Modeling of Polyvinyl Acetate Polymerization Process for Control Purposes

Size: px
Start display at page:

Download "Modeling of Polyvinyl Acetate Polymerization Process for Control Purposes"

Transcription

1 18 th European Symposium on Computer Aided Process Engineering ESCAPE 18 Bertrand Braunschweig and Xavier Joulia (Editors) 2008 Elsevier B.V./Ltd. All rights reserved. Modeling of Polyvinyl Acetate Polymerization Process for Control Purposes Teodora Miteva a, odrigo Alvarez b, Nadja Hvala a, Dolores Kukanja c a Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b UPC, Enginyeria Química, Avda. Diagonal 647, Pab. G-2, E Barcelona, Spain c MITOL, Sežana, Partiyanska cesta 78, SI 6210, Slovenia Abstract The research work presented in this paper considers the polymerization process in MITOL factory in Sežana (Slovenia). The challenge is to increase the production rate, while keeping quality parameters at the desired values. For this purpose a model based on differential and algebraic equations (DAE) has been already constructed 7. The model is intended to take over the role of a soft sensor, being able to provide estimates of the given process outputs. In this paper we derive an extended version of the model in order to reach fully predictive capabilities. By using modeling from first principles (energy balance), the dynamics of the temperature is derived as a function of the concentrations of reacting chemicals. The preliminary simulation results based on real plant data, derived in gpoms environment, are presented. Keywords: vinyl acetate, control, modeling, gpoms 1. Introduction Emulsion polymerization of vinyl acetate is quite a complex chemical process. Efforts have been made to determine the mechanisms of the reaction. Initial estimations of the number of particles and conversion, based upon the Smith and Ewarts polymerization model were written by O Donnel and Mesrobian 1. Dunn and Taylor 2 went further and developed many of the theories commonly accepted nowadays. In the literature it is also possible to find a good number of comprehensive models of the vinyl acetate polymerization reaction, gathering the different theories and mechanisms proposed. In 1992, Urquiola et al. 3,4,5 wrote a series of papers about the polymerization of vinyl acetate using a polymerizable surfactant. The presented work addressis modeling of a polymerization process in a chemical factory Mitol in Sežana, Slovenia. The problem we have is to design optimal control actions required to reach the final product with specified quality parameters in as short time as possible. The motivation arises from the fact that current batch control is done by following a recipe derived from experience. The large quantities of raw materials and equipment resources involved in the batch prevent us from performing experiments directly on the plant. Therefore we need a good predictive model of the polymerization reaction. The model of Aller et al. 6,7 was designed to provide estimates of four outputs: conversion, particles size, solids content and viscosity, having the temperature and initial amounts and flow rates of the monomer and initiator as model inputs. The problem appeared that having the temperature as a model input does not allow us to fully optimize the polymerization process and to observe the changes of the temperature, and consequently the process outputs, by supplementing different amounts

2 2 T. Miteva of monomer and initiator. The sufficient amount of initiator was also difficult to be predicted. In our work we extend the proposed model with energy balance equations and in this way simulate the temperature in the reactor as an additional model variable. In this way the necessary control actions for shortening the batch duration could be studied. 2. Process description The modeled reaction is polymerization of vinyl acetate using potassium persulfate (KPS) as initiator and polyvinyl alcohol as protective colloid. The production process is semi batch polymerization. Initial amounts of initiator and monomer are added into the system as well as the whole amount of the polyvinyl alcohol. The reactor is closed and the heating starts. When the temperature of the reactor reaches approximately 70 C, the operator stops the hot water through the heating (Figure 1). The exothermic reaction and the heat of the remaining water filling the heating coat continue to rise the temperature over the set point. After the reactor temperature reaches a certain level, the remaining monomer starts to be pumped into the reactor with a continuous flow of 370 kg/h. Figure 1. Scheme of polymerization reactor in MITOL The monomer flow rate is controlled by a PID controller acting on the pump. In the beginning of the reaction, the temperature can reach 82 C. From now on, for the product quality reasons, it is necessary to keep the temperature between C. Temperature control is performed by manually adding a small amount of initiator every time the temperature decreases. The temperature of the added monomer is the outhdoors temperature. When all the monomer is added into the system, a larger amount of initiator is added in order to terminate the reaction. The temperature is then allowed to increase up to 90 C. The reaction is considered as finished when the temperature starts to decrease again. The heat in the reactor is released in three ways: Direct cooling in the reactor. Losses to the surroundings Heating the incoming flow rate of the monomer until the average temperature in the reactor. The main variables affecting the duration of the reaction are: the temperature, initial amount of monomer, flow rate of the monomer and the addition of the initiator. The quality of the product is defined by the following parameters: conversion into polymer, particle size distribution, viscosity and solid content.

3 Modeling of Polyvinyl Acetate Polymerization Process for Control Purposses 3 3. Temperature model The model of the polymerization process of vinyl acetate was developed using gpoms modeling tool. The current model is based on previous work of Aller et al.6,7, where the monomer flow rate, initiator addition and the temperature were taken as inputs into the system. The temperature was not estimated by the model. In order to observe the changing of its profile as a result of the change of the initiator addition we took out the temperature as an input, but rather estimate it from the energy balance model. This enables us to controlling it by adding a sufficient amount of initiator. The most influential factors attributing to reaction rate are the decomposition of the initiator and the temperature in the reactor. The mass of the initiator in the reactor (I) is increased by the flow addition of initiator (I e ) and decreased by its thermal decomposition 9,10. To obtain the concentration of the initiator (I w ) in the aqueous phase we divide by the volume of water (V w ). di I e k d I w V w To account for higher rate of decomposition of KPS at higher temperature we use the following function K d 8.4 T Tstart T Tstart 40 where K d is the initiator decomposition rate constant, T is the reactor temperature and Tstart is the temperature when an appreciable decomposition is observed. eaction heat capacity (K ) accounts for the heat capacity of the still present monomer and converted monomer (polymer) in the reactor. It is calculated by the specific heat capacities (Cp mon, Cp pol ) of the monomer (M), having into account its molecular weight (MW m ) and the converted monomer (M conv ). K MMWm Cpmon MconvMWmCppol (3) The flow through the condenser is estimated by the flow coming in and out of it (Q FC ), its heat capacities (Cp Cout ) and temperature of the reflux going through the condenser (T Cout, T Cin ). The λ is vaporization heat. (1) (2) Q ))) cond ( QFC( CpCout( TCout TCin QFC (4) T (5) Cout T Cout We also take into account the heating through the heating. This is considered in the first part of the modeling the temperature profile when the is heated. In that first part we do not have heat looses and also there is no flow though the condenser, therefore we have the following equation for the energy balance: dt dk K T QmMWmCpmonTmon H rrpol H (6) Where on one side of the equation is the reaction heat capacity multiplied by the changes in the temperature in the reactor and vice versa. On the other side of the

4 4 T. Miteva equation is the monomer enthalpy, the reaction heat and the heating in the. The heating through the is given by: H.00018( T T ) K 0 (8) where the changes in the temperature in the is: dt K 4.18 *1000)( T T ) (8) ( The energy balance for the part of the model when no heating is needed anymore, does not include heating through the and takes into account heat losses (Q loss ) and flow through the condenser (Q cond ). The equation has the following form: dt dk K T QmMWmCpmonTmon H rrpol Qcond Qloss (9) Q.9502( T T ) (10) loss 0 ext Model parameters were taken from the literature 8 (Cp pol, Cp mon, Cp out ) or estimated based on real plant data (Tstart, Tstart ) so that a satisfactory agreement between the process and the model was obtained. The values of model parameters are given in Table I. Table I Variables estimated from the literature and expiriments Parameter Value Tstart [ K] 330 MW m [gmol -1 ] Cp pol [kj kg -1 ] 1.77x10-2 Cp mon [kj kg -1 ] 1.77x10-2 Cp out [kj kg] 1.17 T ext [ K] esults Model simulations were performed based on real plant data. The monomer flow rate was taken from the actual measurements, while the addition of initiator was calculated from the weight change of the initiator dozing tank (Figure 2) T eactor C flow rate init testing mol/s Fig 2Initiator addition and Temperature Profile in time, data taken from real plant With the presented model we are able to get relatively good estimates of the reactor temperature. From Figure 3 it can be seen that the estimated profile follows the 0

5 Modeling of Polyvinyl Acetate Polymerization Process for Control Purposses 5 dynamics of the real one. Not so good estimates are obtained at the beginning and at the end of the batch. At the beginning of the batch, the most influential temperature parameter is the heating of the reactor through the heating. So most probably, the corresponding model parameters still need to be estimated more precisely. The agreement of the model is also not good in the last part of the estimated profile. This part is when the whole amount of monomer is added in the reactor and a larger amount of initiator is put to finish the reaction. There are two possible reasons that the performance of the model in this part is not so good, i.e., (i) the heat losses were overestimated, (ii) the final addition of initiator was bigger than calculated. For the latter we have to take into account that the amount of initiator is obtained from the weight change of the dozing tank, so there might be some disparity of the final addition because of its larger amount. In the estimated temperature profile there is also a small delay in the increasing and decreasing of the temperature. The most probable reasons for that are the value of the initiator decomposition rate constant, heat losses and, most probably, the amount of initiator addition. The obtained model still needs fine tuning of parameter values and close inspection of the initiator addition. Figure 3 Temperature profile and estimated profile Process outputs were also estimated with the model. Simulations were done for four batches. Table 1 shows the validation of the model against real plant data. For the viscosity and the solids content, laboratory analyses were performed at the end of the reaction. These measurements are normally performed after mixing several batches and therefore no individual data is available. Expected output results for the conversion are over than 99%. The range for the solids content is 44 46, the viscosity has to be over than Table II Output Variables real data and estimated data Batch No. Conversion (%) Solids Content (%) Viscosity (Brookfield 200C, 50rpm), (mpas) eal Modeled eal Modeled eal Modeled data From the table we see that some of the model outputs are overestimated, but are still in the quality range of the product. Also for two of the batches (1214 and 1256) the

6 6 T. Miteva viscosity, as measured in the plant, is less than it should be. This output variable is in its range in the modeled process. 5. Conclusion A model for polymerization process of vinyl acetate has been developed. The model extends the work of Aller et al. 7 in terms of energy balance. The improved model has two inputs flow rate of monomer and flow rate of initiator addition. The outputs of the presented model are four particle size diameter, solids content, viscosity and conversion. Having the temperature as an additional state variable we are able to estimate more precisely the sufficient amount of initiator which should be added into the system every time the temperature drops off. The model has been validated on a new set of real data taken from the polymerization plant. The work continues with fine tuning of model parameters, developing optimal control strategies for monomer and initiator addition, and implementing them in chemical factory in Sežana, Slovenia. 6. Acknowledgment The support of the European Commission in the context of the 6th Framework Programme (PISM, Contract No. MTN-CT ) is greatly acknowledged. eferences 1. J. T. O Donnell and. B. Mesrobian (1958). Vinyl acetate emulsion polymerization. Journal of Polymer Science, Vol. 28, S. Dunn and P. A. Taylor (1965). The polymerization of vinyl acetate in aqueous solution initiated by potassium persulphate at 60ºC. Makromol., 83, M. B. Urquiola, V. L. Dimonie, E. D. Sudol, M. S. El-Aasser, (1992) Journal of Polymer Science: Part A: Polymer Chemistry, 30, 12, M. B. Urquiola, V. L. Dimonie, E. D. Sudol, M. S. El-Aasser, (1992) Journal of Polymer Science: Part A: Polymer Chemistry, 30, 12, M. B. Urquiola, V. L. Dimonie, E. D. Sudol, M. S. El-Aasser, (1992) Journal of Polymer Science: Part A: Polymer Chemistry, 31, 6, Aller, Fernando, Kukanja, D., Modeling of the semi-batch vinyl acetate emulsion polymerization in an industrial reacor, CHISA 2006, August 2006, Prague Czech epublic. 7. Aller, F., Kandare, G., Blázquez Quintana, L. F., Kukanja, D., Jovan, V. and Georgiadis, M. (2007). Model-based optimal control of the production of polyvinyl acetate. European Congress of Chemical Engineering (ECCE-6), Copenhagen, September, K.C. Berger and G. Meyerhoff, Polymer handbook, 3 th edition, Wiley, New York (1989) 9. C.M Gilmore, G.W. Poehlein and F.J. Schork, (1993) Journal of Applied Polymer Science, 48, C.M Gilmore, G.W. Poehlein and F.J. Schork, (1993) Journal of Applied Polymer Science, 48,

Optimization and Control of a Semi-Batch Polymerization reactor

Optimization and Control of a Semi-Batch Polymerization reactor 9th International PhD Workshop on Systes and Control: Young Generation Viepoint Optiization and Control of a Sei-Batch Polyerization reactor T. Miteva, N. Hvala Eail: Teodora.Miteva@ijs.si, Nadja.Hvala@ijs.si

More information

Increasing PVAc emulsion polymerization productivity-an industrial application

Increasing PVAc emulsion polymerization productivity-an industrial application Indian Journal of Chemical Technology Vol. 17, January 2010, pp. 34-42 Increasing PVAc emulsion polymerization productivity-an industrial application Ashwini Sood Department of Chemical Engineering, Harcourt

More information

Effect of Polyvinyl Alcohol of Different Molecular Weights as Protective Colloids on the Kinetics of the Emulsion Polymerization of Vinyl Acetate

Effect of Polyvinyl Alcohol of Different Molecular Weights as Protective Colloids on the Kinetics of the Emulsion Polymerization of Vinyl Acetate Effect of Polyvinyl Alcohol of Different Molecular Weights as Protective Colloids on the Kinetics of the Emulsion Polymerization of Vinyl Acetate K.A. Shaffie *1,A.B.Moustafa 2, N.H. Saleh 2, H. E. Nasr

More information

C. R. S. Buono a, E. Bittencourt b

C. R. S. Buono a, E. Bittencourt b Substitution of Non-Biodegradable Surfactants Used in Emulsion Polymerizations - A Study of the Polymerization Process and Performance of Products Obtained C. R. S. Buono a, E. Bittencourt b Departamento

More information

Emulsion Polymerization and Emulsion Polymers

Emulsion Polymerization and Emulsion Polymers Inventor Nr i^f- Emulsion Polymerization and Emulsion Polymers Edited by Peter A. Lovell Manchester Materials Science Centre, University of Manchester and UMIST, Manchester, UK and Mohamed S. El-Aasser

More information

Kinetic Study of PMMA Synthesis by Batch Emulsion Polymerization

Kinetic Study of PMMA Synthesis by Batch Emulsion Polymerization Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg.565-570 Kinetic Study

More information

Emulsification in Batch-Emulsion Polymerization of Styrene and Vinyl Acetate: AReaction Calorimetric Study

Emulsification in Batch-Emulsion Polymerization of Styrene and Vinyl Acetate: AReaction Calorimetric Study Emulsification in Batch-Emulsion Polymerization of Styrene and Vinyl Acetate: AReaction Calorimetric Study M. F. KEMMERE, J. MEULDIJK, A. A. H. DRINKENBURG, A. L. GERMAN Process Development Group, Department

More information

Redox for Main Polymerization of

Redox for Main Polymerization of AS SEEN IN Paint Coatings Industry Globally Serving Liquid and Powder Manufacturers and Formulators Redox for Main Polymerization of Emulsion Polymers By Paul Fithian and Mike O Shaughnessy, BruggemanChemical

More information

Predictive Functional Control Applied to Multicomponent Batch Distillation Column

Predictive Functional Control Applied to Multicomponent Batch Distillation Column European Symposium on Computer Arded Aided Process Engineering 15 L. Puiganer and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Predictive Functional Control Applied to Multicomponent

More information

Emulsifier and Initiator Effects on the Emulsion Copolymerization of Styrene with Butyl Acrylate

Emulsifier and Initiator Effects on the Emulsion Copolymerization of Styrene with Butyl Acrylate Emulsifier and Initiator Effects on the Emulsion Copolymerization of Styrene with Butyl Acrylate V. CHRÁSTOVÁ, S. ĎURAČKOVÁ, J. MRENICA, and Ľ. ČERNÁKOVÁ Department of Plastics and Rubber, Faculty of Chemical

More information

PROCESS ECONOMICS PROGRAM

PROCESS ECONOMICS PROGRAM PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California Abstract 94025 Process Economics POLVINYL Program Report No. 13E CHLORIDE (October 1991) This supplementary report reviews recent technical

More information

Engineering aspect of emulsion polymerization

Engineering aspect of emulsion polymerization Engineering aspect of emulsion polymerization Joong-In Kim Bayer Corp., Plastics, Technology Yonsei University Contents Free radical polymerization kinetics Emulsion polymerization Reactor configuration

More information

Process Unit Control System Design

Process Unit Control System Design Process Unit Control System Design 1. Introduction 2. Influence of process design 3. Control degrees of freedom 4. Selection of control system variables 5. Process safety Introduction Control system requirements»

More information

Scale-up and Commercial Production of Emulsion Polymers*

Scale-up and Commercial Production of Emulsion Polymers* Emulsion Polymers Consulting and Education, LLC presents Scale-up and Commercial Production of Emulsion Polymers* Atlanta, Georgia Stone Mountain, Georgia A 3.5 Day Interactive Workshop May 13-16, 2013

More information

Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up

Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up SYMPOSIUM SERIES NO 16 HAZARDS 25 215 IChemE Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up David Dale, Process Safety Manager, SciMed/Fauske and Associates, Unit B4, The Embankment

More information

Calculate the energy required to melt a 2.9 kg block of ice. Melting is a phase change - there is no change in temperature

Calculate the energy required to melt a 2.9 kg block of ice. Melting is a phase change - there is no change in temperature Calculation of Heat During a Phase Change or Reaction During a phase change, a physical process or chemical reaction, the temperature of the system does not change. Therefore the formula q = mc T would

More information

Robust Dynamic Optimization of a Semi-Batch Emulsion Polymerization Process with Parametric Uncertainties - A Heuristic Approach -

Robust Dynamic Optimization of a Semi-Batch Emulsion Polymerization Process with Parametric Uncertainties - A Heuristic Approach - Preprint, 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems obust Dynamic Optimization of a Semi-Batch Emulsion Polymerization Process with Parametric Uncertainties -

More information

Surface sulfate groups on poly(methyl methacrylate) and poly(vinyl acetate) particles from soap-free emulsion polymerization

Surface sulfate groups on poly(methyl methacrylate) and poly(vinyl acetate) particles from soap-free emulsion polymerization e-polymers 2005, no. 077. http://www.e-polymers.org ISSN 1618-7229 Surface sulfate groups on poly(methyl methacrylate) and poly(vinyl acetate) particles from soap-free emulsion polymerization Tadanobu

More information

European Polymer Journal 41 (2005)

European Polymer Journal 41 (2005) European Polymer Journal 41 (2005) 439 445 Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization q Kai

More information

CONTROL OF MULTIVARIABLE PROCESSES

CONTROL OF MULTIVARIABLE PROCESSES Process plants ( or complex experiments) have many variables that must be controlled. The engineer must. Provide the needed sensors 2. Provide adequate manipulated variables 3. Decide how the CVs and MVs

More information

MODELING AND PARAMETER ESTIMATION OF NITROXIDE MEDIATED LIVING FREE RADICAL POLYMERIZATION (NMRP) OF STYRENE

MODELING AND PARAMETER ESTIMATION OF NITROXIDE MEDIATED LIVING FREE RADICAL POLYMERIZATION (NMRP) OF STYRENE European Symposium on Computer Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 25 Elsevier Science B.V. All rights reserved. MODELING AND PARAMETER ESTIMATION OF NITROXIDE MEDIATED LIVING

More information

MODIFICATION WITH A SULFONATE MONOMER

MODIFICATION WITH A SULFONATE MONOMER Thesis - MOLECULAR STRUCTURES AND FUNCTIONAL MODIFICATIONS OF POLY(VINYL ALCOHOL) CHAPTER 8 BY TOHEI MORITANI MODIFICATION WITH A SULFONATE MONOMER A functional monomer containing sodium sulfonate group,

More information

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination 2011 ProSim S.A. All rights reserved. Introduction This document presents the different steps to follow in order

More information

A simple calorimetric method to avoid artifacts in a controversial field: the ice calorimeter

A simple calorimetric method to avoid artifacts in a controversial field: the ice calorimeter Dufour, J., et al. A simple calorimetric method to avoid artifacts in a controversial field: The ice calorimeter. in ICCF-14 International Conference on Condensed Matter Nuclear Science. 2008. Washington,

More information

Model-Based Linear Control of Polymerization Reactors

Model-Based Linear Control of Polymerization Reactors 19 th European Symposium on Computer Aided Process Engineering ESCAPE19 J. Je owski and J. Thullie (Editors) 2009 Elsevier B.V./Ltd. All rights reserved. Model-Based Linear Control of Polymerization Reactors

More information

Thermal Power Calibration of the TRIGA Mark II Reactor

Thermal Power Calibration of the TRIGA Mark II Reactor ABSTRACT Thermal Power Calibration of the TRIGA Mark II Reactor Žiga Štancar Jožef Stefan Institute Jamova cesta 39 1000, Ljubljana, Slovenia ziga.stancar@gmail.com Luka Snoj Jožef Stefan Institute Jamova

More information

Use of Differential Equations In Modeling and Simulation of CSTR

Use of Differential Equations In Modeling and Simulation of CSTR Use of Differential Equations In Modeling and Simulation of CSTR JIRI VOJTESEK, PETR DOSTAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nám. T. G. Masaryka

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chapter 13 Properties of Solutions Learning goals and key skills: Describe how enthalpy and entropy changes affect solution formation. Describe the relationship between intermolecular forces and solubility,

More information

Optimizing Control of a Continuous Polymerization Reactor

Optimizing Control of a Continuous Polymerization Reactor Preprints of the th IFAC International Symposium on Dynamics and Control of Process Systems The International Federation of Automatic Control December 8-, 3. Mumbai, India Optimizing Control of a Continuous

More information

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control

Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control Enhanced Single-Loop Control Strategies (Advanced Control) Cascade Control Time-Delay Compensation Inferential Control Selective and Override Control 1 Cascade Control A disadvantage of conventional feedback

More information

Effect of monomer feed rate on the properties of copolymer butyl acrylate/vinyl acetate in semi-batch emulsion polymerization

Effect of monomer feed rate on the properties of copolymer butyl acrylate/vinyl acetate in semi-batch emulsion polymerization Indian Journal of Chemical Technology Vol. 14, September 2007, pp. 515-522 Effect of monomer feed rate on the properties of copolymer butyl acrylate/vinyl acetate in semi-batch emulsion polymerization

More information

Energetics. Topic

Energetics. Topic Energetics Topic 5.1 5.2 Topic 5.1 Exothermic and Endothermic Reactions?? total energy of the universe is a constant if a system loses energy, it must be gained by the surroundings, and vice versa Enthalpy

More information

Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System

Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System Measurement-based Run-to-run Optimization of a Batch Reaction-distillation System A. Marchetti a, B. Srinivasan a, D. Bonvin a*, S. Elgue b, L. Prat b and M. Cabassud b a Laboratoire d Automatique Ecole

More information

Structure of the chemical industry

Structure of the chemical industry CEE-Lectures on Industrial Chemistry Lecture 1. Crystallization as an example of an industrial process (ex. of Ind. Inorg. Chemistry) Fundamentals (solubility (thermodynamics), kinetics, principle) Process

More information

Improvement of Operating Procedures through the Reconfiguration of a Plant Structure

Improvement of Operating Procedures through the Reconfiguration of a Plant Structure 18 th European Symposium on Computer Aided Process Engineering ESCAPE 18 Bertrand Braunschweig and Xavier Joulia (Editors) 2008 Elsevier B.V./Ltd. All rights reserved. Improvement of Operating Procedures

More information

Computer-integrated tools for batch process development

Computer-integrated tools for batch process development ELSEVER Computers and Chemical Engineering 24 (2000) 1529-1533 Computers & Chemical Engineering www.elsevier.com/locate/compchemeng Computer-integrated tools for batch process development Jinsong Zhao,

More information

Batch Control Analysis

Batch Control Analysis Presented at the World Batch Forum European Conference Mechelen, Belgium 14-16 October 2002 107 S. Southgate Drive Chandler, Arizona 85226-3222 480-893-8803 Fax 480-893-7775 E-mail: info@wbf.org www.wbf.org

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

Comments Transient Energy Balances

Comments Transient Energy Balances Comments Transient Energy Balances General form of the stuff balance equation Rate of Rate Rate Rate of Rate of Accumulation In Out Generation Consumption F1 Q1 F6 F2 Q3 F3 Q2 F4 F5 2 Word form of the

More information

Mathematical Model and control for Gas Phase Olefin Polymerization in Fluidized-Bed Catalytic Reactors

Mathematical Model and control for Gas Phase Olefin Polymerization in Fluidized-Bed Catalytic Reactors 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Mathematical Model and control for Gas Phase Olefin

More information

Homework - Lecture 11.

Homework - Lecture 11. Homework - Lecture 11. Name: Topic: Heat Capacity and Specific Heat Type: Numerical 1. Two liquids, A and B, are mixed together, and the resulting temperature is 22 C. If liquid A has mass m and was initially

More information

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS Mario Roza, Eva Maus Sulzer Chemtech AG, Winterthur, Switzerland; E-mails: mario.roza@sulzer.com, eva.maus@sulzer.com

More information

Continuous Manufacturing: Process Intensification Strategies in Synthesis, Workup and Formulation with a special focus on solids

Continuous Manufacturing: Process Intensification Strategies in Synthesis, Workup and Formulation with a special focus on solids Continuous Manufacturing: Process Intensification Strategies in Synthesis, Workup and Formulation with a special focus on solids Dr. Dirk Kirschneck, Microinnova Engineering GmbH Content Microinnova Overview

More information

Safety Analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3

Safety Analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3 International Conference Nuclear Energy for New Europe 23 Portorož, Slovenia, September 8-11, 23 http://www.drustvo-js.si/port23 Safety Analysis of Loss of Flow Transients in a Typical Research Reactor

More information

Analysis of Temperature loss of Hot Metal during Hot Rolling P rocess at Steel Plant

Analysis of Temperature loss of Hot Metal during Hot Rolling P rocess at Steel Plant International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Analysis of Temperature loss of Hot Metal during Hot Rolling P rocess at Steel Plant.. Anantha irthan 1, S. Sathurtha Mourian 2,

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

What is "In" and What is "Out" in Engineering Problem Solving

What is In and What is Out in Engineering Problem Solving 18 th European Symposium on Computer Aided Process Engineering ESCAPE 18 Bertrand Braunschweig and avier Joulia (Editors) 008 Elsevier B.V./Ltd. All rights reserved. M. Shacham, M. B. Cutlip and N. Brauner,"What

More information

Xumei Song. School of Light Industry and Textile Engineering, Qiqihar University, Qiqihar , P. R. China

Xumei Song. School of Light Industry and Textile Engineering, Qiqihar University, Qiqihar , P. R. China Preparation of Leather Finishing Agent with Modified Collagen Xumei Song School of Light Industry and Textile Engineering, Qiqihar University, Qiqihar 161006, P. R. China Abstract: The protein leather

More information

GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION

GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION Project Title: Date: 12/16/80 Emulsion Polymerization Kinetics and Continuous Reactors Project No: E-19-637

More information

Information on the exercises and home assignments in polymer chemistry

Information on the exercises and home assignments in polymer chemistry Polymer Chemistry Course, KTE 080, 2016 Patric Jannasch Information on the exercises and home assignments in polymer chemistry Polymer & Materials Chemistry The exercises The exercises comprise 73 problems

More information

A computer based platform to model the intrinsic and final properties of PEAD: application for the injection plastic molding

A computer based platform to model the intrinsic and final properties of PEAD: application for the injection plastic molding 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 A computer based platform to model the intrinsic and

More information

Chemistry 1A Fall Midterm Exam 3

Chemistry 1A Fall Midterm Exam 3 Chemistry 1A Fall 2017 Name Student ID Midterm Exam 3 You will have 120 minutes to complete this exam. Please fill in the bubble that corresponds to the correct answer on the answer sheet. Only your answer

More information

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns Instituto Tecnologico de Aguascalientes From the SelectedWorks of Adrian Bonilla-Petriciolet 2008 Study of arrangements for distillation of quaternary mixtures using less than n-1 columns J.G. Segovia-Hernández,

More information

EXTENSION OF FREE-STANDING TARGET TECHNOLOGIES ON IFE REQUIREMENTS

EXTENSION OF FREE-STANDING TARGET TECHNOLOGIES ON IFE REQUIREMENTS EXTENSION OF FREE-STANDING TARGET TECHNOLOGIES ON IFE REQUIREMENTS I.V. ALEKSANDROVA, S.V. BAZDENKOV, V.I. CHTCHERBAKOV, E.R. KORESHEVA, I.E.OSIPOV Lebedev Physical Institute of RAS, Moscow, Russia Abstract

More information

A population balance model for miniemulsion polymerization

A population balance model for miniemulsion polymerization Indian Journal of Chemical Technology Vol. 11, May 2004, pp 367-376 A population balance model for miniemulsion polymerization A Sood* & S K Awasthi Department of Chemical Engineering, Harcourt Butler

More information

RheolabQC. Rotational Rheometer for Quality Control. ::: Intelligence in Rheometry

RheolabQC. Rotational Rheometer for Quality Control. ::: Intelligence in Rheometry RheolabQC Rotational Rheometer for Quality Control ::: Intelligence in Rheometry RheolabQC The Powerful QC Instrument Viscosity measurement and rheological checks for quality control are made routine and

More information

Mass flow of steam through condenser m k, kg/s

Mass flow of steam through condenser m k, kg/s UTICAJ KLIMATSKE KRIVE NA RADNI REŽIM TURBINE U TEC "BITOLA INFLUENCE OF CLIMATIC CURVE VALUES ON THE OPERATING REGIME OF THE TURBINE AT TPP "BITOLA" V. Mijakovski*, K. Popovski* *Faculty of Technical

More information

Dynamic Evolution of the Particle Size Distribution in Multistage Olefin Polymerization Reactors

Dynamic Evolution of the Particle Size Distribution in Multistage Olefin Polymerization Reactors European Symposium on Computer Arded Aided Process Engineering 5 L. Puigjaner and A. Espuña (Editors) 5 Elsevier Science B.V. All rights reserved. Dynamic Evolution of the Particle Size Distribution in

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

Influence of emulsifiers on particle size and particle size distribution of PVC latex synthesized by miniemulsion polymerization

Influence of emulsifiers on particle size and particle size distribution of PVC latex synthesized by miniemulsion polymerization Korean J. Chem. Eng., 6(6), 1585-1590 (009) DOI: 10.1007/s11814-009-078-4 RAPID COMMUNICATION Influence of emulsifiers on particle size and particle size distribution of PVC latex synthesized by miniemulsion

More information

Abstract. Introduction

Abstract. Introduction MODELING AND SIMULATION OF POLYMERIZATION OF LACTIDE TO POLYLACTIC ACID AND CO-POLYMERS OF POLYLACTIC ACID USING HIGH VISCOSITY KNEADER REACTORS Boyd T. Safrit, LIST USA, Inc., Charlotte, NC George E.

More information

Evolutionary Optimization Scheme for Exothermic Process Control System

Evolutionary Optimization Scheme for Exothermic Process Control System (76 -- 97 Proceedings of the 3rd ( CUTSE International Conference Miri, Sarawak, Malaysia, 8-9 Nov, Evolutionary Optimization Scheme for Exothermic Process Control System M.K. Tan Y.K. Chin H.J. Tham K.T.K.

More information

Nonlinear Behaviour of a Low-Density Polyethylene Tubular Reactor-Separator-Recycle System

Nonlinear Behaviour of a Low-Density Polyethylene Tubular Reactor-Separator-Recycle System European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Nonlinear Behaviour of a Low-Density Polyethylene

More information

Lecture 25: Manufacture of Maleic Anhydride and DDT

Lecture 25: Manufacture of Maleic Anhydride and DDT Lecture 25: Manufacture of Maleic Anhydride and DDT 25.1 Introduction - In this last lecture for the petrochemicals module, we demonstrate the process technology for Maleic anhydride and DDT. - Maleic

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 17 Thermochemistry 17.1 The Flow of Energy 17. Measuring and Expressing Enthalpy Changes 17.3 Heat in Changes of State 17.4 Calculating Heats of Reaction Why does sweating help

More information

Pre GATE Pre-GATE 2018

Pre GATE Pre-GATE 2018 Pre GATE-018 Chemical Engineering CH 1 Pre-GATE 018 Duration : 180 minutes Total Marks : 100 CODE: GATE18-1B Classroom Postal Course Test Series (Add : 61C, Kalusarai Near HauzKhas Metro, Delhi 9990657855)

More information

EVAPORATION YUSRON SUGIARTO

EVAPORATION YUSRON SUGIARTO EVAPORATION YUSRON SUGIARTO Evaporation: - Factors affecting evaporation - Evaporators - Film evaporators - Single effect and multiple effect evaporators - Mathematical problems on evaporation Principal

More information

CH0204 Organic Chemical Technology

CH0204 Organic Chemical Technology CH0204 Organic Chemical Technology Lecture 10 Chapter 3 Plas2cs Assistant Professor (OG) Department of Chemical Engineering 1 Overview of topics Chapter 3 Plas2cs 1 2 3 Polymers, Plas2cs, and Resins Produc2on

More information

Real-Time Feasibility of Nonlinear Predictive Control for Semi-batch Reactors

Real-Time Feasibility of Nonlinear Predictive Control for Semi-batch Reactors European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Real-Time Feasibility of Nonlinear Predictive Control

More information

Process Classification

Process Classification Process Classification Before writing a material balance (MB) you must first identify the type of process in question. Batch no material (mass) is transferred into or out of the system over the time period

More information

Performance of esterification system in reaction-distillation column

Performance of esterification system in reaction-distillation column Performance of esterification system in reaction-distillation column Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007 Performance of esterification system

More information

/ /

/ / REDOX FOR MAIN POLYMERIZATION OF EMULSION POLYMERS 1 Paul Fithian, 1 Mike O Shaughnessy, 2 Matthias Lubik, and 2 Stefan Mark 1 BruggemanChemical U. S., Inc. 18 Campus Blvd., Suite 100, Newtown Square,

More information

AC : A MODULE FOR TEACHING BATCH OPERATIONS

AC : A MODULE FOR TEACHING BATCH OPERATIONS AC 2010-726: A MODULE FOR TEACHING BATCH OPERATIONS Richard Turton, West Virginia University Richard Turton received his B.S. degree from the University of Nottingham and his M.S. and Ph.D. degrees from

More information

Supplementary Information. Synthesis of soft colloids with well controlled softness

Supplementary Information. Synthesis of soft colloids with well controlled softness Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information Synthesis of soft colloids with well controlled softness Fuhua Luo, Zhifeng

More information

Estimating analytically the capacity of batch plants with shared equipment: a yoghurt plant case study

Estimating analytically the capacity of batch plants with shared equipment: a yoghurt plant case study Procedia Food Science (0) 79 798 th International Congress on Engineering and Food (ICEF) Estimating analytically the capacity of batch plants with shared equipment: a yoghurt plant case study Alexandros

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 984 Non-linear Model predictive control of particle size distribution in batch emulsion polymerization Parul

More information

SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION

SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION SPECIALTY MONOMERS FOR ENHANCED FUNCTIONALITY IN EMULSION POLYMERIZATION Pierre Hennaux, Nemesio Martinez-Castro, Jose P. Ruiz, Zhihua Zhang and Michael D. Rhodes Solvay Inc. Centre for Research & Technology-

More information

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Supporting Information: Carbon nanotube coated snowman-like particles and their electro-responsive characteristics Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Experimental Section 1.1 Materials The MWNT

More information

Thermodynamic Interactions between PVA-Solvent Mixtures, by Means of Inverse Gas Chromatography Measurements

Thermodynamic Interactions between PVA-Solvent Mixtures, by Means of Inverse Gas Chromatography Measurements Thermodynamic Interactions between PVA-Solvent Mixtures, by Means of Inverse Gas Chromatography Measurements Eduardo Díez*, Gabriel Ovejero, María Dolores Romero, Ismael Díaz, Sofie Bertholdy Grupo de

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Production of Trowel Paints using Polyvinyl Acetate Synthesized from Vinyl Acetate Monomer as a Binder

Production of Trowel Paints using Polyvinyl Acetate Synthesized from Vinyl Acetate Monomer as a Binder Leonardo Journal of Sciences ISSN 1583-0233 Issue 19, July-December 2011 p. 49-56 Production of Trowel Paints using Polyvinyl Acetate Synthesized from Vinyl Acetate Monomer as a Binder Department of Chemical

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry Name: Thermochemistry C Practice Test C General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

Bioethanol production sustainability: Outlook for improvement using computer-aided techniques

Bioethanol production sustainability: Outlook for improvement using computer-aided techniques 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 007 Elsevier B.V. All rights reserved. 1 Bioethanol production sustainability: Outlook for improvement

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

Chapter 13 Properties of Solutions

Chapter 13 Properties of Solutions Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of John D. Bookstaver St. Charles Community College St. Peters, MO 2006,

More information

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C?

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? Learning Check q = c * m * ΔT How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? (c water =4.184 J/ C g, c iron =0.450 J/ C g) q Fe = 0.450

More information

OPTIMIZATION FOR THE PRODUCTION OF UNSATURATED POLYESTER RESINS

OPTIMIZATION FOR THE PRODUCTION OF UNSATURATED POLYESTER RESINS OPTIMIZATION FOR THE PRODUCTION OF UNSATURATED POLYESTER RESINS Description of the process Industry scale optimization J. P. Silva 1,2, J. Carvalho 2, E. J. G. Azevedo 1 1 - Instituto Superior Técnico,

More information

Innovative Solutions from the Process Control Professionals

Innovative Solutions from the Process Control Professionals Control Station Innovative Solutions from the Process Control Professionals Software For Process Control Analysis, Tuning & Training Control Station Software For Process Control Analysis, Tuning & Training

More information

QUESTIONS: Equilibria AS & AS

QUESTIONS: Equilibria AS & AS QUESTION (2012:2) Phosphorus pentachloride gas, PCl 5 (g), decomposes to form phosphorus trichloride gas, PCl 3 (g), and chlorine gas, Cl 2 (g). The equilibrium can be represented as: PCl 5 (g) Ý PCl 3

More information

Package HomoPolymer. R topics documented: February 19, Type Package

Package HomoPolymer. R topics documented: February 19, Type Package Type Package Package HomoPolymer February 19, 2015 Title Theoretical Model to Simulate Radical Polymerization Version 1.0 Date 2014-12-23 Author Maintainer A theoretical model

More information

SafeN130 Movable Apparatus for Radioactive Noble Gases Removing

SafeN130 Movable Apparatus for Radioactive Noble Gases Removing SafeN130 Movable Apparatus for Radioactive Noble Gases Removing Introduction The movable apparatus for removing radioactive noble gases which is developed from DS SCIENCE INC (Model SafeN130), is a prevention

More information

Versalis and the tyre market: a complete portfolio of technologies and products (ESBR, SSBR, HCBR)

Versalis and the tyre market: a complete portfolio of technologies and products (ESBR, SSBR, HCBR) Versalis and the tyre market: a complete portfolio of technologies and products (ESBR, SSBR, HCBR) Gabriele Gatti- versalis Elastomer Process and Technology Manager Bangkok, November 15 th, 2013 1 Focus

More information

Heat Integration - Introduction

Heat Integration - Introduction Heat Integration - Introduction Sub-Topics Design of Heat Exchanger Networks Selection of Utilities Ø Consumption and Production Correct Integration Ø Distillation and Evaporation Ø Heat Pumps Ø Turbines

More information

Unit 14. States of Matter & Thermochemistry

Unit 14. States of Matter & Thermochemistry Unit 14 Flashback: States of Matter & Thermochemistry Characteristic Solids Liquids Gases Shape Volume Density Fluidity Compressibility Picture Phase Diagram Shows the relationship between solid, liquid,

More information

This approach has been utilized in the preparation of many derivatives of dimethicone copolyol compounds 3.

This approach has been utilized in the preparation of many derivatives of dimethicone copolyol compounds 3. Reactive Silicones Editors Note: This edition of The Silicone Spectator will address silicone materials that can be used as reactants in the preparation of polymers in which silicone is merely one component.

More information

Pickering emulsion engineering: Fabrication of materials with multiple cavities

Pickering emulsion engineering: Fabrication of materials with multiple cavities Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 014 Electronic Supplementary Infomaton Pickering emulsion engineering: Fabrication of materials

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Dynamic Matrix controller based on Sliding Mode Control.

Dynamic Matrix controller based on Sliding Mode Control. AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08, Harvard, Massachusetts, USA, March -, 008 Dynamic Matrix controller based on Sliding Mode Control. OSCAR CAMACHO 1 LUÍS VALVERDE. EDINZO IGLESIAS..

More information

Development of an organometallic flow chemistry. reaction at pilot plant scale for the manufacture of

Development of an organometallic flow chemistry. reaction at pilot plant scale for the manufacture of Supporting Information Development of an organometallic flow chemistry reaction at pilot plant scale for the manufacture of verubecestat David A. Thaisrivongs*, John R. Naber*, Nicholas J. Rogus, and Glenn

More information