Wolfgang Demtroder Molecular Physics

Size: px
Start display at page:

Download "Wolfgang Demtroder Molecular Physics"

Transcription

1 Wolfgang Demtroder Molecular Physics

2 Related Titles Bethge, K., Gruber, G., Stohlker, T. Physik der Atome und Molekiile Eine Einfuhrung 437 pages with 192 figures 2004, Hardcover ISBN Hollas, J. M. Modern Spectroscopy 480 pages 2003, Hardcover ISBN , Softcover ISBN May, V., Kuhn, 0. Charge and Energy Transfer Dynamics in Molecular Systems 490 pages with approx. 134 figures 2004, Hardcover ISBN Brumer, P. W., Shapiro, M. Principles of the Quantum Control of Molecular Processes approx. 250 pages 2003, Hardcover ISBN Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G. Atom-Photon Interactions Basic Processes and Applications 678 pages with 108 figures 1998, Softcover ISBN

3 Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WKEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

4 The Author Prof. Dr. Wolfgang Demtroder Department of Physics University of Kaiserslautern Germany Translation Dr. Michael Bir Original title: Molekiilphysik. Theoretische Grundlagen und experimentelle 2003 Oldenbourg Wissenschaftsverlag GmbH All rights reserved Authorized translation from German language edition published by Oldenbourg Wissenschaftsverlag GmbH All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Wein heim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Typesetting Dr. Michael Bir, Wiesloch Printing Strauss GmbH, Moerlenbach Binding Litges & Dopf Buchbinderei GmbH, Heppenheim Printed in the Federal Republic of Germany Printed on acid-free paper ISBN-13: ISBN-10:

5 Iv Contents Contents v Preface xiii Introduction 1 Short Historical Overview 2 Molecular Spectra 4 Recent Developments 8 The Concept of This Book Molecular Electronic States 15 Adiabatic Approximation and the Concept of Molecular Potentials 15 Quantum-Mechanical Description of Free Molecules 15 Separation of Electronic and Nuclear Wavefunctions 18 Born-Oppenheimer Approximation 20 Adiabatic Approximation 22 Deviations From the Adiabatic Approximation 23 Potentials, Curves and Surfaces, Molecular Term Diagrams and Spectra 25 Electronic States of Diatomic Molecules 28 Exact Treatment of the Rigid H$ Molecule 29 Classification of Electronic Molecular States 34 Energetic Ordering of Electronic States 35 Symmetries of Electronic Wavefunctions 36 Electronic Angular Momenta 38 Electron Configurations and Electronic States 42 The Approximation of Separated Atoms 42 The United Atom Approximation 45 Molecular Orbitals and the Aufbau Principle 45 Molecular Pliysi(x Theorefiral Principles and Experimental Meih0d.r. Wolfgang Demtroder. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:

6 vi I Contents Correlation Diagrams 48 Approximation Methods for the Calculation of Electronic Wavefunctions 51 The Variational Method 52 The LCAO Approximation 53 Application of Approximation Methods to One-electron Systems 56 A Simple LCAO Approximation for the H2f Molecule 56 Deficiencies of the Simple LCAO Method 58 Improved LCAO Approximations 60 Many-electron Molecules 63 Molecular Orbitals and the Single-particle Approximation 63 The H2 Molecule 66 The Molecular Orbital Approximation for H2 66 The Heitler-London Approximation 69 Improvements of Both Methods 70 Equivalence of Heitler-London and MO Approximation 71 Generalized MO Ansatz 71 Modem Ab Znitio Methods 72 The Hartree-Fock Approximation 73 Configuration Interaction 75 Ab Znitio Calculations and Quantum Chemistry Rotatlon, Vibration, and Potential Curves of Diatomic Molecules 79 Quantum-mechanical Treatment 79 Rotation of Diatomic Molecules 81 The Rigid Rotor 81 Centrifugal Distortion 82 The Influence of Electron Rotation 84 Molecular Vibrations 86 The Harmonic Oscillator 87 The Anharmonic Oscillator 92 Morse Potential 92 Taylor Expansion of Potentials 92 Quartic Potential 93 Generalized Potential 95 Vibration-Rotation Interaction 95 Term Values of the Vibrating Rotor; Dunham Expansion 97 Term Values for the Morse Potential 97 Term Values for a Generalized Potential 98 Dunham Expansion 99 Isotopic Shifts 100

7 Contents I vii Determination of Potential Curves from Measured Term Values The WKB Approximation 101 WKB Approximation and Dunham Expansion 104 Other Potential Expansions 105 The RKR Method 105 The Inverted Perturbation Approach 109 Potential Curves at Large Internuclear Distances 112 Multipole Expansion 113 Induction Contributions to the Interaction Potential 114 Point-charge-induced Dipole (Ion-Atom Interaction) 115 Interaction Between Two Neutral Atoms 116 Lennard-Jones Potential Spectra of Diatomic Molecules 727 Transition Probabilities 122 Einstein Coefficients 122 Transition Probabilities and Matrix Elements 125 Matrix Elements in the Born-Oppenheimer Approximation 128 Structure of the Spectra of Diatomic Molecules 129 Vibration-Rotation Spectra 129 Pure Vibrational Transitions Within an Electronic State 131 Pure Rotational Transitions 133 Vibration-Rotation Transitions 136 Electronic Transitions 138 R Centroid Approximation; the Franck-Condon Principle 139 The Rotational Structure of Electronic Transitions 145 Continuous Spectra 148 Line Profiles of Spectral Lines 151 Natural Linewidth 152 Doppler Broadening 154 Voigt Profiles 157 Collisional Broadening of Spectral Lines 158 Multi-photon Transitions 161 Two-Photon Absorption 161 Raman Transitions 165 Raman Spectra 167 Thermal Population of Molecular Levels 170 Thermal Population of Rotational Levels 170 Population of Vibration-Rotation Levels 171 Nuclear Spin Statistics 171

8 viii I Contents Molecular Symmetry and Group Theory 175 Symmetry Operations and Symmetry Elements 175 Foundations of Group Theory 179 Molecular Point Groups 181 Classification of Molecular Point Groups 184 The Point Groups C,, Cnv, and cnh 185 The Point Groups D,, Dnd, and D,h 187 The groups S, 189 The Point Groups Td and oh 190 How to Find the Point Group of a Molecule 191 Symmetry vpes and Representations of Groups 192 The Representation of the Group CzV 193 The Representation of the Group C3v 195 Characters and Character Tables 197 Sums, Products, and Reduction of Representations Rotations and Vlbratlons of Polyatomic Molecules 203 Transformation From the Laboratory System to the Molecule-fixed System 204 Molecular Rotation 207 The Rigid Rotor 207 The Symmetric Top 211 Quantum-mechanical Treatment of Rotation 212 Centrifugal Distortion of the Symmetric Top 214 The Asymmetric Top 215 Vibrations of Polyatomic Molecules 221 Normal Modes 222 Example: Calculation of the Stretching Vibrations of a Linear Molecule AB;! 225 Degenerate Vibrations 226 Quantum-mechanical Treatment 228 Anharmonic Vibrations 230 Vibration-Rotation Coupling Electronic States of Polyatomic Molecules Molecular Orbitals Hybridization Triatomic Molecules I The BeH2 Molecule The H20 Molecule 247

9 Contents I ix The C02 Molecule AB;! Molecules and Walsh Diagrams Molecules With More Than Three Atoms The NH3 Molecule Formaldehyde n-electron Systems Butadiene Benzene I Spectra of Polyatomic Molecules 263 Pure Rotational Spectra 263 Linear Molecules 264 Symmetric Top Molecules 266 Asymmetric Top Molecules 267 Intensities of Rotational Transitions 26Y Symmetry Properties of Rotational Levels 270 Statistical Weights and Nuclear Spin Statistics 272 Line Profiles of Absorption Lines 274 Vibration-Rotation Transitions 274 Selection Rules and Intensities of Vibrational Transitions Fundamental Transitions 278 Overtone and Combination Bands 279 Rotational Structure of Vibrational Bands 283 Electronic Transitions 286 Fluorescence and Raman Spectra Breakdown of the Born-Oppenheimer Approximation, Perturbations in Molecular Spectra 293 What is a Perturbation? 293 Quantitative Treatment of Perturbations 295 Adiabatic and Diabatic Basis 297 Perturbations Between Two Levels 299 Hund s Coupling Cases 300 Discussion of Different Types of Perturbations 302 Electrostatic Interaction 302 Spin-Orbit Coupling 305 Rotational Perturbations 307 Vibronic Coupling 309 Renner-Teller Coupling 311 Jahn-Teller Effect 313

10 x I Contents Predissociation 316 Autoionization 31 7 Radiationless Transitions Molecules in External Fields 325 Diamagnetic and Paramagnetic Molecules 326 Zeeman Effect in Linear Molecules 327 Spin-Orbit Coupling and External Magnetic Fields Molecules in Electric Fields: The Stark Effect Van der Waals Molecules and Clusters 343 Van der Waals Molecules 345 Clusters 350 Alkali Metal Clusters 352 Rare-gas Clusters 355 Water Clusters 357 Covalently Bonded Clusters 358 Generation of Clusters Experimental Techniques in Molecular Physics Microwave Spectroscopy Infrared and Fourier Spectroscopy Classical Spectroscopy in the Visible and Ultraviolet Laser Spectroscopy Laser Absorption Spectroscopy Intracavity Laser Spectroscopy Absorption Measurements Using the Resonator Decay Time Photoacoustic Spectroscopy Laser-magnetic Resonance Spectroscopy Laser-induced Fluorescence Laser Spectroscopy in Molecular Beams Doppler-free Nonlinear Laser Spectroscopy Multi-photon Spectroscopy Double Resonance Techniques Coherent Anti-Stokes Raman Spectroscopy Time-resolved Laser Spectroscopy Femtochemistry 41 I Coherent Control 412

11 Contents I xi Photoelectron Spectroscopy 415 Experimental Setups 416 Photoionization Processes 41 7 ZEKE Spectroscopy 4 I8 Angular Distribution of Photoelectrons 420 X-ray Photoelectron Spectroscopy (XPS) 421 Mass Spectroscopy 422 Magnetic Mass Spectrometers 423 Quadrupole Mass Spectrometers 424 Time-of-flight Mass Spectrometers 426 Radiofrequency Spectroscopy 427 Nuclear Magnetic Resonance Spectroscopy 429 Electron Spin Resonance 432 Conclusion 434 Appendix: Character Tables of Some Point Groups 437 Bibliography 447 Index 467

12 I xiii During the last few decades, molecular physics has gained increasing importance in physics, chemistry and biology. There are several reasons for this progress. The development of new experimental techniques with vastly improved sensitivity and spectral resolution has allowed detailed measurements of structure and dynamics even for large molecules in minute concentrations. This opens the way for studying chemical reactions and biological processes on a molecular level. Using ultrashort laser pulses, very fast dynamical processes in excited molecular states can be measured with a time resolution of a few femtoseconds. Examples are the dissociation of excited molecules, or the redistribution of the energy pumped into a selectively excited molecular state by photon absorption. This energy redistribution onto many vibronic states can be caused by collisions or by couplings between different molecular states, and it often results in a permanent change of molecular structure (isomerization). For the first time in the development of molecular physics, such ultrashort phenomena can be measured in realtime. Another important reason for the progress in molecular physics is the development of fast computers and sophisticated software, which allow the calculation of molecular structures and potential energy surfaces in molecular ground states and even in excited states with an astonishing accuracy. Also, the dynamics of excited molecular states can be today visualized on a computer screen in slow motion to give a vivid and detailed picture of the way molecular processes occur on a femtosecond scale. This allows a much better understanding of chemical and biological reaction paths. Quantum chemistry, working in this field, has therefore received more attention in chemistry and biology. The success of molecular biology is partly based both on the new experimental techniques and on such computer simulations. In order to gain a more profound understanding of these developments, one has to acquire sufficient knowledge about the basic physics of molecules. This volume tries to make the fundamentals of molecular physics accessible, starting with diatomic molecules as the simplest molecular species. The different approximation methods used for the calculation of molecular structure, their physical meaning and their limitations are presented. The principles that are valid for diatomics are then transferred Molecular Physics. Theorrrical Principles and Experimental Methods. Wolfgang Demtroder. Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN:

13 xiv I Preface to and extended to polyatomic molecules, where additional phenomena occur, such as vibronic couplings or Coriolis effects in rotating molecules. The last chapter discusses classical and modem experimental techniques used in molecular physics, giving the reader a better understanding of the possibilities, advantages, and drawbacks of the different experimental approaches to the investigation of molecules. It is in particular laser spectroscopy that has contributed in an outstanding way to the progress in molecular spectroscopy. This book is a thoroughly revised edition of a German edition published two years ago. The author would like to thank Michael Bk who translated the German book and took care of the typesetting for his careful work and for many valuable suggestions. The author hopes that this textbook will foster the interest in molecular physics in the communities of physicists, chemists and biologists. Since no book is perfect, the author appreciates any comments, hints to possible errors, or suggestions for improvements. Wolfgang Demtriider Kaiserslautern, August 2005

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech LECTURE NOTES Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE Geoffrey A. Blake Fall term 2016 Caltech Acknowledgment Part of these notes are based on lecture notes from the

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Fundamentals of Quantum Chemistry

Fundamentals of Quantum Chemistry Fundamentals of Quantum Chemistry Fundamentals of Quantum Chemistry Molecular Spectroscopy and Modern Electronic Structure Computations Michael Mueller Rose-Hullman Institute of Technology Terre Haute,

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

The Basics of Theoretical and Computational Chemistry

The Basics of Theoretical and Computational Chemistry Bernd M. Rode, Thomas S. Hofer, and Michael D. Kugler The Basics of Theoretical and Computational Chemistry BICENTENNIA BICENTBNN I AL. WILEY-VCH Verlag GmbH & Co. KGaA V Contents Preface IX 1 Introduction

More information

P. M. Ajayan, L. S. Schadler, P. V. Braun Nanocomposite Science and Technology

P. M. Ajayan, L. S. Schadler, P. V. Braun Nanocomposite Science and Technology P. M. Ajayan, L. S. Schadler, P. V. Braun Nanocomposite Science and Technology Nanocomposite Science and Technology. Edited by P.M. Ajayan, L.S. Schadler, P.V. Braun Copyright ª 2003 WILEY-VCH Verlag GmbH

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

APPLIED NONLINEAR DYNAMICS

APPLIED NONLINEAR DYNAMICS APPLIED NONLINEAR DYNAMICS Analytical, Computational, and Experimental Methods Ali H. Nayfeh Virginia Polytechnic Institute and State University Balakumar Balachandran University of Maryland WILEY- VCH

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Chemistry by Computer. An Overview of the Applications of Computers in Chemistry

Chemistry by Computer. An Overview of the Applications of Computers in Chemistry Chemistry by Computer An Overview of the Applications of Computers in Chemistry Chemistry by Computer An Overview of the Applications of Computers in Chemistry Stephen Wilson Theoretical Chemistry Department

More information

Demtröder Atoms, Molecules and Photons

Demtröder Atoms, Molecules and Photons Demtröder Atoms, Molecules and Photons GRADUATE TEXTS IN PHYSICS Graduate Texts in Physics publishes core learning/teaching material for graduate- and advanced-level undergraduate courses on topics of

More information

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES i FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES Credit units: 6 ECTS Lectures: 48 h Tapio Rantala, prof. Tue 10 12 SC203 SG219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus/

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

INTRODUCTION TO THE THEORY OF THE RAMAN EFFECT

INTRODUCTION TO THE THEORY OF THE RAMAN EFFECT INTRODUCTION TO THE THEORY OF THE RAMAN EFFECT INTRODUCTION TO THE THEORY OF THE RAMAN EFFECT by J. A. KONINGSTEIN Carleton University, Ottawa, Canada D. REIDEL PUBLISHING COMPANY DORDRECHT-HOLLAND Library

More information

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long The Raman Effect A Unified Treatment of the Theory of Raman Scattering by Molecules DerekA. Long Emeritus Professor ofstructural Chemistry University of Bradford Bradford, UK JOHN WILEY & SONS, LTD Vll

More information

Springer Series on Atomic, Optical, and Plasma Physics

Springer Series on Atomic, Optical, and Plasma Physics Springer Series on Atomic, Optical, and Plasma Physics Volume 51 Editor-in-chief Gordon W. F. Drake, Department of Physics, University of Windsor, Windsor, ON, Canada Series editors James Babb, Harvard-Smithsonian

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Professor Dr. Wolfgang Demtröder

Professor Dr. Wolfgang Demtröder Wolfgang Demtröder Laser Spectroscopy Basic Concepts and Instrumentation Third Edition With 710 Figures,16 Tables 93 Problems and Hints for Solution 13 Professor Dr. Wolfgang Demtröder Universität Kaiserslautern

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Vibrational Autoionization in Polyatomic molecules

Vibrational Autoionization in Polyatomic molecules Vibrational Autoionization in Polyatomic molecules S.T. Pratt Annu. Rev. Phys. Chem. 2005. 56:281-308 2006. 12. 4. Choi, Sunyoung 1 Schedule 12/4 (Mon) - Introduction - Theoretical background 12/6 (Wed)

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

Molecular Modeling of Inorganic Compounds

Molecular Modeling of Inorganic Compounds Peter Comba, Trevor W. Hambley and Bodo Martin Molecular Modeling of Inorganic Compounds Third Completely Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Contents Preface to

More information

Quantum Mechanics: Foundations and Applications

Quantum Mechanics: Foundations and Applications Arno Böhm Quantum Mechanics: Foundations and Applications Third Edition, Revised and Enlarged Prepared with Mark Loewe With 96 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

Relativistic Quantum Mechanics and Field Theory

Relativistic Quantum Mechanics and Field Theory Relativistic Quantum Mechanics and Field Theory Relativistic Quantum Mechanics and Field Theory FRANZ GROSS College of William and Mary Williamsburg, Virginia and Continuous Electron Beam Accelerator Facility

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY MAX DIEM Department of Chemistry City University of New York Hunter College A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems. Wolfgang Demtroder Laser Spectroscopy Basic Concepts and Instrumentation Second Enlarged Edition With 644 Figures and 91 Problems Springer Contents 1. Introduction 1 2. Absorption and Emission of Light

More information

Chemistry 218 Spring Molecular Structure

Chemistry 218 Spring Molecular Structure Chemistry 218 Spring 2015-2016 Molecular Structure R. Sultan COURSE SYLLABUS Email: rsultan@aub.edu.lb Homepage: http://staff.aub.edu.lb/~rsultan/ Lectures: 12:30-13:45 T, Th. 101 Chemistry Textbook: P.

More information

QUANTUM MECHANICS OF ONE- AND TWO-ELECTRON ATOMS

QUANTUM MECHANICS OF ONE- AND TWO-ELECTRON ATOMS QUANTUM MECHANICS OF ONE- AND TWO-ELECTRON ATOMS QUANTUM MECHANICS OF ONE- AND TWO-ELECTRON ATOMS HANS A. BETHE AND EDWIN E. SALPETER Cornell University Ithaca, New York A PLENUM/ROSETTA EDITION Library

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Computational Chemistry Workbook

Computational Chemistry Workbook Computational Chemistry Workbook Learning Through Examples Bearbeitet von Thomas Heine, Jan-Ole Joswig, Achim Gelessus 1. Auflage 2009. Taschenbuch. XVI, 234 S. Paperback ISBN 978 3 527 32442 2 Format

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Introductory Physical Chemistry Final Exam Points of Focus

Introductory Physical Chemistry Final Exam Points of Focus Introductory Physical Chemistry Final Exam Points of Focus Gas Laws: Understand the foundations of the basic SI units of Pressure and Temperature. Know and be able to use the ideal gas law. Know and be

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

MOLECULAR LIGHT SCATTERING AND OPTICAL ACTIVITY

MOLECULAR LIGHT SCATTERING AND OPTICAL ACTIVITY MOLECULAR LIGHT SCATTERING AND OPTICAL ACTIVITY Second edition, revised and enlarged LAURENCE D. BARRON, F.R.S.E. Gardiner Professor of Chemistry, University of Glasgow 122. CAMBRIDGE UNIVERSITY PRESS

More information

James F. Haw In-Situ Spectroscopy in Heterogeneous Catalysis

James F. Haw In-Situ Spectroscopy in Heterogeneous Catalysis James F. Haw In-Situ Spectroscopy in Heterogeneous Catalysis In-Situ Spectroscopy in Heterogeneous Catalysis. By James F. Haw Copyright O 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBN: 3-527-30248-4 Related

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Lecture 7: Electronic Spectra of Diatomics

Lecture 7: Electronic Spectra of Diatomics Lecture 7: Electronic Spectra of Diatomics. Term symbols for diatomic molecules Fortrat parabola, (Symmetric Top). Common molecular models for diatomics 3. Improved treatments 4. Quantitative absorption

More information

Nuclear Physics for Applications

Nuclear Physics for Applications Stanley C. Pruss'm Nuclear Physics for Applications A Model Approach BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Table of Contents Preface XIII 1 Introduction 1 1.1 Low-Energy Nuclear Physics for

More information

Rotation and vibration of Molecules

Rotation and vibration of Molecules Rotation and vibration of Molecules Overview of the two lectures... 2 General remarks on spectroscopy... 2 Beer-Lambert law for photoabsorption... 3 Einstein s coefficients... 4 Limits of resolution...

More information

José Cernicharo IFF-CSIC

José Cernicharo IFF-CSIC An Introduction to Molecular Spectroscopy José Cernicharo IFF-CSIC jose.cernicharo@csic.es INTRODUCTION TO MOLECULAR RADIO ASTRONOMY FROM MILLIMETER TO SUBMILLIMETER AND FAR INFRARED Molecular Spectroscopy

More information

Content. 1. Overview of molecular spectra 2. Rotational spectra 3. Vibrational spectra 4. Electronic spectra

Content. 1. Overview of molecular spectra 2. Rotational spectra 3. Vibrational spectra 4. Electronic spectra Content 1. Overview of molecular spectra 2. Rotational spectra 3. Vibrational spectra 4. Electronic spectra Molecular orbital theory Electronic quantum numbers Vibrational structure of electronic transitions

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

Practical Quantum Mechanics

Practical Quantum Mechanics Siegfried Flügge Practical Quantum Mechanics With 78 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Volume I I. General Concepts 1. Law of probability

More information

Electronic transitions: Vibrational and rotational structure

Electronic transitions: Vibrational and rotational structure Electronic transitions: Vibrational and rotational structure An electronic transition is made up of vibrational bands, each of which is in turn made up of rotational lines Vibrational structure Vibrational

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

Introduction to Modern Physics

Introduction to Modern Physics SECOND EDITION Introduction to Modern Physics John D. McGervey Case Western Reserve University Academic Press A Subsidiary of Harcourt Brace Jovanovich Orlando San Diego San Francisco New York London Toronto

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS QUANTUM MECHANICS SECOND EDITION G. ARULDHAS Formerly, Professor and Head of Physics and Dean, Faculty of Science University of Kerala New Delhi-110001 2009 QUANTUM MECHANICS, 2nd Ed. G. Aruldhas 2009

More information

Initial Boundary Value Problems in Mathematical Physics

Initial Boundary Value Problems in Mathematical Physics Initial Boundary Value Problems in Mathematical Physics Initial Boundary Value Problems in Mathematical Physics Rolf leis University of Bonn Federal Republic of Germany Springer Fachmedien Wiesbaden GmbH

More information

Torge Geodesy. Unauthenticated Download Date 1/9/18 5:16 AM

Torge Geodesy. Unauthenticated Download Date 1/9/18 5:16 AM Torge Geodesy Wolfgang Torge Geodesy Second Edition W DE G Walter de Gruyter Berlin New York 1991 Author Wolfgang Torge, Univ. Prof. Dr.-Ing. Institut für Erdmessung Universität Hannover Nienburger Strasse

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave

More information

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co. Frank Y. Wang Physics with MAPLE The Computer Algebra Resource for Mathematical Methods in Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA k Preface Guide for Users Bibliography XI XVII XIX 1 Introduction

More information

Molecular Structure & Spectroscopy Friday, February 4, 2010

Molecular Structure & Spectroscopy Friday, February 4, 2010 Molecular Structure & Spectroscopy Friday, February 4, 2010 CONTENTS: 1. Introduction 2. Diatomic Molecules A. Electronic structure B. Rotation C. Vibration D. Nuclear spin 3. Radiation from Diatomic Molecules

More information

eigenvalues eigenfunctions

eigenvalues eigenfunctions Born-Oppenheimer Approximation Atoms and molecules consist of heavy nuclei and light electrons. Consider (for simplicity) a diatomic molecule (e.g. HCl). Clamp/freeze the nuclei in space, a distance r

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics Physics Paper - V : ELECTROMAGNETIC THEORY AND MODERN OPTICS (DPHY 21) Answer any Five questions 1) Discuss the phenomenon of reflection and refraction of electromagnetic waves at a plane interface between

More information

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

wbt Λ = 0, 1, 2, 3, Eq. (7.63) 7.2.2 Classification of Electronic States For all diatomic molecules the coupling approximation which best describes electronic states is analogous to the Russell- Saunders approximation in atoms The orbital

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 008 4.4.5 Fluorescence radiation The excited molecule: - is subject to collisions with the surrounding molecules and gives up energy by decreasing the vibrational levels

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Instrumentelle Analytik in den Geowissenschaften (PI)

Instrumentelle Analytik in den Geowissenschaften (PI) 280061 VU MA-ERD-2 Instrumentelle Analytik in den Geowissenschaften (PI) Handoutmaterial zum Vorlesungsteil Spektroskopie Bei Fragen bitte zu kontaktieren: Prof. Lutz Nasdala, Institut für Mineralogie

More information

Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel

Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters Katya Rykhlinskaya, University of Kassel 02. 06. 2005 Computational techniques in the theoretical investigations

More information

PHYSICAL CHEMISTRY. Donald A. McQuarrie UNIVERS1TY OF CALIFORNIA, DAVIS. John D. Simon UNIVERSITY OF CALIFORNIA, SAN DIEGO

PHYSICAL CHEMISTRY. Donald A. McQuarrie UNIVERS1TY OF CALIFORNIA, DAVIS. John D. Simon UNIVERSITY OF CALIFORNIA, SAN DIEGO PHYSICAL CHEMISTRY A MOLECULAR APPROACH Donald A. McQuarrie UNIVERS1TY OF CALIFORNIA, DAVIS John D. Simon UNIVERSITY OF CALIFORNIA, SAN DIEGO University Science Books Sausalito, California Contents

More information

Headspace Raman Spectroscopy

Headspace Raman Spectroscopy ELECTRONICALLY REPRINTED FROM SEPTEMBER 2014 Molecular Spectroscopy Workbench Raman Spectroscopy We examine vapor-phase Raman spectroscopy through the acquisition of spectra from gas molecules confined

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

DIPOLE MOMENTS IN ORGANIC CHEMISTRY

DIPOLE MOMENTS IN ORGANIC CHEMISTRY DIPOLE MOMENTS IN ORGANIC CHEMISTRY PHYSICAL METHODS IN ORGANIC CHEMISTRY B. I. lonin and B. A. Ershov NMR Spectroscopy in Organic Chemistry, 1970 V. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov Dipole

More information

Topics in Applied Physics Volume 1. Founded by Helmut K. V. Lotsch

Topics in Applied Physics Volume 1. Founded by Helmut K. V. Lotsch Topics in Applied Physics Volume 1 Founded by Helmut K. V. Lotsch Dye Lasers Edited by F. P. Schafer With Contributions by K. H. Drexhage T. W. Hansch E. P. lppen F. P. Schafer C. V. Shank B. B. Snavely

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Günter Zschornack Handbook of X-Ray Data

Günter Zschornack Handbook of X-Ray Data Günter Zschornack Handbook of X-Ray Data Günter Zschornack Handbook of X-Ray Data With 113 Figures and 161 Tables 123 Ass.-Prof. Dr. rer. nat. habil. Günter Zschornack Technische Universität Dresden Institut

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

(8) Atomic Physics (1½l, 1½p)

(8) Atomic Physics (1½l, 1½p) 10390-716(8) Atomic Physics (1½l, 1½p) 2018 Course summary: Multi-electron atoms, exclusion principle, electrostatic interaction and exchange degeneracy, Hartree model, angular momentum coupling: L-S and

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information