Mid-IR Sampling Techniques for Biological Molecules

Size: px
Start display at page:

Download "Mid-IR Sampling Techniques for Biological Molecules"

Transcription

1 Mid-IR Sampling Techniques for Biological Molecules

2 Mid-IR Sampling Techniques LIQUIDS Transmission ATR (Attenuated Total Reflectance) Solids Transmission (KBr pellets, Mulls) ATR Diffuse Reflectance

3 Sampling Techniques in Transmission: Liquids Liquids are analyzed as a thin film sandwiched between two windows in a liquid cell. The type of cell, choice of window material, and pathlength is determined by the sample, experiment and spectral regions--significant variable in IR spectra. Samples can be analyzed pure or diluted with an appropriate solvent (typical for biopolymers). In order to perform quantitative analyses, the sample must be analyzed in a cell with a known pathlength often not trivial, especially short path.

4 Sampling Techniques in Transmission: solids Disposable IR cards: Thin polymer films can be analyzed by using a film holder. (or solution can be evaporated on surface) MULL Make a mull by grinding a powdered sample with liquid paraffin, such as Nujol, and placing it between two infrared transparent windows. KBr pellet: The sample and an infrared transparent matrix, such as KBr, are ground together and the resulting powder is then pressed into a disc. Diamond compression cell: To study single fibers and other micro samples.

5 Sampling Techniques: Diffuse Reflectance: Solids IR energy penetrates into the powdered sample and then emerges in all directions. The optics collect this scattered radiation and direct it to the infrared detector. (This is the trick, need mirrors that surround the surface.) The diffusely scattered light can be collected from a sample directly or by using an abrasive sampling pad for intractable samples. Sometimes called DRIFTS

6 Internal Reflectance Light is Focused Upon Crystal of High Refractive Index Material Crystals typically ZnSe, Diamond, Silicon, or Germanium Light Refracts Towards Upper Surface What Happens When Light Encounters an Internal Surface? Depends upon the crystal s critical angle, θ c If θ < θ c light refracts and exits the crystal (dashed line) If θ > θ c light reflects off of internal surface, Internal Reflection (solid line) Single bounce concept, if external reflection, then IRRAS (later) Internally Reflected Beam θ > θ c Refracted Beam θ < θ c IR Beam Angle of Incidence, θ

7 The ATR Experiment ATR (Attenuated Total Reflectance) Spectra are obtained with dedicated accessories containing focusing mirrors and a crystal holder that mount in the sample compartment of a spectrometer Could be arbitrary number of bounces, depends on design

8 Conventional multi-reflection ATR IR beam totally reflects inside crystal. Multiple bounces (~10-20) inside until emerge. Sample surface (~1µ) provides absorption For liquids and solids: Use with materials which are either too thick or too strongly absorbing to be analyzed by transmission spectroscopy or when only the surface of the material is of interest. ATR is a technique for obtaining infrared spectra of samples that are difficult to deal with, such as solids limited solubility, films, threads, pastes, adhesives, and powders. out in

9 Attenuated Total Reflectance (ATR) At point of internal reflectance, incident and reflected beams constructively interfere Electric field of IR wave decays above crystal surface, can penetrate sample in close contact (attenuate) About 1-10 microns above surface IR radiation hanging out in space, but not transmitted This place on crystal surface called a Hot Spot Bring Sample into Contact with Hot Spot to Get Spectrum Not a point, more an area Hot Spot due to IR beam IR Beam

10 ATR SPECTROSCOPY FACTORS AFFECTING ATR ANALYSIS Wavelength of IR radiation Refractive Index of the IRE and sample Depth of Penetration Effective Pathlength Angle of Incidence Efficiency of Sample contact ATR Crystal Material

11 ATR SPECTROSCOPY Depth of Penetration, d p distance from the crystal-sample interface where the intensity of the evanescent wave decays to 1/e (approximately 37%) of its original value. (In other words a measure of how far IR beam penetrates into a sample). It is calculated by: d p =1 / [2πνn c (sin 2 θ -n sc2 ) 1/2 ] Where, ν = Wavenumber n c = Refractive index of ATR crystal θ = Angle of incidence n sc = n sample /n crystal

12 Depth of Penetration: Implications Variables in the d p equation impact how ATR works And are all in the denominator! As ν d p Low wavenumber (long λ) light penetrates further than high wavenumber (short λ) light In other sampling methods, all wavenumbers see same pathlength The relative intensities in an ATR spectrum are different than those obtained with other sampling methods Samples closes to the surface contribute most to the spectrum (absorbance), so surface binding can be an important issue in interpretation Difficult to compare ATR spectra to transmission spectra

13 Depth of Penetration: More Implications As n c d p Crystals with different refractive indices give different pathlengths Can take spectra at different depths non-destructively = Depth Profiling Properties of Common ATR Crystal Materials Material n c Range (cm -1 ) Color ph Range KRS , Red 5-8 ZnSe , Yellow 5-9 Si Grey 1-12 Ge Gray 1-14 Diamond , Clear

14 Depth of Penetration: Yet More As θ d p Adjusting mirror position on ATR accessory changes θ Can dial-in θ and hence d p d p is Essentially Sample Independent Only sample dependent parameter effecting d p is n sample To a first approximation, most organic (and hence biological ) materials have a constant refractive index (~1.4 to 1.5). Not true for inorganics. So, to a first approximation, d p is sample independent Great for quantitative work Don t Forget Pressure as a Variable

15 ATR SPECTROSCOPY EFFECTIVE PATHLENGTH = (Effective Penetration) x Number of reflections (N), Where, N = l/t cotθ; l=length of crystal; t= thickness of crystal; θ=angle of incidence

16 Relative Intensities are Affected by ATR Top: ATR Spectrum of Sucrose Bottom: DRIFTS Spectrum of Sucrose High cm -1 peaks have less relative intensity in ATR spectrum than DRIFTS spectrum

17 Pathlengths Vary with ATR Crystal ATR Spectra of Sucrose Obtained with Diamond and Ge Crystals Diamond n c = 2.4, Germanium n c = 4.0 Beam penetrates further into diamond, hence more intense absorbance bands

18 ATR Applications Semi-Solids Semi-Solids Thick, viscous fluids such as olive oil or maple syrup Things that are part liquid/part solid. Emulsions, colloids, mixtures. Things like butter, soap, grease, and peanut butter

19 ATR Applications- Solids and Powders In theory, any solid brought into contact with the ATR crystal can have its spectrum measured Traditionally, powders have been difficult because of scratching and crystal contact Diamond ATR: Diamond won t scratch, and can press hard enough to flatten anything Biological materials are normally soft anyway

20 ATR - Advantages Practically no Sample Prep. Its Fast and Easy Put in on, wipe it off (small few bounce setup) Non-Destructive Useful if have little sample Good for Quantitation Wide Variety of Applications Depth profiling Polymers Solids, Powders Liquids, Semi-solids

21 ATR Disadvantages Crystal Care Crystal must be kept clean and scratch free to insure good contact with IR beam If you drop it on the floor, it will break. Replacement crystals >$600 Limited Wavenumber Range Some crystals don t go below 700 cm -1 Sensitivity Shallow d p gives small absorbances Typically, analyte conc. must be > 0.1% Not good for trace analysis Despite these problems, a VERY Useful IR Sampling Technique!

22 Few -bounce diamond ATR Liquids: 9-bounce ATR No Pressure applied Cover to avoid evaporation Solids: 1 or 3-bounce ATR In many cases need to grind to minimize large particles to avoid scattering and achieve better reproducibility

23 A Few -bounces ATR - Types available Often diamond over ZnSe Provides very hard surface Can apply pressure with rod above 1-3 bounces, signal can be small solution difficult Good for membranes, solids Easy to clean 9-bounce dip to hold liquid Design to fit your FTIR Several manufacturers

24 Aqueous sample spectra collection Biological samples are often in water Peptides are often prepared by solid state synthesis on a resin, TFA impurity Solvent corrections normally done by subtraction these pose special problems for peptides/proteins in particular, somewhat less for nucleic acids

25 Bio-IR: Experimental - D 2 O vs. H 2 O H-O-H bending mode at ~ 1645 cm -1 overlaps the amide I band of peptides/proteins D 2 O % Transmittance Wavenumbers /cm -1 H 2 O

26 Protein Studies: Experimental D 2 O vs. H 2 O early studies done in D 2 O problem : need to deuterate protein can cause different frequency shifts possible conformational changes

27 Protein and H 2 O.6 protein water (buffer) Frequency (cm-1)

28 Protein Studies: Experimental If experiment is done in water, then solvent water spectrum must be carefully subtracted from the spectrum of protein. Environmental water vapor adds sharp peaks to the spectra in the amide I region. These peaks can severely reduce spectral quality and must be subtracted Side-chain absorbance spectrum might have to be subtracted, to keep focus on amide secondary structure

29 Protein Studies: Experimental LIQUID SAMPLES: Protein Concentration: 0.5 mg/ml - saturated Pathlength: 3-7 µ µ for H 2 O studies for D 2 O studies Amount of sample required: 5-30 µl Resolution: 4cm -1

30 Protein Studies: Experimental SOLID STATE IR spectroscopy is the only method that is capable of studying proteins in the solid, liqiud (solution) and vapor (use??) states Films of particular interest along with membranes containing proteins/peptides Also cells and tissue are being studied Solid state spectra can be collected using several techniques: KBr pellets ATR Diffuse reflectance Microscopy

31 Steps Involved in a Measurement Measure cell + buffer/solvent empty cell or cell holder cell + buffer/solvent + protein Data processing Buffer/solvent subtraction, Vapor Subtraction, Sidechain subtraction Spectral enhancement (later): FSD (Fourier Self-Deconvolution), Derivative Band fitting Secondary structure analysis Factor or Principle component analyses of variance (perturbation - temperatue, ph, ligand, denaturant, etc.)

32 Buffer / Solvent Subtraction.6 Buffer I Protein.4 II.2 Protein-Buffer Absorbance / Wav enumber (cm-1) Y-Zoom SCROLL File # 2 : BV1227A 12/ 27/ 96 2:23 PM Res=4 cm-1 buf f er f or 2cab,carbonic anhy drase,2 time,12/27/96

33 Water vapor subtraction Protein Water vapor Absorbance / Wav enumber (cm-1) Y-Zoom SCROLL Must eliminate the sharp vapor transitions by subtraction, direct overlap suggests study of wings (high wavenumber)

34 Water vapor subtraction -80E Protein Water vapor Absorbance / Wav enumber (cm-1) Y-Zoom CURSOR Subtract vapor spectrum until protein spectrum is flat (featureless)

35 Perfect FT-IR spectrum of protein: H 2 O solution c I d,e a I II a II b III Protein Spectrum Must Have a. Amide I/II ratio: b. Presence of Amide III bands c. Presence of C-H stretching modes d. Flat baseline between cm -1 e. Gradual baseline rise below 1800 cm -1 f. No vapor bands.4.2 Empirical formula for success

36 Transmission vs. ATR: Danger of measurements with ATR II I Published spectrum of aqueous solution measured using ATR (dashed line): notice incorrect ratio of Amide I/II intensities => mistake due to protein adsorption to the surface of ATR crystal (solid line is transmission spectrum)

37 Comparison of solution vs. solid can we do this? bounce diamond ATR - protein powder Note: Transmission - protein in solution bounce diamond ATR - protein powder 1. Change in FWHH (bandwidth) from 35 cm -1 for solution to 58 cm -1 for solid 2. Frequency shift for both Amide I and II Transmission - protein in solution Ratio difference for Amide I/II Key compare transmission with trans. and ATR with ATR

Mid-IR Methods. Matti Hotokka

Mid-IR Methods. Matti Hotokka Mid-IR Methods Matti Hotokka Traditional methods KBr disk Liquid cell Gas cell Films, fibres, latexes Oil suspensions GC-IR PAS KBr Disk 1 mg sample, 200 mg KBr May be used for quantitative analysis Mix

More information

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories FTIR Spectrometer Basic Theory of Infrared Spectrometer FTIR Spectrometer FTIR Accessories What is Infrared? Infrared radiation lies between the visible and microwave portions of the electromagnetic spectrum.

More information

Glossary. Analyte - the molecule of interest when performing a quantitative analysis.

Glossary. Analyte - the molecule of interest when performing a quantitative analysis. Glossary This glossary contains definitions of many important FTIR terms. Many of the terms listed here appeared in italics in the body of the book. Words that appear in italics in the glossary are defined

More information

Advanced Pharmaceutical Analysis

Advanced Pharmaceutical Analysis Lecture 2 Advanced Pharmaceutical Analysis IR spectroscopy Dr. Baraa Ramzi Infrared Spectroscopy It is a powerful tool for identifying pure organic and inorganic compounds. Every molecular compound has

More information

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Chemistry Instrumental Analysis Lecture 15. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 15 IR Instruments Types of Instrumentation Dispersive Spectrophotometers (gratings) Fourier transform spectrometers (interferometer) Single beam Double beam

More information

Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One)

Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One) Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One) This operating procedure intends to provide guidance for transmission/absorbance measurements with the FTIR. For additional modes of

More information

Reference Standards Page 156 For calibrating your spectrometer. PIKECalc Page 159 For FTIR sampling computations

Reference Standards Page 156 For calibrating your spectrometer. PIKECalc Page 159 For FTIR sampling computations Standards, Software, Databases We strive to provide you with useful sampling tools for spectroscopy and offer these additional products and information to serve your laboratory requirements. If you have

More information

Agilent Cary 630 FTIR sample interfaces combining high performance and versatility

Agilent Cary 630 FTIR sample interfaces combining high performance and versatility Agilent Cary 630 FTIR sample interfaces combining high performance and versatility Technical Overview Introduction The Agilent Cary 630 is a robust, easy to use, superior performing FTIR in a compact package.

More information

Characterisation of vibrational modes of adsorbed species

Characterisation of vibrational modes of adsorbed species 17.7.5 Characterisation of vibrational modes of adsorbed species Infrared spectroscopy (IR) See Ch.10. Infrared vibrational spectra originate in transitions between discrete vibrational energy levels of

More information

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared Fourier Transform Infrared Spectroscopy: Low Density Polyethylene, High Density Polyethylene, Polypropylene and Polystyrene Eman Mousa Alhajji North Carolina State University Department of Materials Science

More information

Physical principles of IR and Raman. Infrared Spectroscopy

Physical principles of IR and Raman. Infrared Spectroscopy Physical principles of IR and Raman IR results from the absorption of energy by vibrating chemical bonds. Raman scattering results from the same types of transitions, but the selection rules are different

More information

Infra Red Spectroscopy

Infra Red Spectroscopy CH 2252 Instrumental Methods of Analysis Unit I Infra Red Spectroscopy M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

FT-IR Spectroscopy. An introduction in measurement techniques and interpretation

FT-IR Spectroscopy. An introduction in measurement techniques and interpretation FT-IR Spectroscopy An introduction in measurement techniques and interpretation History Albert Abraham Michelson (1852-1931) Devised Michelson Interferometer with Edward Morley in 1880 (Michelson-Morley

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Infrared spectroscopy. Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012

Infrared spectroscopy. Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012 Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012 1 Infrared region 2 Infrared region below red in the visible region at wavelengths between 2.5-25 µm more

More information

Spectroscopy tools for PAT applications in the Pharmaceutical Industry

Spectroscopy tools for PAT applications in the Pharmaceutical Industry Spectroscopy tools for PAT applications in the Pharmaceutical Industry Claude Didierjean Sr. Technology and Applications Consultant Real Time Analytics Mettler Toledo AutoChem, Inc. claude.didierjean@mt.com

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

All the manufacturers use a heated ceramic source.

All the manufacturers use a heated ceramic source. Source All the manufacturers use a heated ceramic source. The composition of the ceramic and the method of heating vary but the idea is always the same, the production of a heated emitter operating at

More information

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES Chemistry 524--Final Exam--Keiderling Dec. 12, 2002 --4-8 pm -- 238 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted plus one 8.5 x 11 sheet

More information

Fourier Transform Infrared. Spectrometry

Fourier Transform Infrared. Spectrometry Fourier Transform Infrared. Spectrometry Second Editio n PETER R. GRIFFITH S JAMES A. de HASETH PREFACE x v CHAPTER 1 INTRODUCTION TO VIBRATIONAL SPECTROSCOPY 1 1.1. Introduction 1 1.2. Molecular Vibrations

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Molecular Spectroscopy In The Study of Wood & Biomass

Molecular Spectroscopy In The Study of Wood & Biomass Molecular Spectroscopy In The Study of Wood & Biomass Society of Wood Science and Technology 50th Annual Convention Knoxville, Tennessee June 10, 2007 Timothy G. Rials Forest Products Center The University

More information

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER c = c: speed of light 3.00 x 10 8 m/s (lamda): wavelength (m) (nu): frequency (Hz) Increasing E (J) Increasing (Hz) E = h h - Planck s constant

More information

The DialPath Solution an Easier Way to Analyze Liquids By FTIR. Yanqia Wang, Ph.D. Application Engineer - FTIR Agilent Technologies May 7, 2015

The DialPath Solution an Easier Way to Analyze Liquids By FTIR. Yanqia Wang, Ph.D. Application Engineer - FTIR Agilent Technologies May 7, 2015 The DialPath Solution an Easier Way to Analyze Liquids By FTIR Yanqia Wang, Ph.D. Application Engineer - FTIR Agilent Technologies May 7, 2015 Outline Background of FTIR Transmission Technology Traditional

More information

Infrared Spectroscopy

Infrared Spectroscopy Reminder: These notes are meant to supplement, not replace, the laboratory manual. Infrared Spectroscopy History and Application: Infrared (IR) radiation is simply one segment of the electromagnetic spectrum

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 4: Basic principles and Instrumentation for IR spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy Module 4: Basic principles and Instrumentation for IR spectroscopy CHE_P12_M4_e-Text TABLE OF CONTENTS

More information

Detection of trace contamination on metal surfaces using the handheld Agilent 4100 ExoScan FTIR

Detection of trace contamination on metal surfaces using the handheld Agilent 4100 ExoScan FTIR Detection of trace contamination on metal surfaces using the handheld Agilent 4100 ExoScan FTIR Ensuring ultimate cleanliness for maximum adhesion Application Note Author John Seelenbinder Agilent Technologies,

More information

IDENTIFICATION TESTS FOR DURACOR TABLETS

IDENTIFICATION TESTS FOR DURACOR TABLETS PAGE 1 OF 8 IDENTIFICATION TESTS FOR DURACOR TABLETS PAGE 2 OF 8 PROTOCOL APPROVALS Norvin Pharma Inc. Signature and Date Author Analytical Laboratory Approver Analytical Laboratory Group Leader Approver

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry

Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Chapter 4 Ultraviolet and visible spectroscopy Molecular Spectrophotometry Properties of light Electromagnetic radiation and electromagnetic spectrum Absorption of light Beer s law Limitation of Beer s

More information

CONFOCHECK. Innovation with Integrity. Infrared Protein Analysis FT-IR

CONFOCHECK. Innovation with Integrity. Infrared Protein Analysis FT-IR CONFOCHECK Infrared Protein Analysis Innovation with Integrity FT-IR CONFOCHECK: FT-IR System for Protein Analytics FT-IR Protein Analysis Infrared spectroscopy measures molecular vibrations due to the

More information

IR SPECTROSCOPY FOR BONDING SURFACE CONTAMINATION CHARACTERIZATION

IR SPECTROSCOPY FOR BONDING SURFACE CONTAMINATION CHARACTERIZATION IR SPECTROSCOPY FOR BONDING SURFACE CONTAMINATION CHARACTERIZATION INTRODUCTION Lee H. Pearson Thiokol Corporation Advanced Technology Brigham City, Utah 8432-77 Organic contaminants such as hydrocarbons

More information

FIRST PROOF FOURIER TRANSFORM INFRARED SPECTROSCOPY. Article Number: SOIL: Infrared Peaks of Interest. Introduction

FIRST PROOF FOURIER TRANSFORM INFRARED SPECTROSCOPY. Article Number: SOIL: Infrared Peaks of Interest. Introduction FOURIER TRANSFORM INFRARED SPECTROSCOPY 1 a0005 AU:1 FOURIER TRANSFORM INFRARED SPECTROSCOPY D Peak, University of Saskatchewan, Saskatoon, SK, Canada ß 2004, Elsevier Ltd. All Rights Reserved. infrared

More information

Supporting Information

Supporting Information 1 Supporting Information 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Materials and Methods Experiment In this study, an alloy IR probe which allowed us to get access to spectral

More information

Educational experiment package Volume 1. Molecular spectroscopy

Educational experiment package Volume 1. Molecular spectroscopy Educational experiment package Volume 1 Molecular spectroscopy Overview Thermo Fisher Scientific is proud to offer a variety of educational experiments for use with Fourier transform infrared (FTIR) spectrometers.

More information

Chem 524 Lecture Notes CD (Section 18) update 2011

Chem 524 Lecture Notes CD (Section 18) update 2011 Chem 5 Lecture Notes CD (Section 8) update For HTML of 5 notes, click here XV. Circular Dichroism A. Differential absorption of left and right circular polarized light by molecular transition. Measure

More information

Basic Aspects of the Technique and Applications of Infrared Spectroscopy of Peptides and Proteins

Basic Aspects of the Technique and Applications of Infrared Spectroscopy of Peptides and Proteins Chapter 1 Basic Aspects of the Technique and Applications of Infrared Spectroscopy of Peptides and Proteins Bal Ram Singh Department of Chemistry and Biochemistry, and Center for Marine Science and Technology,

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

Physicochemical Characterization: IR and UV-vis Spectroscopy

Physicochemical Characterization: IR and UV-vis Spectroscopy Abteilung Anorganische Chemie Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Physicochemical Characterization: IR and UV-vis Spectroscopy Friederike C. Jentoft Mitteldeutscher

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Acid + Base BOOM- Teacher Guide

Acid + Base BOOM- Teacher Guide Learning Objectives: Acid + Base BOOM- Teacher Guide Obtain knowledge on common environmental cleanup problems Obtain a general knowledge of ph and solubility Perform a ph test and analysis Perform a wet

More information

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry

Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry Chapter 13 An Introduction to Ultraviolet/Visible Molecular Absorption Spectrometry 13A Measurement Of Transmittance and Absorbance Absorption measurements based upon ultraviolet and visible radiation

More information

1901 Application of Spectrophotometry

1901 Application of Spectrophotometry 1901 Application of Spectrophotometry Chemical Analysis Problem: 1 Application of Spectroscopy Organic Compounds Organic compounds with single bonds absorb in the UV region because electrons from single

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Optical & Spectroscopic Insight into Rheology. SR Kim

Optical & Spectroscopic Insight into Rheology. SR Kim Optical & Spectroscopic Insight into Rheology SR Kim 14.11.2014 Contents Rheology and Microscopy Rheology and Simultaneous FT-IR Analysis 2 3 RHEOLOGY AND MICROSCOPY What does Rheology Do? Put a defined

More information

Infrared spectroscopy

Infrared spectroscopy Infrared spectroscopy Chapter content Theory Instrumentation Measurement techniques Midinfrared (MIR) Identification of organic compounds Quantitative analysis Applications in food analysis Nearinfrared

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy molecular spectroscopy Introduction to Fourier Transform Infrared Spectroscopy Part of Thermo Fisher Scientific Introduction What is FT-IR? FT-IR stands for Fourier Transform InfraRed, the preferred method

More information

Synthesis and Infrared Spectrum of Nitric Oxide 1

Synthesis and Infrared Spectrum of Nitric Oxide 1 Synthesis and Infrared Spectrum of Nitric Oxide 1 Purpose: Infrared spectroscopy is used to determine the force constant of the bond in nitric oxide. Prelab: Reading: Section 6.1 and 6.2 in Brown, LeMay,

More information

Anderson Materials Evaluation, Inc.

Anderson Materials Evaluation, Inc. Anderson Materials Evaluation, Inc. Materials Characterization & Failure Analysis Laboratory XPS, SEM/EDX, FTIR, Optical Microscopy, Thermal Analysis, Electrochemistry Email: Charles.Anderson@AndersonMaterials.com

More information

Optical density measurements automatically corrected to a 1-cm pathlength with PathCheck Technology

Optical density measurements automatically corrected to a 1-cm pathlength with PathCheck Technology APPLICATION NOTE Optical density measurements automatically corrected to a 1-cm pathlength with PathCheck Technology Introduction UV/VIS spectrophotometers and microplate readers differ fundamentally in

More information

Acid + Base BOOM. Learning Objectives: Background:

Acid + Base BOOM. Learning Objectives: Background: Acid + Base BOOM Learning Objectives: Obtain knowledge on common environmental cleanup problems Obtain a general knowledge of ph and solubility Perform a ph test and analysis Perform a wet chemical test

More information

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy Introduction to Fourier Transform Infrared Spectroscopy Introduction What is FTIR? FTIR stands for Fourier transform infrared, the preferred method of infrared spectroscopy. In infrared spectroscopy, IR

More information

FHI Lecture Series Modern Methods in Heterogeneous Catalysis: Transient Infrared Spectroscopy

FHI Lecture Series Modern Methods in Heterogeneous Catalysis: Transient Infrared Spectroscopy FHI Lecture Series Modern Methods in Heterogeneous Catalysis: Transient Infrared Spectroscopy Prof. Guido Mul University of Twente Thanks to : Dr. Gerben Hamminga (now BASF) Dr. Dirk Renckens (now ASML)

More information

Figure 1. Structures of compounds to be analyzed by IR.

Figure 1. Structures of compounds to be analyzed by IR. Experiment 4 IR Exercise Reading Assignment Mohrig Chapter 21 and watch IR videos online In this experiment, students will study the infrared (IR) spectra of compounds with different functional groups.

More information

FLS980 Series Reference Guide

FLS980 Series Reference Guide FLS980 Series Reference Guide Integrating Sphere for Measurements of Fluorescence Quantum Yields and Spectral Reflectance Revision 1 Copyrights Copyright 2016 Edinburgh Instruments Ltd. All rights reserved.

More information

Visible and IR Absorption Spectroscopy. Andrew Rouff and Kyle Chau

Visible and IR Absorption Spectroscopy. Andrew Rouff and Kyle Chau Visible and IR Absorption Spectroscopy Andrew Rouff and Kyle Chau The Basics wavelength= (λ) original intensity= Ι o sample slab thickness= dl Final intensity= I f ε = molar extinction coefficient -di=

More information

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION Conventional Centrifugal Methods Centrifugal sedimentation of particles suspended in a fluid is a well known method (1, 2)

More information

Learning Guide for Chapter 3 - Infrared Spectroscopy

Learning Guide for Chapter 3 - Infrared Spectroscopy Learning Guide for hapter 3 - Infrared Spectroscopy I. Introduction to spectroscopy - p 1 II. Molecular vibrations - p 3 III. Identifying functional groups - p 6 IV. Interpreting an IR spectrum - p 12

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Modern Techniques in Applied Molecular Spectroscopy

Modern Techniques in Applied Molecular Spectroscopy Modern Techniques in Applied Molecular Spectroscopy Edited by FRANCIS M. MIRABELLA Equistar Chemicals, LP A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Supporting information for. Imino-Chitosan Biodynamers

Supporting information for. Imino-Chitosan Biodynamers Supporting information for Imino-Chitosan Biodynamers Luminita Marin, a Bogdan C. Simionescu, a,b Mihail Barboiu c* a PetruPoni Institute of Macromolecular Chemistry of Romanian Academy 41A, Aleea Gr.

More information

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy rganic Spectra Infra Red Spectroscopy. D. Roth TERY and INTERPRETATIN of RGANI SPETRA. D. Roth Infra Red Spectroscopy Infrared spectroscopy (IR) is an analytical technique concerned with molecular vibrations

More information

Instruction Manual. HI Refractometer for Sucrose in Wine and Grape Products Measurements

Instruction Manual. HI Refractometer for Sucrose in Wine and Grape Products Measurements Instruction Manual HI 96811 Refractometer for Sucrose in Wine and Grape Products Measurements TABLE OF CONTENTS PRELIMINARY EXAMINATION... 2 GENERAL DESCRIPTION... 3 SPECIFICATIONS... 3 PRINCIPLE OF OPERATION...

More information

Infrared Spectroscopy. By Karli Huber Block 4

Infrared Spectroscopy. By Karli Huber Block 4 Infrared Spectroscopy By Karli Huber Block 4 What is this method used for? Both organic and inorganic chemistry find this method useful especially in forms involving industry, research, and discovery.

More information

Permeable Silica Shell through Surface-Protected Etching

Permeable Silica Shell through Surface-Protected Etching Permeable Silica Shell through Surface-Protected Etching Qiao Zhang, Tierui Zhang, Jianping Ge, Yadong Yin* University of California, Department of Chemistry, Riverside, California 92521 Experimental Chemicals:

More information

Quantitative determination of common types of asbestos by diffuse reflectance FTIR using the Agilent Cary 630 Spectrometer

Quantitative determination of common types of asbestos by diffuse reflectance FTIR using the Agilent Cary 630 Spectrometer materials analysis Quantitative determination of common types of asbestos by diffuse reflectance FTIR using the Agilent Cary 630 Spectrometer Solutions for Your Analytical Business Markets and Applications

More information

Hyphenated Spectroscopy Techniques

Hyphenated Spectroscopy Techniques Hyphenated Spectroscopy Techniques Thermal Analysis and Rheology Short Course Concord, NH April 10, 2018 The world leader in serving science Analytical Instruments Overview Chromatography & Mass Spectrometry

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Optical and THz investigations of mid-ir materials exposed

Optical and THz investigations of mid-ir materials exposed Optical and THz investigations of mid-ir materials exposed to alpha particle irradiation Dan Sporea 1*, Laura Mihai 1, Adelina Sporea 1, Ion Vâţã 2 1 National Institute for Laser, Plasma and Radiation

More information

Ruby crystals and the first laser A spectroscopy experiment

Ruby crystals and the first laser A spectroscopy experiment Introduction: In this experiment you will be studying a ruby crystal using spectroscopy. Ruby is made from sapphire (Al 2 O 3 ) which has been doped with chromium ions, Cr(3+). There are three sets of

More information

Instrumental Technique: Cuvette. Md Rabiul Islam

Instrumental Technique: Cuvette. Md Rabiul Islam Instrumental Technique: Cuvette Md Rabiul Islam 16-7-2016 What is cuvette? A cuvette is a small tube of circular or square cross section, sealed at one end, made of plastic, glass, or fused quartz (for

More information

Regular Reflectance and Transmittance Measurements of Transmissive Materials Using a STAR GEM Optical Accessory

Regular Reflectance and Transmittance Measurements of Transmissive Materials Using a STAR GEM Optical Accessory Regular Reflectance and Transmittance Measurements of Transmissive Materials Using a STAR GEM Optical Accessory 1,3 E.Kawate, 1,2 M.Hain 1 AIST, 1-1-1, Central 2, Umezono, Tsukuba, Ibaraki 305-8568, Japan

More information

Ligand Controlled Assembly of Hexamers, Dihexamers, and Linear Multihexamer Structures by the Engineered, Acylated, Insulin Degludec

Ligand Controlled Assembly of Hexamers, Dihexamers, and Linear Multihexamer Structures by the Engineered, Acylated, Insulin Degludec Supplementary material Ligand Controlled Assembly of Hexamers, Dihexamers, and Linear Multihexamer Structures by the Engineered, Acylated, Insulin Degludec D. B. Steensgaard*, G. Schluckebier, Holger M.

More information

Fourier Transform IR Spectroscopy

Fourier Transform IR Spectroscopy Fourier Transform IR Spectroscopy Absorption peaks in an infrared absorption spectrum arise from molecular vibrations Absorbed energy causes molecular motions which create a net change in the dipole moment.

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

COMPLEX FLOW OF NANOCONFINED POLYMERS

COMPLEX FLOW OF NANOCONFINED POLYMERS COMPLEX FLOW OF NANOCONFINED POLYMERS Connie B. Roth, Chris A. Murray and John R. Dutcher Department of Physics University of Guelph Guelph, Ontario, Canada N1G 2W1 OUTLINE instabilities in freely-standing

More information

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Hiroshi Onodera Application & Research Center, JEOL Ltd. Introduction um, PBB and PBDE) are subject to usage restrictions in Europe.

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

1 WHAT IS SPECTROSCOPY?

1 WHAT IS SPECTROSCOPY? 1 WHAT IS SPECTROSCOPY? 1.1 The Nature Of Electromagnetic Radiation Anyone who has been sunburnt will know that light packs a punch: in scientific terms, it contains considerable amounts of energy. All

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Handheld FTIR spectroscopy applications using the Agilent ExoScan 4100 FTIR with diffuse sample interface

Handheld FTIR spectroscopy applications using the Agilent ExoScan 4100 FTIR with diffuse sample interface Handheld FTIR spectroscopy applications using the Agilent ExoScan 4100 FTIR with diffuse sample interface Onsite, non-destructive analysis for geological, fabric, paint and plastic applications Application

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L11 page 1 Instrumental Chemical Analysis Infrared Spectroscopy Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester, 2016/2017 Infrared Spectroscopy

More information

Determination of Chemical Composition and Molecular Microstructures: Infrared Spectroscopy

Determination of Chemical Composition and Molecular Microstructures: Infrared Spectroscopy Determination of Chemical Composition and Molecular Microstructures: Infrared Spectroscopy 1 Infrared Spectroscopy Infrared spectrometry is applied to the qualitative and quantitative determination of

More information

Electronic Supplementary Information. Polysulfide Speciation and Electrolyte Interactions in Lithium-Sulfur Batteries with In Situ

Electronic Supplementary Information. Polysulfide Speciation and Electrolyte Interactions in Lithium-Sulfur Batteries with In Situ Electronic Supplementary Information Polysulfide Speciation and Electrolyte Interactions in Lithium-Sulfur Batteries with In Situ Infrared Spectroelectrochemistry Caitlin Dillard, Arvinder Singh and Vibha

More information

Chemical Composition Monitoring Using An In-Situ Infrared Probe

Chemical Composition Monitoring Using An In-Situ Infrared Probe Technical Note AN 904 Rev. E Chemical Composition Monitoring Using An In-Situ Infrared Probe Walter M. Doyle This paper describes a new approach to process analysis utilizing an infrared probe which can

More information

To be covered (and why) Spectroscopy of Proteins. UV-Vis Absorption. UV-Vis Absorption. Spectra

To be covered (and why) Spectroscopy of Proteins. UV-Vis Absorption. UV-Vis Absorption. Spectra To be covered (and why) Spectroscopy of Proteins General considerations UV-Vis Absorption quantitation Fluorescence hydrophobicity Foldedness FT-Infrared Foldedness ircular Dichroism Foldedness NMR (a

More information

FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR)

FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) I(k)= 0[I(Δd) I( )]cos(2πkδd)dδd FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) Colorado SESHA, 2018 George Evans, CIH ESH-POC Carrie Wyse, ESH-POC Shames Stevens, SERF Chief Engineer What is FTIR spectroscopy?

More information

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites Robert Heintz, Mark Wall, Jennifer Ramirez, Stephan Woods Thermo Fisher Scientific, Madison WI Overview Purpose:

More information

Supporting Information

Supporting Information Supporting Information Aggregated States of Chalcogenorhodamine Dyes on Nanocrystalline Titania Revealed by Doubly-Resonant Sum Frequency Spectroscopy Sanghamitra Sengupta, Leander Bromley III and Luis

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

Using Calibrated Specular Reflectance Standards for Absolute and Relative Reflectance Measurements

Using Calibrated Specular Reflectance Standards for Absolute and Relative Reflectance Measurements Using Calibrated Specular Reflectance Standards for Absolute and Relative Reflectance Measurements Applications Overview here are two fundamental techniques for measuring specular reflectance with a UV/VIS/NIR

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

IR-LC Deposition and Detection System. Polymer Deformulation and Additive Analysis by a Single GPC-IR Run

IR-LC Deposition and Detection System. Polymer Deformulation and Additive Analysis by a Single GPC-IR Run DiscovIR-GPC DiscovIR-L IR-LC Deposition and Detection System Application Note 42 Polymer Deformulation and Additive Analysis by a Single GPC-IR Run ABSTRACT This application note describes the use of

More information

PHY 192 Optical Activity Spring

PHY 192 Optical Activity Spring PHY 192 Optical Activity Spring 2017 1 Optical Activity Introduction The electric (E) and magnetic (B) vectors in a traveling electromagnetic wave (such as light for example) oscillate in directions perpendicular

More information

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes *

Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes * OpenStax-CNX module: m34660 1 Fourier Transform Infrared Spectroscopy of Metal Ligand Complexes * Jiebo Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information