US Emissions of CO 2

Size: px
Start display at page:

Download "US Emissions of CO 2"

Transcription

1 US Emissions of CO 2 If CO 2 is participating in the enhanced greenhouse effect, it would be good to know how much is being made with respect to how much C is in the world 6 Gt Gt=gigatonne (a billion (10 9 ) metric tons, 2200 billion pounds (2.2x10 12 )

2 A Different Look at US CO 2 Emissions (2002) each # = 1 million metric tons Sources End Uses

3 Carbon (C) Cycle De-reforestation 1 Gt/year Burning fossil fuels 6 Gt/year Total: 7 Gt/year Net to ocean 2 Gt/year Respiration-Photosynthesis 1 Gt/year Total: 3 Gt/year ~3-4 Gt C/year addition to atmosphere Gt=gigatonne (a billion metric tons (10 9 ), 2200 billion pounds (2.2x10 12 )

4 How much CO 2 do you emit when you drive to Denver? 60 miles 1 gal 20 miles 6 lbs 1 gal 1 kg 2.2 lbs 1000 g 1 kg = 8,200 g gasoline used, but we want to know how much CO 2 was produced while driving that distance Molar mass of gasoline? (assume C 8 H 18 ) 8x12.0 g = 96.0 g 18x1.0 g = 18.0 g = g/mol C 8 H 18 Converting from C 8 H 18 to CO 2? 2 C 8 H O 2 à 16 CO H 2 O 2 moles C 8 H 18 = 16 moles CO 2 Molar mass of CO 2? 1x12.0 g = 12.0 g 2x16.0 g = 32.0 g = 44.0 g/mol CO 2 Building Solution here: 8,200 g gasoline 1 mol C 8 H g 16 mol CO 2 2 mol C 8 H g CO 2 1 mol CO 2 = 25,000 g CO 2

5 How much CO 2 is emitted by a coal train worth of coal? Coal train: 120 cars 120 tons/car=14,400 tons 1 ton = 1016 kg kg Coal Molar mass of coal? (assume C 135 H 96 O 9 NS) Coal train= kg Converting from C 135 H 96 O 9 NS to CO 2? mole 1.906kg = moles grams à moles à moles à grams 135x12.0 g = g 96x1.0 g = 96.0 g 9x16.0 g = g 1x14.0 g = 14.0 g 1x32.0 g = 32.0 g = g/mol C 135 H 96 O 9 NS 2 C 135 H 96 O 9 NS O 2 à 270 CO H 2 O + 2 NO SO 2 2 moles C 135 H 96 O 9 NS = 270 moles CO 2 Molar mass of CO 2? 1x12.0 g = 12.0 g 2x16.0 g = 32.0 g = 44.0 g/mol CO moles Coal 270 moles CO 2 2 moles Coal 44.0 g CO 2 mole CO 2 = g CO 2 (1Gt = g) 6.6 Gt=150,000 coal trains

6 Other Greenhouse Gases and their Relative Effects Important factors: Concentration Lifetime (connected to concentration & reactivity) Light absorption efficiency

7 Soot & smoke limit incoming light Projecting the Future: Climate Models equilibrium CO 2 + H 2 O H 2 CO 3 Product favored by pressure, higher concentration in deep ocean Carbonic acid, the carbonate of carbonated beverages Reactants favored by higher temperatures Albedo-ratio of radiation reflected relative to the amount incident on the surfaceimpacted by what s on the surface. Deforestation, melting snow, etc. Photosynthesis dependent upon CO 2 concentration & temperature

8 Soda Siphon Demonstrates: Refrigeration/steam turbine Temperature/Pressure dependence of CO 2 dissolving in oceans equilibrium Acids & Bases 22

9 Soda Siphon: Refrigeration 5. Cold HFC gas is sucked up by the compressor, and the cycle repeats 4. Liquid HFC vaporizes (light blue), its temperature dropping to -27 F. This makes the inside of the refrigerator cold (A) 1. Compressor (B) compresses HFC gas. (compressed gas heats up as it is pressurized (orange)) 2. Coils on the back of the refrigerator dissipate HFC gas heat. The HFC gas condenses into HFC liquid (purple) at high pressure 3. High-pressure HFC liquid flows through the expansion valve (C). (a small hole). On one side of the hole is high-pressure HFC liquid. On the other side of the hole is a lowpressure area (the compressor is pumping gas out of that side). In the Soda Siphon, a small needle punctures the high pressure CO 2 cartridge. Expansion into our relative vacuum cools the CO 2 gas and the cartridge

10 Soot & smoke limit incoming light Projecting the Future: Climate Models equilibrium CO 2 + H 2 O H 2 CO 3 Product favored by pressure, higher concentration in deep ocean Carbonic acid, the carbonate of carbonated beverages Reactants favored by higher temperatures Albedo-ratio of radiation reflected relative to the amount incident on the surfaceimpacted by what s on the surface. Deforestation, melting snow, etc. Photosynthesis dependent upon CO 2 concentration & temperature greenhouse-gases.html

11 Soda Siphon: Acid-Base Chemistry While discussing the carbon cycle, we talk about carbon going into the ocean & coming out of the ocean & that this was an equilibrium (Fig. 3.17) Gaseous CO 2 dissolves in the water & vaporizes from water CO 2 (g) + H 2 O (l) Dissolved CO 2 reacts with H 2 O forming H 2 CO 3 (carbonic acid) CO 2 (aq) + H 2 O (l) Dissolved H 2 CO 3 reacts with H 2 O forming HCO 3 - (bicarbonate) and H 3 O + (hydronium ion) H 2 CO 3 (aq) + H 2 O (l) CO 2 (aq) H 2 CO 3 (aq) HCO 3 - (aq) + H 3 O + (aq) Our definition of an acid is a substance that forms hydronium ions (H 3 O + ) when dissolved in water Hydronium ion reacts with anthocyanin, the product is a different color Blue-green red 25

12 Concentration of Acid Each CO 2 cartridge: 8.0 g CO 2 mol CO 2 44 g CO 2 = 0.18 moles CO moles CO 2 in 1 L aqueous solution = 0.18 M CO 2 [CO 2 ]=0.18M If the CO 2 equilibria reproduced below were to all favor products then we would have ~0.18 M H 3 O + (this would correspond to a ph of ~0.7) CO 2 (g) + H 2 O (l) CO 2 (aq) + H 2 O (l) H 2 CO 3 (aq) + H 2 O (l) CO 2 (aq) H 2 CO 3 (aq) HCO 3 - (aq) + H 3 O + (aq) In reality [H 3 O + ] = ~1.9x10-4 M, corresponding to a ph of ~3.72 (at the pressure of our Seltzer bottle) At atmospheric pressure [H 3 O + ] = ~2.5x10-6 M (a ph of ~5.6) 26

Chapman Cycle. The cycle describes reactions of O 2 and O 3 in stratosphere

Chapman Cycle. The cycle describes reactions of O 2 and O 3 in stratosphere Chapman Cycle The cycle describes reactions of O 2 and O 3 in stratosphere Even though reactions are happening, the concentration of O 3 remains constant This is an example of a dynamic equilibrium or

More information

Bases = Anti-Acids. The process is called neutralization (neither acidic nor basic) O H 3 2H 2

Bases = Anti-Acids. The process is called neutralization (neither acidic nor basic) O H 3 2H 2 Bases = Anti-Acids Example: HCl(aq) + H 2 (l) à H 3 + (aq) + Cl - (aq) NaH(aq) à Na + (aq) + H - (aq) H 3 + (aq) + H - (aq) à 2H 2 (l) Net: HCl(aq) + NaH(aq) à Na + (aq) + Cl - (aq) + H 2 (l) The process

More information

Chapter 3: STOICHIOMETRY: MASS, FORMULAS, AND REACTIONS

Chapter 3: STOICHIOMETRY: MASS, FORMULAS, AND REACTIONS Chapter 3: STOICHIOMETRY: MASS, FORMULAS, AND REACTIONS Problems: 3.1-3.8, 3.11, 3.14-3.90, 3.103-3.120, 3.122-3.125, 3.128-3.131, 3.134, 3.137-36.138, 3.140-3.142 3.2 THE MOLE Stoichiometry (STOY-key-OM-e-tree):

More information

baking soda a solid material in the form of a white powder; also called sodium bicarbonate (IG)

baking soda a solid material in the form of a white powder; also called sodium bicarbonate (IG) FOSS Mixtures and Solutions Module Glossary NGSS Edition 2019 analyze to examine carefully (IG) atmosphere the layer of gases surrounding Earth (air) baking soda a solid material in the form of a white

More information

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition Chemistry for Changing Times, Thirteenth Edition Lecture Outlines Chemical Accounting John Singer, Jackson Community College Chemical Sentences: Equations Chemical equations represent the sentences in

More information

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry Chemistry I Chapter 9 Stoichiometry Objective Sheet Equation 1 2 C 2 H 2 (g) + 5 O 2 (g) 4 CO 2 (g) + 2 H 2 O (g), at STP C 2 H 2 (acetylene) 26 g/mol O 2 32 g/mol CO 2 44 g/mol H 2 O 18 g/mol Objectives:

More information

Which bottle goes flat faster, A or B?

Which bottle goes flat faster, A or B? Evan P. Silberstein, 2008 Consider the two soda bottles to the right: o CO 2 molecules are moving randomly in all directions. o Some CO 2 molecules are moving out of the soda into the space above. o Other

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 Multiple-choice questions (3 points each): Write the letter of the best answer on the line beside the question. Give only one answer for each question. B 1) If 0.1

More information

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126 Chapter 5: Thermochemistry Problems: 5.1-5.95, 5.97-98, 5.100, 5.106, 5.108, 5.118-5.119, 5.121, 5.126 Energy: Basic Concepts and Definitions energy: capacity to do work or to produce heat thermodynamics:

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container?

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container? 1. Which gas law states that the volume of a fixed mass of a gas is directly proportional to its Kelvin temperature if the pressure is kept constant? A. Boyle s law B. Charles law C. Dalton s law D. Gay-Lussac

More information

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011 NAME Student ID No. Section (circle one): A01 (Dr. Lipson) A02 (Dr. Briggs) A03 (Dr. Brolo) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Term Test I February 4, 2011 Version A This test has two parts:

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Energy Intro. Carry out chemical transformations which change the types (and strengths of) chemical bonds

Energy Intro. Carry out chemical transformations which change the types (and strengths of) chemical bonds Energy Intro ow do we access chemical energy? Carry out chemical transformations which change the types (and strengths of) chemical bonds Why do combustion reactions give off energy? X-O bonds tend to

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 6 Thermochemistry 許富銀

Chapter 6 Thermochemistry 許富銀 Chapter 6 Thermochemistry 許富銀 6.1 Chemical Hand Warmers Thermochemistry: the study of the relationships between chemistry and energy Hand warmers use the oxidation of iron as the exothermic reaction: Nature

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

1. Base your answer to the following question on information below and on your knowledge of chemistry.

1. Base your answer to the following question on information below and on your knowledge of chemistry. 1. Base your answer to the following question on information below and on your knowledge of A sample of nitric acid contains both ions and ions. This sample has a ph value of 1. Write a name of the positive

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Environmental chemistry

Environmental chemistry Page 1 of 5 Environmental chemistry Almost every pollution problem that we face has a chemical basis. Even the qualitative descriptions of such problems as the greenhouse effect, ozone depletion, toxic

More information

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS S. I. Abdel-Khalik (2014) 1 CHAPTER 6 -- The Second Law of Thermodynamics OUTCOME: Identify Valid (possible) Processes as those that satisfy both the first and

More information

Ch 9 Practice Problems

Ch 9 Practice Problems Ch 9 Practice Problems 1. One mole of an ideal gas is expanded from a volume of 1.50 L to a volume of 10.18 L against a constant external pressure of 1.03 atm. Calculate the work. (1 L atm = 101.3 J) A)

More information

Temperature C. Heat Added (Joules)

Temperature C. Heat Added (Joules) Now let s apply the heat stuff to real-world stuff like phase changes and the energy or cost it takes to carry it out. A heating curve...a plot of temperature of a substance vs heat added to a substance.

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name:

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name: Test Booklet Subject: SC, Grade: HS Student name: Author: California District: California Released Tests Printed: Thursday January 16, 2014 1 Theoretically, when an ideal gas in a closed container cools,

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: Solutions In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Agitation prevents settling

More information

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name:

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Remote Sensing C Science Olympiad North Regional Tournament at the University of Florida Rank: Points: Name(s): Team Name: School Name: Team Number: Instructions: DO NOT BEGIN UNTIL GIVEN PERMISSION. DO

More information

Chapter 3: Chemical Reactions and the Earth s Composition

Chapter 3: Chemical Reactions and the Earth s Composition Chapter 3: Chemical Reactions and the Earth s Composition Problems: 3.1-3.3, 3.5, 3.11-3.86, 3.95-3.115, 3.119-3.120, 3.122, 3.125-3.128, 3.132, 3.134, 3.136-3.138-3.141 3.2 The Mole Stoichiometry (STOY-key-OM-e-tree):

More information

Thermodynamics. Thermodynamics1.notebook. December 14, Quality vs Quantity of Energy

Thermodynamics. Thermodynamics1.notebook. December 14, Quality vs Quantity of Energy Thermodynamics Quality vs Quantity of Energy Your textbook discusses the idea that although energy is conserved we face an energy crisis because the quality of energy we have available to do work like

More information

Fig. 3.2 on Page 101. Warming. Evidence for CO 2. History of Global Warming-2. Fig. 3.2 Page 101. Drilled cores from ocean floors

Fig. 3.2 on Page 101. Warming. Evidence for CO 2. History of Global Warming-2. Fig. 3.2 Page 101. Drilled cores from ocean floors Chemistry in Context: Chapter 3:The Chemistry of Global Warming Practice Problems: All Ch. 3 problems with the blue codes or answers on Page 521. Venus Atmospheric pressure is 90x that of Earth 96% CO

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Choose a letter to fill in the blanks. Use choices as many times as you wish. Only one choice is needed per blank. All are 3 points each.

Choose a letter to fill in the blanks. Use choices as many times as you wish. Only one choice is needed per blank. All are 3 points each. Part I Short Answer Choose a letter to fill in the blanks. Use choices as many times as you wish. Only one choice is needed per blank. All are 3 points each. 1. A. ammonia D. HFCs B. CFCs E. NONE of these

More information

8 th Grade Integrated Science Curriculum

8 th Grade Integrated Science Curriculum Date Hobbs Science By being embedded throughout the curriculum, these Processing Skills will be addressed throughout the year. 8.1 Scientific Thinking and Practice 1. Use scientific methods to develop

More information

Dec 4 9:41 AM. Dec 4 9:41 AM. Dec 4 9:42 AM. Dec 4 9:42 AM. Dec 4 9:44 AM. Dec 4 9:44 AM. Mostly coal, petroleum and natural gas

Dec 4 9:41 AM. Dec 4 9:41 AM. Dec 4 9:42 AM. Dec 4 9:42 AM. Dec 4 9:44 AM. Dec 4 9:44 AM. Mostly coal, petroleum and natural gas Quality vs Quantity of Energy Your textbook discusses the idea that although energy is conserved we face an energy crisis because the quality of energy we have available to do work like heat our homes

More information

Gateway 125,126,130 Fall 2006 Exam 2 KEY p1. Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu)

Gateway 125,126,130 Fall 2006 Exam 2 KEY p1. Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu) Gateway 125,126,130 Fall 2006 Exam 2 KEY p1 Gateway General Chemistry 125/126/130 Exam 2 October 31, 2006 (8:00-10:00pm) Name KEY Section (circle one): 601 (Colin) 602 (Brannon) 603 (Mali) 604 (Xiaomu)

More information

Energetics. Topic

Energetics. Topic Energetics Topic 5.1 5.2 Topic 5.1 Exothermic and Endothermic Reactions?? total energy of the universe is a constant if a system loses energy, it must be gained by the surroundings, and vice versa Enthalpy

More information

Reference pg and in Textbook

Reference pg and in Textbook Reference pg. 154-164 and 188-202 in Textbook Combustion Reactions During combustion (burning) of fossil fuels, collisions between the molecules of the fuel and oxygen result in the formation of new molecules.

More information

The reactions we have dealt with so far in chemistry are considered irreversible.

The reactions we have dealt with so far in chemistry are considered irreversible. 1. Equilibrium Students: model static and dynamic equilibrium and analyse the differences between open and closed systems investigate the relationship between collision theory and reaction rate in order

More information

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark)

1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? D. Diffraction (Total 1 mark) 1. What is the phenomenon that best explains why greenhouse gases absorb infrared radiation? A. Resonance B. Interference C. Refraction D. Diffraction 2. In which of the following places will the albedo

More information

XI. the natural carbon cycle. with materials from J. Kasting (Penn State)

XI. the natural carbon cycle. with materials from J. Kasting (Penn State) XI. the natural carbon cycle with materials from J. Kasting (Penn State) outline properties of carbon the terrestrial biological cycle of carbon the ocean cycle of carbon carbon in the rock cycle overview

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated?

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated? How can homogeneous and heterogeneous mixtures be 1. classified? 2. separated? 1. HETEROGENEOUS MIXTURE 2. COLLOID 3. EMULSION 4. SUSPENSION 5. FILTRATION 6. TYNDALL EFFECT 7. HOMOGENEOUS MIXTURE 8. SOLUTION

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta

Chapter 15: Chemical Equilibrium. Chem 102 Dr. Eloranta Chapter 15: Chemical Equilibrium Chem 102 Dr. Eloranta Equilibrium State in which competing processes are balanced so that no observable change takes place as time passes. Lift Gravity Sometimes called

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

Ocean Acidification in a Cup Materials

Ocean Acidification in a Cup Materials Ocean Acidification in a Cup Ocean acidification is a problem that humans will have to deal with as we release more and more carbon dioxide into the atmosphere. This activity demonstrates how water can

More information

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold.

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change The Archean is thought to have been warmer,

More information

Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions Answers

Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions Answers Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions 1980 2010 - Answers 1982 - #5 (a) From the standpoint of the kinetic-molecular theory, discuss briefly the properties of gas molecules

More information

The Chemistry of Global Warming

The Chemistry of Global Warming The Chemistry of Global Warming Venus Atmospheric pressure is 90x that of Earth 96% CO 2 and sulfuric acid clouds Average temperature = 450 C Expected temperature based on solar radiation and distance

More information

Name: Applied Physics II Exam 2 Winter Multiple Choice ( 8 Points Each ):

Name:   Applied Physics II Exam 2 Winter Multiple Choice ( 8 Points Each ): Name: e-mail: Applied Physics II Exam 2 Winter 2006-2007 Multiple Choice ( 8 Points Each ): 1. A cowboy fires a silver bullet ( specific heat c = 234 J / kg O C ) with a muzzle speed of 200 m/s into a

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Lecture Presentation Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry: How Much Carbon Dioxide? The balanced chemical equations for fossilfuel combustion reactions provide the

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Investigating Planets Name: Block: E1:R6

Investigating Planets Name: Block: E1:R6 FYI: Planetary Temperatures and Atmospheres Read FYI: A Planet s Temperature, The Importance of an Atmosphere, and The Greenhouse Effect As you read answer the following questions about the readings: Word/Term

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

Answer: Volume of water heated = 3.0 litre per minute Mass of water heated, m = 3000 g per minute Increase in temperature,

Answer: Volume of water heated = 3.0 litre per minute Mass of water heated, m = 3000 g per minute Increase in temperature, Question A geyser heats water flowing at the rate of 3.0 litres per minute from 2 7 C to 77 C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Take Home Semester 2 Practice Test for Acc Chem MM 15-16

Take Home Semester 2 Practice Test for Acc Chem MM 15-16 Take Home Semester 2 Practice Test for Acc Chem MM 15-16 Thermochemistry 1. Determine ΔHrxn. 2SO2(g) + O2(g) 2SO3(g) a) 98.9 b) 98.9 c) 197.8 d) 197.8 ΔHf o SO2(g) 296.8 kj/mol SO3(g) 395.7 kj/mol O2(g)

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium

Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium Chapter 7 Chemical Reactions: Energy, Rates, and Equilibrium Introduction This chapter considers three factors: a) Thermodynamics (Energies of Reactions) a reaction will occur b) Kinetics (Rates of Reactions)

More information

Accelerated Chemistry Semester 2 Review Sheet

Accelerated Chemistry Semester 2 Review Sheet Accelerated Chemistry Semester 2 Review Sheet The semester test will be given in two parts. The first part is a performance assessment and will be given the day before the semester test. This will include

More information

Chemistry 500: Chemistry in Modern Living. Topic 3: The Chemistry of Global Warming. Molecular Structures and Moles

Chemistry 500: Chemistry in Modern Living. Topic 3: The Chemistry of Global Warming. Molecular Structures and Moles Chemistry 500 Dr. unter s Class Topic 3. Chemistry 500: Chemistry in Modern Living 1 Topic 3: The Chemistry of Global Warming Molecular Structures and Moles Chemistry in Context, 2 nd Edition: Chapter

More information

Edexcel Chemistry A-level

Edexcel Chemistry A-level Edexcel Chemistry A-level Topic 5 - Formulae, Equations and Amounts of Substance Flashcards What is the symbol for amount of substance? What is the symbol for amount of substance? n What is the unit used

More information

Name Energy Test period Date

Name Energy Test period Date Name Energy Test period Date 1. The temperature 30. K expressed in degrees Celsius is 1) 243ºC 2) 243ºC 3) 303ºC 4) 303ºC 2. The potential energy diagram for a chemical reaction is shown below. 4. A sample

More information

Section 3 Environmental Chemistry

Section 3 Environmental Chemistry Section 3 Environmental Chemistry 1 Environmental Chemistry Definitions Chemical Reactions Stoichiometry Photolytic Reactions Enthalpy and Heat of Reaction Chemical Equilibria ph Solubility Carbonate Systems

More information

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per:

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Humans use energy for a variety of purposes, some that are necessary and some that are not. To address the questions

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry AP Chemistry A. Allan Chapter Six Notes - Thermochemistry 6.1 The Nature of Energy A. Definition 1. Energy is the capacity to do work (or to produce heat*) a. Work is a force acting over a distance (moving

More information

1/14/2019. INTRODUCTIONS Part 1. INTRODUCTIONS part 2. Weather and Climate Jim Keller & Paul Belanger. Classroom assistant: Fritz Ihrig

1/14/2019. INTRODUCTIONS Part 1. INTRODUCTIONS part 2. Weather and Climate Jim Keller & Paul Belanger. Classroom assistant: Fritz Ihrig Weather and Climate Jim Keller & Paul Belanger Classroom assistant: Fritz Ihrig Week 1: January 15 th, 2019 1 INTRODUCTIONS Part 1 Fritz Ihrig; classroom assistant, liaison to OLLI: fgihrig@msn.com ; h.

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CP Chem Review 2 Matching Match each item with the correct statement below. a. activated complex d. activation energy b. reaction rate e. free energy c. inhibitor 1. the minimum energy colliding particles

More information

Unit 14 Calculations for Chemical Equations

Unit 14 Calculations for Chemical Equations Unit 14 Calculations for Chemical Equations INTRODUCTION The most often encountered problem in chemistry is one that involves a balanced chemical reaction. Almost all areas of chemistry deal with reactions

More information

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 Note Page numbers refer to Daniel Jacob s online textbook: http://acmg.seas.harvard.edu/publications/ jacobbook/index.html Atmos = vapor + sphaira

More information

INTRODUCTIONS Part 1

INTRODUCTIONS Part 1 Weather and Climate Jim Keller & Paul Belanger Classroom assistant: Fritz Ihrig Week 1: January 15 th, 2019 1 INTRODUCTIONS Part 1 Fritz Ihrig; classroom assistant, liaison to OLLI: fgihrig@msn.com ; h.

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels Thermochemistry Understanding Heats of Reaction - Energy and Its Units - Heat of Reaction - Enthalpy and Enthalpy Change - Thermochemical Equations - Applying Stoichiometry to Heats of Reaction - Measuring

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

Edexcel Chemistry Checklist

Edexcel Chemistry Checklist Topic 1. Key concepts in chemistry Video: Developing the atomic model Describe how and why the atomic model has changed over time. Describe the difference between the plum-pudding model of the atom and

More information

Ideal Gas & Gas Stoichiometry

Ideal Gas & Gas Stoichiometry Ideal Gas & Gas Stoichiometry Avogadro s Law V a number of moles (n) V = constant x n Constant temperature Constant pressure V 1 /n 1 = V 2 /n 2 Ammonia burns in oxygen to form nitric oxide (NO) and water

More information

Heat engines and the second law of thermodynamics

Heat engines and the second law of thermodynamics Heat engines and the second law of thermodynamics Thermodynamic cycles A thermodynamic cycle is a series of processes which change the volume, temperature and pressure of a gas, but which at the end return

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Unique nature of Earth s atmosphere: O 2 present photosynthesis

Unique nature of Earth s atmosphere: O 2 present photosynthesis Atmospheric composition Major components N 2 78% O 2 21% Ar ~1% Medium components CO 2 370 ppmv (rising about 1.5 ppmv/year) CH 4 1700 ppbv H 2 O variable Trace components H 2 600 ppbv N 2 O 310 ppbv CO

More information

FORM A. Answer d. b. ideal gas versus non-ideal (or real) gas: (5)

FORM A. Answer d. b. ideal gas versus non-ideal (or real) gas: (5) Chem 130 Name Exam 1, Ch 5-6 October 1, 011 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 52 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 3 TEST REVIEW 1. Water at a temperature of 0 C is kept in a thermally insulated container.

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet

8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet 8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet Required: READ Tsokos, pp 434-450 Hamper pp 294-307 SL/HL Supplemental: none REMEMBER TO. Work through all of the example problems in the texts

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2

1. Balance the following chemical equations: a. C 8 H 18 + O 2 à CO 2 + H 2 O. b. B 5 H 9 + O 2 à B 2 O 3 + H 2 O. c. S 8 + Cl 2 à S 2 Cl 2 EXAM 2 PRACTICE QUESTIONS NOTE- THIS IS ONLY A SELECTION OF POSSIBLE TYPES OF QUESTIONS: REFER TO THE EXAM 2 REVIEW GUIDELINES FOR THE LIST OF LEARNING TARGETS. There will likely be other questions on

More information

Chapter See reference Table 1.5 on page 14. Answers are in the back of the book.

Chapter See reference Table 1.5 on page 14. Answers are in the back of the book. Highland High School AP Chemistry Summer Assignment Answer Key Answers to the odd problems are found in the back of the text book. Additional explanation or work for the odd problems can be found below,

More information

Fourier Transform Infrared Spectroscopy Postlab Last modified: June 17, 2014

Fourier Transform Infrared Spectroscopy Postlab Last modified: June 17, 2014 Fourier Transform Infrared Spectroscopy Postlab Last modified: June 17, 2014 1) Summarize your results in the following table: v/v % MTBE in gasoline v/v % ethanol in vodka v/v % ethanol in mouthwash 2)

More information

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter

10.2 Mole-Mass and Mole- Volume Relationships. Chapter 10 Chemical Quantities. Volume Relationships The Mole: A Measurement of Matter Chapter 10 Chemical Quantities 101 The Mole: A Measurement of Matter 102 Mole-Mass and Mole- 103 Percent Composition and Chemical Formulas 1 http://wwwbrightstormcom/science/chem istry/chemical-reactions/molar-mass/

More information