chronoamperometry

Components of output signal in Chronoamperometry Chronoamperometry Stationary electrode Unstirred = mass transport by diffusion Constant potential Measure current vs time Theory assume Ox + n e - Red - both Ox and Red are soluble - reversible reaction

More information

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts What do I need to know about electrochemistry? Electrochemistry Learning Outcomes: Candidates should be able to: a) Describe

More information

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

DigiElch 8 TM from ElchSoft

DigiElch 8 TM from ElchSoft Redefining Electrochemical Measurement DigiElch 8 TM from ElchSoft DigiElch 8 TM from ElchSoft is a simulation program for electrochemical experiments. DigiElch 8 offers a number of unique features compared

More information

Laboratory Techniques in Electroanalytical Chemistry

Laboratory Techniques in Electroanalytical Chemistry Laboratory Techniques in Electroanalytical Chemistry Second Edition, Revised and Expanded edited by Peter I Kissinger Purdue University and Bioanalytical Systems, Inc. West Lafayette, Indiana William R.

More information

Practical 1P3 Electrode Potentials

Practical 1P3 Electrode Potentials Practical 1P3 Electrode Potentials What you should learn from this practical Science This experiment will familiarise you with the thermodynamics of solutions and show how easily thermodynamic quantities

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

Supporting Information

Supporting Information Supporting Information Characterizing Emulsions by Observation of Single Droplet Collisions Attoliter Electrochemical Reactors Byung-Kwon Kim, Aliaksei Boika, Jiyeon Kim, Jeffrey E. Dick, and Allen J.

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Electrochemistry. The study of the interchange of chemical and electrical energy.

Electrochemistry. The study of the interchange of chemical and electrical energy. Electrochemistry The study of the interchange of chemical and electrical energy. Oxidation-reduction (redox) reaction: involves a transfer of electrons from the reducing agent to the oxidizing agent. oxidation:

More information

lect 26:Electrolytic Cells

lect 26:Electrolytic Cells lect 26:Electrolytic Cells Voltaic cells are driven by a spontaneous chemical reaction that produces an electric current through an outside circuit. These cells are important because they are the basis

More information

Potential Sweep Methods (Ch. 6)

Potential Sweep Methods (Ch. 6) Potential Sweep Methods (Ch. 6) Nernstian (reversible) systems Totally irreversible systems Quasireversible systems Cyclic voltammetry Multicomponent systems & multistep charge transfers Introduction Linear

More information

Electrochemistry: Elektrolytic and galvanic cell

Electrochemistry: Elektrolytic and galvanic cell Electrochemistry: Elektrolytic and galvanic cell 1/26 Galvanic series (Beketov, cca 1860): Ca, Al, Mn, Cr, Zn, Cd, Fe, Pb, [H 2 ], Cu, Ag, Au Cell = system composed of two electrodes and an electrolyte.

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Today s Objectives: and an electrolytic cell. standard cell potentials. Section 14.3 (pp )

Today s Objectives: and an electrolytic cell. standard cell potentials. Section 14.3 (pp ) Today s Objectives: 1. Identify the similarities and differences between a voltaic cell and an electrolytic cell 2. Predict the spontaneity of REDOX reactions based on standard cell potentials. 3. Recognize

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Electrochemical Kinetics

More information

4. Electrode Processes

4. Electrode Processes Electrochemical Energy Engineering, 2012 4. Electrode Processes Learning subject 1. Working electrode 2. Reference electrode 3. Polarization Learning objective 1. Understanding the principle of electrode

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

Monographs in Electrochemistry Series Editor: F. Scholz. Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman

Monographs in Electrochemistry Series Editor: F. Scholz. Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman Monographs in Electrochemistry Series Editor: F. Scholz Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman Electroanalysis in Biomedical and Pharmaceutical Sciences Voltammetry, Amperometry, Biosensors, Applications

More information

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a

More information

Electroanalytical Chemistry

Electroanalytical Chemistry Electroanalytical Chemistry Electrochemical Cell All electrochemical measurements take place in an electrochemical cell. The cell consists of two electrodes immersed in electrically conductive solution.

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Oxidation-Reduction Reactions Review of Terms Oxidation-reduction (redox) reactions always involve a transfer of electrons from one species to another. Oxidation number - the

More information

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell Electrochemistry Electrochemical Process The conversion of chemical energy into electrical energy and the conversion of electrical energy into chemical energy are electrochemical process. Recall that an

More information

Special Lecture Series Biosensors and Instrumentation

Special Lecture Series Biosensors and Instrumentation !1 Special Lecture Series Biosensors and Instrumentation Lecture 2: Introduction to Electrochemistry Electrochemistry Basics Electrochemistry is the study of electron transfer processes that normally occur

More information

Chapter 7 Electrochemistry

Chapter 7 Electrochemistry Chapter 7 Electrochemistry Outside class reading Levine: pp. 417 14.4 Galvanic cells: pp. 423 14.5 types of reversible electrodes 7.6.1 Basic concepts of electrochemical apparatus (1) Electrochemical apparatus

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009 Standard Operating Procedure edaq Potentionstat Miramar College Potentiostat -Report by Marianne Samonte, Dec 2009 I. Instrument Description of Potentiostat and ecorder The components of the edaq ecorder

More information

Nanoscale electrochemistry

Nanoscale electrochemistry Electrical characterisation of nanoscale samples & biochemical interfaces: methods and electronic instrumentation Nanoscale electrochemistry Giorgio Ferrari Dipartimento di elettronica, informazione e

More information

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by...

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by... Review: Electrochemistry Reduction: the gaining of electrons Oxidation: the loss of electrons Reducing agent (reductant): species that donates electrons to reduce another reagent. Oxidizing agent (oxidant):

More information