Výběr z aplikací infračervené spektrometrie Ján Pásztor, Nicolet CZ s.r.o.

Size: px
Start display at page:

Download "Výběr z aplikací infračervené spektrometrie Ján Pásztor, Nicolet CZ s.r.o."

Transcription

1 Výběr z aplikací infračervené spektrometrie Ján Pásztor, Nicolet CZ s.r.o.

2 Fourier Transform Infrared Spectroscopy Introduction Electromagnetic radiation Vibrational spectroscopy Instrumentation Interferometry The Fourier Transform

3 Electromagnetic Spectrum x-rays visible near-ir microwave ultraviolet mid -IR far-ir radio waves Wavenumbers nuclear electronic vibrational rotational transitions Wavelength in microns

4 Harmonic Vibrations The vibration of a diatomic molecule can be approximated by the vibration of a spring R e -DR R e R e +DR The wavenumber of the vibration equals: 1 k 2x m c m with m= 1 m 2 m 1 + m 2

5 Quantized harmonic, anharmonic h/2p (k/ k/m).( M).(ν+1/2)

6 Selection Rules for Infrared Activity The frequency of the light must be identical to the frequency of the vibration (resonance) The dipole of the molecule must change during the vibration The direction of the dipole change must be the same as the direction of the electric field vector

7 Dipole Change To absorb energy, the dipole must change when the transition occurs The intensity of the absorption is proportional to the magnitude of the dipole change Cl H N N

8 %T Molecular Vibrations Bending Twisting + - C C C C C Stretching Deformation cm- 1

9 Polyatomic Molecules The spectrum becomes more complex as the number of bonds increases Functional groups Fingerprint region Wavenumbers (cm -1 ) 1000

10 Energy Frequency Non-linear Triatomic Molecule (H 2 O) 3 normal vibrations (3N-6) Coupling of vibrations bending (1595 cm - 1 ) E E 1 E symmetric stretching (3657 cm - 1 ) E 2 asymmetric stretching (3756 cm - 1 )

11 Fixed Rotations in a Lattice (-CH 2 ) Since the atoms are fixed in a skeleton, more bending vibrations occur scissoring (~1463 cm - 1 ) twisting (~1300 cm - 1 ) - + CH 2 rocking at 720 cm -1 wagging (~1280 cm - 1 ) + +

12 Overtones Occur close to INTEGER MULTIPLES Of FUNDAMENTAL Bands. For example: C-H Overtones Will Occur Near: First Overtone 2960 cm -1 (C-H Stretch) * 2 = 5920 cm -1 Second Overtone 2960 cm -1 (C-H Stretch) * 3 = 8880 cm -1 The intensity of the absorption depends on the degree of anharmonicity and gets weaker with increasing overtones

13 Combination Bands COMBINATION Bands Appear Near The Sum Of Two Or Three FUNDAMENTAL Bands For Example: A C-H Combination Will Occur Near 2960 cm -1 (C-H Stretch) cm -1 (C-H Bend) = 4420 cm -1

14 Absorbance (Log 1/R) NIR spectrum 0.5 Combination st Overtone 0.2 2nd Overtone rd Overtone Wavelength (nm)

15 Sources, Beamsplitters and Detectors

16 Source, Beamsplitter, and Detector Combinations Depend on Application

17 FT-IR System

18 Wave Interactions (Interference) In-phase Constructive interference + = Out-of-phase Destructive interference + =

19 Michelson Interferometer-1 Interferometer Fixed mirror BF BM l 0 -l Moving mirror Beamsplitter IR Source BF = BM Path difference = 0 Detector

20 Michelson Interferometer-2 Interferometer Fixed mirror BF BM l 0 -l Moving mirror Beamsplitter IR Source BF = BM - 1/8 Path difference = 1/4 Detector

21 Michelson Interferometer-3 Interferometer Fixed mirror BF l 0 -l Moving mirror BM Beamsplitter IR Source BF = BM - 1/4 Path difference = 1/2 Detector

22 Michelson Interferometer-4 Interferometer Fixed mirror Moving mirror 0 - Beamsplitter IR Source Detector

23 Voltage Signal at the Detector 0 1 / 4 1 / 2 3 / 4 Path difference

24 Volts Volts The Interferogram One Wavelength Many Wavelengths Data Points Data Points

25 Sampling the Interferogram Source He-Ne laser

26 Dynamic Alignment Fixed mirror Beamsplitter Moving mirror x 0 -x Laser diodes He-Ne laser R X Y

27 Dynamic Alignment Advantages Better short term stability Better long term stability Better spectral line shapes

28 Fast Fourier Transformation Interferogram FFT Spectrum V o l t s Data Points E m i s s i v i t y Wavenumbers

29 Transmission Spectrum Data Points Volts Data Points Volts Wavenumbers Emissivity Wavenumbers Emissivity bkg: FFT sam: FFT Wavenumbers Transmittance Ratio

30 Summary Advantages of FT-IR Instruments Multiplex advantage (Felgett s) All wavelengths are measured simultaneously Throughput advantage (Jacquinot s) Higher energy throughput (larger apertures) Precision advantage (Connes ) Internal calibration is derived from He-Ne laser (precision = 0.01 cm -1 )

31 Technique Choice Analytical goals Quantitative Qualitative Sample dependent factors Size Chemical makeup of sample Optimization

32 Sampling Techniques and Applications Transmission Attenuated Total Reflectance - ATR Diffuse Reflectance DRIFTS Gas Analysis Semiconductor Oil Analysis GC/FT-IR TGA/FT-IR Mobile/Portable FT-IR

33 Advances in Accessory Design Automatic set-up of system parameters and experiment Rugged, permanently aligned, plug & play design On-line help and tutorials Design for fast purge Operation integrated with spectrometer and software Automatic tests ensure proper accessory operation System checks ensure high quality spectra are collected

34 Transmission Analysis Requires sample preparation Proper pathlength required Strong absorbers - short pathlength Weak absorbers - long pathlength Solids, liquids, gases Qualitative analysis Quantitative analysis Maximum sensitivity Low cost

35 Analysis of Antioxidant Levels in Lubricating Oil The peak at 3651 cm -1 was used to quantify the antioxidant butylated hydroxy toluene (BHT) in the poly-a-olefin (PAO) lubricant

36 Attenuated Total Reflectance Versatile and non-destructive technique for infrared sampling Requires minimal or no sample preparation Useful for surface characterization

37 Considerations for ATR Analysis d p = 2p n atr (sin 2 q) - [ ] 1/2 ( ) 2 n sample n atr Refractive index of ATR and sample Pathlength requirements Spectral range of interest Phase of sample: solid, liquid, gel Chemical properties Hardness of sample

38 Attenuated Total Reflectance ATR Single Bounce vs Multi-bounce Plunger Crystal Cap Penetration depth up to two microns Crystal IR Beam ZnSe Internal Reflection Element Small sampling area Use for strong absorbers Solid samples Broad sampling area provides greater contact with the sample Use for weak absorbers or dilute solutions

39 Properties of ATR Crystals ATR Spectral Range (cm-1) Refractive Index Depth of Penetration (µ) (at 45º & 1000 cm-1) Material Uses Good for most samples. Germanium 5, Strong absorbing samples, such as dark polymers. Silicon 8,900-1,500 & Resistant to basic solutions. AMTIR 11, Very resistant to acidic solutions. ZnSe 15, General use. Good for most samples. Diamond 30, Extremely caustic or hard samples.

40 Analysis of Fibers Using Single Bounce ATR No sample preparation Non-destructive to the sample Shallow depth of penetration good for dark polymers

41 Identifying Fiber Threads Inside An Automotive Hose

42 ATR Summary Ease-of-use Rapid qualitative and quantitative analysis No sample preparation Multiple crystals for various sampling needs Best technique for condensed phase samples

43 Diffuse Reflectance (DRIFTS) A multi-modal technique Specular Reflectance Diffuse Specular Reflectance True Diffuse Reflectance Kubelka-Munk equation Absorbance-like results F(R ) = (1-R ) 2 2R = K S R = reflectance with infinite depth K = molar absorption S = scattering coefficient

44 Compound Parabolic Concentrator Independent of sample height Reduces sample packing effects Minimizes front surface reflection (specular component) Efficient high throughput collection optics Sample positioned below optics No damage to optics from sample spills CPC Design Input / output optics CPC Powder sample cup

45 DRIFTS Analysis of Pharmaceutical Powders

46 Lo g( 1/R) Lo g( 1/R) Lo g( 1/R) DRIFTS Analysis of Pharmaceutical Powders 0.5 Ibuprofen Powder 0.4 Analytical Goal 0.3 Naproxen Sodium Powder Simplified sample preparation Identification of key ingredients Ps eudoephedrine H Cl Powder Wav enumbers ( cm- 1)

47 Benefits of Diffuse Reflectance Good choice for dilute powders Analysis of non-reflective materials Minimal sample preparation

48 FT-IR Gas Analyzer Detects pollutants CO, NOx, HC NH 3, HCN, N 2 O Nexus Gas Analyzer 2 meter gas cell MCT-A detector Detection limits less than 1 ppm 0.09 cm -1 resolution

49 NO x Reduction in Diesel Exhaust Diesel engines are run lean, i.e. with excess air during combustion Naturally low hydrocarbon and CO emissions but high NO and NO 2 emissions Urea with catalyst can reduce NO and NO 2 However, concern is that HCN is generated

50 Abs HCN Emissions Urea injection reduced NO and NO 2 and can be tuned to minimize HCN generation HCN 97 ppm in exhaust HCN 0.6 ppm in exhaust HCN standard cm

51 Semiconductor Wafer Analysis Semiconductor devices are manufactured on silicon wafers, using successive layers of metals and insulators Many devices are produced from each wafer. As many as 300 Pentium TM like devices, or more than 800 memory chips, can be produced from a single 8 or 12 diameter wafer

52 Semiconductor Analysis The samples were analyzed using the Nicolet ECO 3000 Samples were scanned in transmission (silicon is transparent to infrared radiation)

53 Si-H Variation

54 Conclusion Hydrogen concentration can effect the dielectric constant in these films Customer was able to identify a heating problem with the wafer platen in the deposition system, based on the shape of the center region of the profile After adjusting the temperature parameters in the system, uniform films were produced and device yields reached 98%

55 Approaches for Lubricant QC Total Process Checking Incoming ingredient testing Base oil and add-pack lot consistency Blended product analysis Additive levels Outgoing product verification Assure product correct for shipment Used Oil Analysis Engine Monitoring Edible Oil Analysis Product Consistency

56 Integra Oil Analysis

57 Spectral Regions of Interest for Used Oil 0.8 Water Nitro Sulfate A bs 0.7 Carboxyl Fuel o r b a nc e Soot Glycol 0.2 Phosphate Anti-wear Wavenumber

58 Polymer Additive Identification by GC/FT-IR Reverse Engineering Customer wants to deformulate competitive product Product is complex polymer with several additives GC analysis alone was inconclusive Infrared spectroscopy was necessary for identification of additives

59 Nicolet Nexus GC/FT-IR System

60 Polymer Additives by GC/FT-IR Real-Time Display 8 cm-1 Resolution 0.74 sec/spectrum

61 GC/FT-IR Peak Identification

62 TGA/FT-IR Rubber Gasket Characterization High pressure and temperature application Gasket from backup supplier fails TGA only reveals small difference TGA/IR reveals compositional differences

63 TGA/FT-IR System TGA FT-IR spectrometer TGA/IR interface OMNIC Series software

64 TGA/IR Data of Rubber Gaskets 8 cm -1 resolution DTGS detector 10.0 sec time resolution OMNIC Series software

65 TGA/IR Spectra of Rubber Gasket Samples

66 Library Search Results

67 Mobile and Portable Infrared Analysis Incident Preparedness and Response (IPAR) First Responders Fire Fighters Clandestine Lab Investigators WMD/CST US Army/US Navy

68 Implementation Mobile system offers full sampling flexibility in a small footprint Expandability and flexibility AC power necessary GLP or 21 CFR Part 11 software tools Portable system offers rapid setup and simplicity of operation Compact, integrated, transportable system Flexible power sources - AC, 12 volt or battery Laptop computer compatibility via USB

69 Mobile Solution Full laboratory capability in a small footprint Dynamic Interferometer alignment Rugged--Sealed and desiccated or Purgeable Smart accessories ease sample preparation Full OMNIC capability IR Microscope ready GLP, Validation 21 CFR Part 11 Compliance tools

70 Hazardous Sample Analysis Accessory Smart Golden Gate Diamond ATR Natural Type IIa diamond Diamond brazed to tungsten carbide disk Top plate removable for glove box loading Sample anvil isolates sample from environment Extremely easy-to-use and simple decontamination

71 Absorban ce Hazardous Materials Analysis 0.14 Mustard HD Wav enumbers (cm-1)

72 Conclusions - Sampling Techniques Thermo Electron FT-IR spectrometers provide a broad range of analytical solutions We develop new sampling technologies based upon your sampling needs Speed, resolution and sensitivity of our systems can be tuned to your experiment Let us know how we can help solve your analytical problems

73 Human Hair Analysis Verify the fiber to be consistent or inconsistent with hair from the suspect FT-IR microscope w/ ATR objective

74 Absorbance Surface Analysis of Hair ATR, excellent surface analysis tool Maximizes surface response Hair without Hairspray Hairspray on Hair Wavenumbers (cm-1) 1000

75 Absorbance Surface Analysis of Hair Difference FT-IR bands consistent with PVA hair spray ATR microscopy - surface sensitive, non-destructive Subtraction Result: Hairspray on hair - hair PVA from Library Wavenumbers (cm-1) 1000

76 Fiber from Crime Scene Fiber Diameter - 20 microns ATR Objective Sample Area - 7 microns

77 Micro ATR Fiber Spectrum micron diameter fiber by Micro-ATR 1.4 A b s o r b a n c e

78 Paint Chip Analysis Automotive Paint Identification Multilayered, microns each Redundant Aperturing Required

79 View-Thru Aperturing - 15x15 microns No Apertures Lower Aperture Both Apertures Analyze!

80 Paint Spectra Grey Layer - 25 microns thick Red Layer - 17 microns thick Clear Layer - 25 microns thick A b s o r b a n c e Wavenumbers (cm-1)

81 NIR Spectroscopy Advantages Easier Remote sampling No sample preparation Glass is transparent Quick data collection Disadvantages Difficult or impossible to interpret spectra More complex to develop methods Difficult to add extra compounds to a sample ID method

82 SabIR Near-IR Fiber Optic Accessory

83 Absorbance NIR Fiber Optic Sampling 1.0 Aspirin Tablet in Packaging Wavenumbers (cm-1) 6000

84 Absorbance Polyvinyl Chloride / Vinyl Acetate Copolymers PVC100 PVC/AC 90/10 PVC/AC 87/13 PVC/AC 81/ Wavenumbers (cm-1)

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories FTIR Spectrometer Basic Theory of Infrared Spectrometer FTIR Spectrometer FTIR Accessories What is Infrared? Infrared radiation lies between the visible and microwave portions of the electromagnetic spectrum.

More information

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Chemistry Instrumental Analysis Lecture 15. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 15 IR Instruments Types of Instrumentation Dispersive Spectrophotometers (gratings) Fourier transform spectrometers (interferometer) Single beam Double beam

More information

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy molecular spectroscopy Introduction to Fourier Transform Infrared Spectroscopy Part of Thermo Fisher Scientific Introduction What is FT-IR? FT-IR stands for Fourier Transform InfraRed, the preferred method

More information

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy Introduction to Fourier Transform Infrared Spectroscopy Introduction What is FTIR? FTIR stands for Fourier transform infrared, the preferred method of infrared spectroscopy. In infrared spectroscopy, IR

More information

Advanced Pharmaceutical Analysis

Advanced Pharmaceutical Analysis Lecture 2 Advanced Pharmaceutical Analysis IR spectroscopy Dr. Baraa Ramzi Infrared Spectroscopy It is a powerful tool for identifying pure organic and inorganic compounds. Every molecular compound has

More information

Mid-IR Methods. Matti Hotokka

Mid-IR Methods. Matti Hotokka Mid-IR Methods Matti Hotokka Traditional methods KBr disk Liquid cell Gas cell Films, fibres, latexes Oil suspensions GC-IR PAS KBr Disk 1 mg sample, 200 mg KBr May be used for quantitative analysis Mix

More information

Glossary. Analyte - the molecule of interest when performing a quantitative analysis.

Glossary. Analyte - the molecule of interest when performing a quantitative analysis. Glossary This glossary contains definitions of many important FTIR terms. Many of the terms listed here appeared in italics in the body of the book. Words that appear in italics in the glossary are defined

More information

Molecular Spectroscopy In The Study of Wood & Biomass

Molecular Spectroscopy In The Study of Wood & Biomass Molecular Spectroscopy In The Study of Wood & Biomass Society of Wood Science and Technology 50th Annual Convention Knoxville, Tennessee June 10, 2007 Timothy G. Rials Forest Products Center The University

More information

Putting Near-Infrared Spectroscopy (NIR) in the spotlight. 13. May 2006

Putting Near-Infrared Spectroscopy (NIR) in the spotlight. 13. May 2006 Putting Near-Infrared Spectroscopy (NIR) in the spotlight 13. May 2006 0 Outline What is NIR good for? A bit of history and basic theory Applications in Pharmaceutical industry Development Quantitative

More information

Agilent Cary 630 FTIR sample interfaces combining high performance and versatility

Agilent Cary 630 FTIR sample interfaces combining high performance and versatility Agilent Cary 630 FTIR sample interfaces combining high performance and versatility Technical Overview Introduction The Agilent Cary 630 is a robust, easy to use, superior performing FTIR in a compact package.

More information

Fourier Transform Infrared. Spectrometry

Fourier Transform Infrared. Spectrometry Fourier Transform Infrared. Spectrometry Second Editio n PETER R. GRIFFITH S JAMES A. de HASETH PREFACE x v CHAPTER 1 INTRODUCTION TO VIBRATIONAL SPECTROSCOPY 1 1.1. Introduction 1 1.2. Molecular Vibrations

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Reference Standards Page 156 For calibrating your spectrometer. PIKECalc Page 159 For FTIR sampling computations

Reference Standards Page 156 For calibrating your spectrometer. PIKECalc Page 159 For FTIR sampling computations Standards, Software, Databases We strive to provide you with useful sampling tools for spectroscopy and offer these additional products and information to serve your laboratory requirements. If you have

More information

Mid-IR Sampling Techniques for Biological Molecules

Mid-IR Sampling Techniques for Biological Molecules Mid-IR Sampling Techniques for Biological Molecules Mid-IR Sampling Techniques LIQUIDS Transmission ATR (Attenuated Total Reflectance) Solids Transmission (KBr pellets, Mulls) ATR Diffuse Reflectance Sampling

More information

Spectroscopy. Fourier Transform Infrared (FT-IR) Spectroscopy

Spectroscopy. Fourier Transform Infrared (FT-IR) Spectroscopy Fourier Transform Infrared (FT-IR) Spectroscopy Learning objectives Learning outcomes After completing this course, the student will be able to: Recognize the concept and principle of FT-IR Spectroscopy

More information

ALPHA. Innovation with Integrity. The very compact and smart FTIR spectrometer FTIR

ALPHA. Innovation with Integrity. The very compact and smart FTIR spectrometer FTIR ALPHA The very compact and smart FTIR spectrometer Innovation with Integrity FTIR ALPHA FTIR Spectrometer More than just small analyze The ALPHA is more than just a compact FTIR spectrometer: Its modular

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy IR Spectroscopy Used to identify organic compounds IR spectroscopy provides a 100% identification if the spectrum is matched. If not, IR at least provides information about the types

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

m m lighter 'atom' dominates 2 INFRARED SPECTROSCOPY All modes of vibrations are not IR active.

m m lighter 'atom' dominates 2 INFRARED SPECTROSCOPY All modes of vibrations are not IR active. INFRARED SPECTROSCOPY Infrared spectroscopy probes the interaction of infrared radiation with covalent bonds in molecules. Absorption of IR radiation results in the transitions between vibrational energy

More information

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER c = c: speed of light 3.00 x 10 8 m/s (lamda): wavelength (m) (nu): frequency (Hz) Increasing E (J) Increasing (Hz) E = h h - Planck s constant

More information

Handheld FTIR spectroscopy applications using the Agilent ExoScan 4100 FTIR with diffuse sample interface

Handheld FTIR spectroscopy applications using the Agilent ExoScan 4100 FTIR with diffuse sample interface Handheld FTIR spectroscopy applications using the Agilent ExoScan 4100 FTIR with diffuse sample interface Onsite, non-destructive analysis for geological, fabric, paint and plastic applications Application

More information

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO BASIC INFORMATION Spectroscopy uses light to analyze substances or products by describing the energy transfer between light and

More information

Introduction to Gas Phase FTIR Spectroscopy

Introduction to Gas Phase FTIR Spectroscopy Introduction to Gas Phase FTIR Spectroscopy Introduction to FTIR spectroscopy FTIR stands for Fourier transform infrared, the preferred method of infrared spectroscopy. In infrared (IR) spectroscopy, radiation

More information

Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One)

Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One) Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One) This operating procedure intends to provide guidance for transmission/absorbance measurements with the FTIR. For additional modes of

More information

Learning Guide for Chapter 3 - Infrared Spectroscopy

Learning Guide for Chapter 3 - Infrared Spectroscopy Learning Guide for hapter 3 - Infrared Spectroscopy I. Introduction to spectroscopy - p 1 II. Molecular vibrations - p 3 III. Identifying functional groups - p 6 IV. Interpreting an IR spectrum - p 12

More information

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 4: Basic principles and Instrumentation for IR spectroscopy CHE_P12_M4_e-Text TABLE OF CONTENTS

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared Fourier Transform Infrared Spectroscopy: Low Density Polyethylene, High Density Polyethylene, Polypropylene and Polystyrene Eman Mousa Alhajji North Carolina State University Department of Materials Science

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Fourier Transform IR Spectroscopy

Fourier Transform IR Spectroscopy Fourier Transform IR Spectroscopy Absorption peaks in an infrared absorption spectrum arise from molecular vibrations Absorbed energy causes molecular motions which create a net change in the dipole moment.

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Educational experiment package Volume 1. Molecular spectroscopy

Educational experiment package Volume 1. Molecular spectroscopy Educational experiment package Volume 1 Molecular spectroscopy Overview Thermo Fisher Scientific is proud to offer a variety of educational experiments for use with Fourier transform infrared (FTIR) spectrometers.

More information

Overview and comparison of portable spectroscopy techniques: FTIR, NIR and Raman

Overview and comparison of portable spectroscopy techniques: FTIR, NIR and Raman Overview and comparison of portable spectroscopy techniques: FTIR, NIR and Raman By Dr Heather Murray, Analytik Keywords: vibrational spectroscopy, portable spectrometers, Mid-IR, FTIR, NIR, Raman Walk

More information

Spectroscopy tools for PAT applications in the Pharmaceutical Industry

Spectroscopy tools for PAT applications in the Pharmaceutical Industry Spectroscopy tools for PAT applications in the Pharmaceutical Industry Claude Didierjean Sr. Technology and Applications Consultant Real Time Analytics Mettler Toledo AutoChem, Inc. claude.didierjean@mt.com

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

Agilent Cary 630 FTIR Spectrometer Supporting Organic Synthesis in Academic Teaching Labs

Agilent Cary 630 FTIR Spectrometer Supporting Organic Synthesis in Academic Teaching Labs Agilent Cary 630 FTIR Spectrometer Supporting Organic Synthesis in Academic Teaching Labs Application note Academic Author Frank Higgins and Alan Rein Agilent Technologies Danbury, CT, USA Introduction

More information

Detection of trace contamination on metal surfaces using the handheld Agilent 4100 ExoScan FTIR

Detection of trace contamination on metal surfaces using the handheld Agilent 4100 ExoScan FTIR Detection of trace contamination on metal surfaces using the handheld Agilent 4100 ExoScan FTIR Ensuring ultimate cleanliness for maximum adhesion Application Note Author John Seelenbinder Agilent Technologies,

More information

New advances in folded pathlength technology for Process Tunable Diode Laser Absorption Spectrometers (TDLAS)

New advances in folded pathlength technology for Process Tunable Diode Laser Absorption Spectrometers (TDLAS) New advances in folded pathlength technology for Process Tunable Diode Laser Absorption Spectrometers (TDLAS) Jean-Nicolas Adami, PhD Head of Strategic Product Group Gas Analytics Mettler-Toledo GmbH,

More information

Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages

Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages Daniela Held, PSS Polymer Standards Service GmbH, Mainz, Germany Gel permeation chromatography/size-exclusion chromatography (GPC/SEC)

More information

IDRaman reader and IDRaman mini: Raster Orbital Scanning (ROS)

IDRaman reader and IDRaman mini: Raster Orbital Scanning (ROS) IDRaman reader and IDRaman mini: Raster Orbital Scanning (ROS) Tightly focused beam may give noisy signals or miss the Raman active target completely leading to false negatives from unidentified samples

More information

1.1. IR is part of electromagnetic spectrum between visible and microwave

1.1. IR is part of electromagnetic spectrum between visible and microwave CH2SWK 44/6416 IR Spectroscopy 2013Feb5 1 1. Theory and properties 1.1. IR is part of electromagnetic spectrum between visible and microwave 1.2. 4000 to 400 cm -1 (wave numbers) most interesting to organic

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Hyphenated Spectroscopy Techniques

Hyphenated Spectroscopy Techniques Hyphenated Spectroscopy Techniques Thermal Analysis and Rheology Short Course Concord, NH April 10, 2018 The world leader in serving science Analytical Instruments Overview Chromatography & Mass Spectrometry

More information

The DialPath Solution an Easier Way to Analyze Liquids By FTIR. Yanqia Wang, Ph.D. Application Engineer - FTIR Agilent Technologies May 7, 2015

The DialPath Solution an Easier Way to Analyze Liquids By FTIR. Yanqia Wang, Ph.D. Application Engineer - FTIR Agilent Technologies May 7, 2015 The DialPath Solution an Easier Way to Analyze Liquids By FTIR Yanqia Wang, Ph.D. Application Engineer - FTIR Agilent Technologies May 7, 2015 Outline Background of FTIR Transmission Technology Traditional

More information

FIRST PROOF FOURIER TRANSFORM INFRARED SPECTROSCOPY. Article Number: SOIL: Infrared Peaks of Interest. Introduction

FIRST PROOF FOURIER TRANSFORM INFRARED SPECTROSCOPY. Article Number: SOIL: Infrared Peaks of Interest. Introduction FOURIER TRANSFORM INFRARED SPECTROSCOPY 1 a0005 AU:1 FOURIER TRANSFORM INFRARED SPECTROSCOPY D Peak, University of Saskatchewan, Saskatoon, SK, Canada ß 2004, Elsevier Ltd. All Rights Reserved. infrared

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L11 page 1 Instrumental Chemical Analysis Infrared Spectroscopy Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester, 2016/2017 Infrared Spectroscopy

More information

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Introduction Experimental Condensed Matter Research Study of large

More information

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FT-IR

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FT-IR Analysis of Polymers and Plastics Quality Control & Failure Analysis Innovation with Integrity FT-IR Reliable quality control is essential to achieve a cost-saving production of high quality plastic products.

More information

Infrared spectroscopy Basic theory

Infrared spectroscopy Basic theory Infrared spectroscopy Basic theory Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Importance of IR spectroscopy in catalysis IR Raman NMR XAFS UV-Vis EPR 0 200 400 600 800 1000

More information

Infrared Spectroscopy. By Karli Huber Block 4

Infrared Spectroscopy. By Karli Huber Block 4 Infrared Spectroscopy By Karli Huber Block 4 What is this method used for? Both organic and inorganic chemistry find this method useful especially in forms involving industry, research, and discovery.

More information

FT-IR Spectroscopy. An introduction in measurement techniques and interpretation

FT-IR Spectroscopy. An introduction in measurement techniques and interpretation FT-IR Spectroscopy An introduction in measurement techniques and interpretation History Albert Abraham Michelson (1852-1931) Devised Michelson Interferometer with Edward Morley in 1880 (Michelson-Morley

More information

Introduction to FT-IR Spectroscopy

Introduction to FT-IR Spectroscopy Introduction to FT-IR Spectroscopy An FT-IR Spectrometer is an instrument which acquires broadband NIR to FIR spectra. Unlike a dispersive instrument, i.e. grating monochromator or spectrograph, an FT-IR

More information

FTIR Spectrum Interpretation of Lubricants with Treatment of Variation Mileage

FTIR Spectrum Interpretation of Lubricants with Treatment of Variation Mileage FTIR Spectrum Interpretation of Lubricants with Treatment of Variation Mileage Diana Julaidy Patty 1* Richard R Lokollo 2 1.Solid State Physics Laboratory-Departmen of Physics University of Pattimura,

More information

Infrared Spectroscopy

Infrared Spectroscopy Reminder: These notes are meant to supplement, not replace, the laboratory manual. Infrared Spectroscopy History and Application: Infrared (IR) radiation is simply one segment of the electromagnetic spectrum

More information

Application of Raman Spectroscopy for Noninvasive Detection of Target Compounds. Kyung-Min Lee

Application of Raman Spectroscopy for Noninvasive Detection of Target Compounds. Kyung-Min Lee Application of Raman Spectroscopy for Noninvasive Detection of Target Compounds Kyung-Min Lee Office of the Texas State Chemist, Texas AgriLife Research January 24, 2012 OTSC Seminar OFFICE OF THE TEXAS

More information

ATR FTIR imaging in forensic science

ATR FTIR imaging in forensic science ATR FTIR imaging in forensic science Application Note Author Sergei G. Kazarian*, Camilla Ricci*, Simon Boyd**, Mustafa Kansiz** * Imperial College UK **Agilent Technologies, Inc. Introduction Conventional

More information

Optical & Spectroscopic Insight into Rheology. SR Kim

Optical & Spectroscopic Insight into Rheology. SR Kim Optical & Spectroscopic Insight into Rheology SR Kim 14.11.2014 Contents Rheology and Microscopy Rheology and Simultaneous FT-IR Analysis 2 3 RHEOLOGY AND MICROSCOPY What does Rheology Do? Put a defined

More information

Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, National Synchrotron Research Radiation Center

Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, National Synchrotron Research Radiation Center Applications of Terahertz Radiation (T-ray) Yao-Chang Lee, yclee@nsrrc.org.tw National Synchrotron Research Radiation Center Outline Terahertz radiation (THz) or T-ray The Interaction between T-ray and

More information

Chap 4 Optical Measurement

Chap 4 Optical Measurement Chap 4 Optical Measurement 4.1 Light Solid Interaction E-M Wave permittivity, permeability Refractive index, extinction coefficient propagation absorption Refraction Absorption Scattering, Rayleigh Scattering

More information

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS)

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) Application note Materials Authors Travis Burt, Chris Colley,

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FTIR

Analysis of Polymers and Plastics. Innovation with Integrity. Quality Control & Failure Analysis FTIR Analysis of Polymers and Plastics Quality Control & Failure Analysis Innovation with Integrity FTIR Quality Control for Cost-Efficiency Plastics are used in countless products such as automotive parts,

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Characterisation of vibrational modes of adsorbed species

Characterisation of vibrational modes of adsorbed species 17.7.5 Characterisation of vibrational modes of adsorbed species Infrared spectroscopy (IR) See Ch.10. Infrared vibrational spectra originate in transitions between discrete vibrational energy levels of

More information

Ch 313 FINAL EXAM OUTLINE Spring 2010

Ch 313 FINAL EXAM OUTLINE Spring 2010 Ch 313 FINAL EXAM OUTLINE Spring 2010 NOTE: Use this outline at your own risk sometimes a topic is omitted that you are still responsible for. It is meant to be a study aid and is not meant to be a replacement

More information

This page intentionally left blank

This page intentionally left blank The information in this publication is provided for reference only. All information contained in this publication is believed to be correct and complete. Thermo Fisher Scientific shall not be liable for

More information

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups 1 The Electromagnetic Spectrum Infrared Spectroscopy I. Physics Review Frequency, υ (nu), is the number of wave cycles that

More information

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy KNOW MORE Web links https://en.wikipedia.org/wiki/infrared_ http://hiq.lindegas.com/en/analytical_methods/infrared_/non_dispersive_infrared.html http://blamp.sites.truman.edu/files/2012/11/322-ir-and-ftir.pdf

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

HANDHELD FTIR BEST ON-SITE CHEMISTRY ANALYSIS SOLUTION. Presented by: Dr. Yanqia Wang

HANDHELD FTIR BEST ON-SITE CHEMISTRY ANALYSIS SOLUTION. Presented by: Dr. Yanqia Wang HANDHELD FTIR BEST ON-SITE CHEMISTRY ANALYSIS SOLUTION Presented by: Dr. Yanqia Wang Outline Background of FTIR Spectrometry and Agilent Handheld FTIR - TopScan 4300 Versatile sampling interfaces (Diamond/Ge

More information

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography Lecture 11 IR Theory Next Class: Lecture Problem 4 due Thin-Layer Chromatography This Week In Lab: Ch 6: Procedures 2 & 3 Procedure 4 (outside of lab) Next Week in Lab: Ch 7: PreLab Due Quiz 4 Ch 5 Final

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

All the manufacturers use a heated ceramic source.

All the manufacturers use a heated ceramic source. Source All the manufacturers use a heated ceramic source. The composition of the ceramic and the method of heating vary but the idea is always the same, the production of a heated emitter operating at

More information

Determination of Chemical Composition and Molecular Microstructures: Infrared Spectroscopy

Determination of Chemical Composition and Molecular Microstructures: Infrared Spectroscopy Determination of Chemical Composition and Molecular Microstructures: Infrared Spectroscopy 1 Infrared Spectroscopy Infrared spectrometry is applied to the qualitative and quantitative determination of

More information

1901 Application of Spectrophotometry

1901 Application of Spectrophotometry 1901 Application of Spectrophotometry Chemical Analysis Problem: 1 Application of Spectroscopy Organic Compounds Organic compounds with single bonds absorb in the UV region because electrons from single

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

Lambert Beer s law. where, K=Molar Absorption Coefficient C=Concentration of the Solution & I=Intensity of light. di = dx

Lambert Beer s law. where, K=Molar Absorption Coefficient C=Concentration of the Solution & I=Intensity of light. di = dx Lambert Beer s law When the beam of monochromatic radiations is passed through a homogeneous absorbing solution, the rate of decrease of intensity,with thickness of absorbing medium is proportional to

More information

Fourier Transform Infrared Spectrometry

Fourier Transform Infrared Spectrometry Fourier Transform Infrared Spectrometry \ ' PETER R. GRIFFITHS Department of Chemistry University of California Riverside, California JAMES A. de HASETH Department of Chemistry University of Georgia Athens,

More information

INFRARED SPECTROSCOPY

INFRARED SPECTROSCOPY INFRARED SPECTROSCOPY Applications Presented by Dr. A. Suneetha Dept. of Pharm. Analysis Hindu College of Pharmacy What is Infrared? Infrared radiation lies between the visible and microwave portions of

More information

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Properties of light Electromagnetic radiation and electromagnetic spectrum Absorption of light Beer s law Limitation of Beer s

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

Non-Destructive Evaluation of Composite Thermal Damage with Agilent s New Handheld 4300 FTIR

Non-Destructive Evaluation of Composite Thermal Damage with Agilent s New Handheld 4300 FTIR Non-Destructive Evaluation of Composite Thermal Damage with Agilent s New Handheld 4300 FTIR Application note Materials Author Frank Higgins Agilent Technologies Danbury, CT, USA Introduction Carbon or

More information

Modern Techniques in Applied Molecular Spectroscopy

Modern Techniques in Applied Molecular Spectroscopy Modern Techniques in Applied Molecular Spectroscopy Edited by FRANCIS M. MIRABELLA Equistar Chemicals, LP A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Infrared spectroscopy. Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012

Infrared spectroscopy. Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012 Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012 1 Infrared region 2 Infrared region below red in the visible region at wavelengths between 2.5-25 µm more

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Application note. Materials. Introduction. Author. John Seelenbinder Alan Rein. Agilent Technologies Danbury, CT, USA

Application note. Materials. Introduction. Author. John Seelenbinder Alan Rein. Agilent Technologies Danbury, CT, USA Positive Material Identification: Qualification, Composition Verification and Counterfeit Detection of Polymeric Material using Mobile FTIR Spectrometers Application note Materials Author John Seelenbinder

More information

Snowy Range Instruments

Snowy Range Instruments Snowy Range Instruments Cary 81 2000 W Hg Arc JY U-1000 5 W Ar + Laser DL Solution 852 200 mw SnRI CBEx 785 100 mw What is Raman Spectroscopy? Raman spectroscopy is a form of molecular spectroscopy. It

More information

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes *

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes * OpenStax-CNX module: m34660 1 Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes * Jiebo Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy rganic Spectra Infra Red Spectroscopy. D. Roth TERY and INTERPRETATIN of RGANI SPETRA. D. Roth Infra Red Spectroscopy Infrared spectroscopy (IR) is an analytical technique concerned with molecular vibrations

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Infrared spectroscopy

Infrared spectroscopy Infrared spectroscopy Chapter content Theory Instrumentation Measurement techniques Midinfrared (MIR) Identification of organic compounds Quantitative analysis Applications in food analysis Nearinfrared

More information

Fisika Polimer Ariadne L. Juwono. Sem /2007

Fisika Polimer Ariadne L. Juwono. Sem /2007 Chapter 9. Analysis and testings of polymer 9.1. Chemical analysis of polymers 9.2. Spectroscopic methods 9.3. X-Ray diffraction analysis 9.4. Microscopy 9.5. Thermal analysis 9.6. Physical testing 9.1.

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

UV3000. Accurate, precise, and portable ambient gas point analyzer

UV3000. Accurate, precise, and portable ambient gas point analyzer UV3000 Accurate, precise, and portable ambient gas point analyzer The Cerex UV3000 is a multifunction analyzer designed to detect part per billion (ppb) to percent level concentrations of multiple gases

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

Infrared Spectroscopy

Infrared Spectroscopy x-rays ultraviolet (UV) visible Infrared (I) microwaves radiowaves near I middle I far I λ (cm) 8 x 10-5 2.5 x 10-4 2.5 x 10-3 2.5 x 10-2 µ 0.8 2.5 25 250 ν (cm -1 ) 13,000 4,000 400 40 ν (cm -1 1 ) =

More information

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Spectroscopy. Page 1 of 8 L.Pillay (2012) Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has

More information