An Improved Extractor for Dual-Flow Extraction. Hideyuki NISHIZAWA, Yukako WATANABE, Sakiko OKIMURA and

Size: px
Start display at page:

Download "An Improved Extractor for Dual-Flow Extraction. Hideyuki NISHIZAWA, Yukako WATANABE, Sakiko OKIMURA and"

Transcription

1 ANALYTICAL SCIENCES JUNE 1989, VOL An Improved Extractor for Dual-Flow Extraction Hideyuki NISHIZAWA, Yukako WATANABE, Sakiko OKIMURA and Kyoritsu College of Pharmacy, Shibakoen, Minato, Tokyo 105, Japan Yoshihiro ABE An improved apparatus for dual-flow countercurrent extraction was constructed. Further, a simple method to evaluate the extractor was developed, by which the effective plate number could be calculated by a couple of measurements of fractional recoveries. To find the optimum operation condition, an apparatus with a shorter column (10 cm in length) was prepared, the efficiency of which was evaluated as being about one plate per cm of the column length by the method. It was also shown that the distribution constant of a compound could be calculated from the fractional recoveries measured by dual-flow countercurrent extraction. The distribution constants, thus obtained, agreed with values determined independently by liquid-liquid chromatography, which settled theoretical correlations between chromatography and extraction. Keywords Dual-flow countercurrent extraction, extraction extractor, liquid particle chromatography, liquid particle We previously reported a new-type liquid-liquid chromatography and named it liquid particle chromatography (LPC)', the principle of which involved the application of that used in countercurrent extraction, reported by Schutze et al.2 Their apparatus was constructed by inserting a rod into a pipe; its rotation (driven by a rotary motor) generated liquid particles of the dispersed phase in the continuous phase. Though the extractor used no more than 10 effective extraction plates, acids in the petroleum oil could be successfully separated. The efficiency of the column of LPC (60 cm in length) was not sufficient for chromatographic separation, but the results prompted us to improve the apparatus for dual-flow countercurrent extraction with a greater number of plates. Bartels3 and Rometsch4 had shown that dual-flow countercurrent extraction is a very efficient technique for the separation of mixtures. However, this method has not been widely used, because there has not existed a simple and efficient apparatus for laboratory use. We presently wish to report on an improvement in the dual-flow countercurrent extractor, working principle of which is similar to that of Schutze's. The extractors could be operated continuously with a large number of plates (approximately 100) by selecting the sizes of the inner and the outer pipes, using magnets for rotation and adopting pumps for accurate flow rates that are obtainable today. To determine the optimum operating condition, it was necessary to measure the efficiency of the extractor. Although there are some experimental methods available to evaluate a countercurrent extractor6, by which the plate number can be calculated graphically, they are not practical for measurements of the efficiency of an apparatus with high plate numbers (>10). Based on the theoretical investigatious of Bartels3 we developed a simple method to estimate the efficiency of the extractor. That is, a single calculation by an equation using a couple of values of fractional recoveries provides the effective plate number of the extractor without using graphical calculations. There may also be experimental difficulties in measuring the low concentration of the recovered solution from an extractor with a large number of plates. We decided to calculate the plate number per unit length of the column of the extractor using a shortcolumn apparatus with only a few plates. Here we describe: (1) a simple method to evaluate a countercurrent extractor with theoretical investigations and (2) a method to measure the effective number of plates per unit length of the improved apparatus with a short column apparatus. The improved apparatus with a large number of plates and its applications are detailed in the following report. We would like to name this extraction technique liquid particle extraction (LPX). Theory Method for the calculation of the number of theoretical

2 340 ANALYTICAL SCIENCES JUNE 1989, VOL. 5 Assuming that a solute is fed from the top of the extractor as an queous solution, which is the case when m=1 in Fig. 1, Eq. (4) reduces to E-1 Rhf - E n+1 _ 1 (5) where Rhf indicates the fractional recovery of the aqueous phase, that is, the ratio of the quantity (per unit time) in the aqueous extract and that in the initial feeding solution. Similarly, if a solute is fed from the bottom of the extractor as an organic solution, the fractional recovery in the organic phase (Rsf) is given by Eq. (3) by substituting 1 for n: Fig. 1 Ideal diagram of a dual-flow countercurrent extractor. U This diagram is slightly modified from the reported one.3 H, aqueous phase; S, organic phase; f, sample solution; w, organic extract; b, aqueous extract. plates from the fractional recoveries According to Bartels et a1.3 when a solute is introduced continuously at the middle point of a dualflow countercurrent extractor (f in Fig. 1), the ratio of the amount of solute extracted to the organic phase (w) to the water phase (b) in its stationary state can be described as w (En- 1)Em b = Em_ 1 (1) (w/b=n/m,when E= 1) where n and m are the number of theoretical plates of the top (m) and the bottom (n) of the extractor, respectively (Fig. 1). E is the extraction factor, and is defined as E = SD / H, (2) where D is the distribution constant of the solute; S and H are the flow rates' of the organic phase (S) and the aqueous phase (H), respectively. Using Eq. (1), the fraction in the organic phase (R,) is given by Em+n - Em Rs=w/(w+b)= E m+n_1. (3) The fraction in the aqueous phase (Rh) is Em -1 Rh = 1- RS = E m+n _ 1 (R, = n/(m+n), Rh = m/(m+n), when E= 1). (4) Rsf = Em+' - Em Em(E-1) Em+1 _ 1 = Em+i -1 (6) In this case, the number of theoretical plates is considered to be m. In an apparatus with the number of theoretical plates equal to n, Eq. (6) reduces to Rsf - En(E-1) E n+t -1 (6') From Eqs. (5) and (6'), the fractional recovery in the aqueous phase (1- Rhf) and that in the organic phase (1- Rsf) are and 1 - Rhf = E(En -1) E~1-1 En Rsf = E n+l _ 1. (8) The following equation is obtained by arranging Eqs. (7) and (8): 1-Rhf E_ 1 -. R sf. (9) While the values of Rhf and Rsf can be obtained experimentally, the experimental value of E (the extraction factor) is obtained using Eq. (9). Equations (5) and (6') can be combined to give Rsf / Rhf = En. (10) The number of the theoretical plates, n, is obtained by Eq. (11), which is derived from Eqs. (9) and (10): n - l log[(rsf) /(Rhf)] 11 og [(1-Rhf)/ (1- Rsf)] ( ) Thus, it is possible to obtain the number of effective plates (n) simply by measuring the fractional recoveries (7)

3 ANALYTICAL SCIENCES JUNE 1989, VOL (Rsf and Rhf) of a sample.8 Since E is known from Eq. (9), the distribution constant of the sample (D) is also obtained experimentally using D = (1- Rhf)H/ (1- Rsf)S. (12) Based on these considerations, a column of a "half structure" was used for measurements of the fractional recoveries, Rsf and Rhf, to obtain the effective plate number, n. However, in the case with an extractor with a high effective plate number, Rsf and Rhf become too small to calculate plate numbers accurately. An extractor with a short column was, hence, constructed (Fig. 2) and the plate number per unit length was determined. Experimental Apparatus Improved apparatus for dual-flow countercurrent extracton, liquid particle extraction (LPX) apparatus. The improved extractor with high plate numbers is detailed in the following reports Apparatus used for evaluation of the extractor. An evaluation of the extractor was carried out using the apparatus illustratd in Fig. 2. The structure of the apparatus is similar to that described in the following paper but has a shorter inner pipe (10 cm in length), and has no sample inlet at the middle point. It is just the "half structure" of LPX apparatus. A detailed description is given in the legend of the figure. The absorptiometry of the extracts was performed with a U-3200 spectrophotometer (Hitachi, Tokyo) Measurement of distribution constant. Using the previously reported liquid-liquid chromatography' (LPC), the distribution constant (D) was calculated using D = (Vr- Vo) / Vs, (13) where Vr is the retention volume; Vs and Vo are the volumes of the stationary and the mobile phases in the column, respectively. After LPC separation, both phases were taken out from the column and their volumes measured. Table 1 shows the distribution constants between water and 1-butanol of salicin, phenyl-a- and phenyl-/3- D-glucopyranoside, p-nitrophenyl-/3-d-glucopyranoside and esculin determined by LPC with a column of 18 mm i.d.x 16 mm o.d.x60 cm in length. Analytical conditions are given in the table. Chemicals Deionized water (>2 MSS) was used in this work. 1- Butanol was distilled with a small amount of sodium borohydride. Salicin, esculin, phenyl-$-d-glucopyranoside, and p-nitrophenyl-/3-d-glucopyranoside were purchased from Tokyo Kasei (Tokyo). Phenyl-a-D-glucopyranoside was obtained from Sigma Chemical Co. (St. Louis). After shaking a mixture of water (21) and 1-butanol (21) in a 41 separatory funnel, two phases were separated at 25 C and the upper and the lower phases were used as a 1-butanol phase and an aqueous phase, Table 1 Distribution constant of glucosides measured by LPCa Fig. 2 A short column dual-flow extractor. Column: a glass pipe (16 mm o.d.x 10 cm, in which has a magnet (N), and air tight plugs on both ends) is inserted into another glass pipe (19 mm i.d.x33 cm), and sustained by two plastic plugs (15 cm in length, about 11 cm of which is inserted into the column). There is a gap (3 mm) between the plug (16 mm o.d.) and the glass pipe, where the liquid particles settle and a separation of the two phases occurs. B, boundary of two phases; M, motor (RW-7 with 2GK5K gear box, Oriental Motor, Tokyo); N,S,N, magnets which are set on the edge of a hexagonal plate, whose rotation by motor (M) causes the revolution of the inner pipe; p1, handmade polypropylene plugs; DH, a difference in height between the outlet of the organic extract (w) and the aqueous one (b), which is set to keep the boundary (B) at the position lower than the rotating pipe; P, and P2, pumps (880-PU, JASCO, Tokyo). All tubings were of polytetrafluoroethylene. a. Conditions of LPC: column, 18 mm i.d.x 16 mm o.d.x 60 cm; stationary phase, 1-butanol (water saturated, Vs=35 ml); mobile phase, water (1-butanol saturated, V =8 ml); eluent, l-butanol saturated water (0.45 ml/min); at 550 min', 25 C. b. The standard deviations were calculated by eight times of experiments.

4 342 ANALYTICAL SCIENCES JUNE 1989, VOL. 5 respectively. Measurement of the efficiency with a short column extractor Using the apparatus as drawn in Fig. 2, the optimum conditions were surveyed using three glucosides as samples. The ratio of the flow rates, S/ H, was adjusted so that SD/ H=.1 in accordance with the value of D, which was obtained by LPC (Table 1). The value of the fractional recovery (Rhf) changes greatest with a change of n under the condition E(=SD/ H) =1. Similarly, Rsf varies the greatest around E 1. Initially, a sample was dissolved in the aqueous phase (initial concentration: Co mg/ ml) and fed from the top of the column; a fresh organic phase was fed from the bottom. The concentration of the aqueous extract (Cf) was measured after the system became stationary (40 min, monitored by flow cell). The fractional recovery of Rhf was Cf/ Co. Then, without changing the operating conditions, the sample was fed as a 1-butanol solution from the bottom and the fresh aqueous phase was fed from the top. The fractional recovery of Rsf was also determined at the stationary state. The number of theoretical plates (n) was calculated using Eq. (11) with the Rhf and Rsf, thus obtained (cf. Fig. 3). The initial concentration and the concentration after extraction were measured by an absorptiometric method at the wavelength given in Table 1. Results and Discussion Factors affecting the efficiency of the column As shown in Fig. 3, an increase in the total flow rates of solvents, which causes an increase in the number of liquid particles per unit length in the column and may result in an increase in the interface, as well as an increase in the rotation of the inner pipe, improved the efficiency. However, at a total flow rate of >3.5 ml/ Fig. 3 Evaluation of the column; the number of theoretical plates calculated under different conditions using three glucosides as samples. (a) salicin (D=0.60); (b) phenyl-q-d-glucopyranoside (D=1.17); (c) p-nitrophenyl- $-D-glucopyranoside (D=2.03). Flow rates of 1-butanol (S ml/ min) and the water phase (H ml/min) are indicated as S/H. Table 2 Effective plate number (n) per unit length measured by the short column extractor a. Extraction factor (E) and distribution constant (D) were calculated from the fractional recoveries, Rhf and Rsf using the following equations: E (1-Rhf)/(1-Rsf), D=(1-Rhf)XH/(1-Rsf)XS. b. These values were determined by LPC (cf. Table 1). c. 25 C, 500 min'. Rhf and Rsf: fractional recovery in the aqueous and the organic phase, respectively. S: flow rate of the organic phase; H: flow rate of the aqueous phase. Flow rates were measured by weighing the liquids per unit time comparing with the weight of the liquids pipetted by a transfer pipet.

5 ANALYTICAL SCIENCES JUNE 1989, VOL min and! or at a rotation of >600 min', it became difficult to stabilize the phase ratio in the column. Thus, a total flow rate of <_3.0 ml/ min and a rotation of min' were chosen as the standard condition for further experiments. Efficiency of the column The number of effective plates (n) of the short column (10 cm) was about 10, obtained with three different samples (Table 2). The distribution constant of each sample (Da) was calculated by using Eq. (12). The distribution constant obtained by chromatography (Db) is also given in Table 2. Small differences between Da and Db are considered as being experimental errors. Since the volume of the stationary phase in LPC became a little larger because of the dead volume of the column, smaller values for the distribution constants were obtained. In conclusion, we constructed an improved apparatus for dual-flow countercurrent extraction, and developed a simple method to evaluate the efficiency experimentally. The experimental procedures of the method are: (1) to measure the fractional recovery of the aqueous solution after extraction with the organic phase, (2) without changing any operation conditions, to measure the fractional recovery of the organic sample solution after extraction with the aqueous phase, (3) to calculate the plate number from the fractional recoveries thus obtained. There is no change in the state of the column during the above-mentioned operations. The effective plate number of the extractor increases with an increase in the revolution of the inner pipe and the total flow rates of both phases. However, it becomes difficult to maintain the stability of the extractor under a high number of revolutions (>600 min') and/or high flow rates (>3.5 ml/ min). The effective plate height is considered as being about 1 plate/ cm under the usual operating conditions ( min' and <_3.0 ml/ min). The coincidence of the two values of the distribution constants, which were obtained independently from LPC and LPX, showed the correctness of the abovementioned theoretical investigations. The extractive separation of a two-component mixture by another type of apparatus which has a column of 100 cm in length shall be demonstrated in a following report. References and Notes 1. H. Nishizawa, Y. Watanabe and Y. Abe, Anal. Sci, 3, 97 (1987). 2. H. G. Schutze, W. A. Quebedeaux and H. L. Lochte, Ind. Eng. Chem., Anal. Ed, 10, 675 (1938). 3. C. R. Bartels and G. Kleiman, Chem. Eng. Progr., 45, 589 (1949). 4. R. Rometsch, Hely. Chim. Acta, 33,184 (1950). 5. H. Nishizawa, Y. Watanabe, S. Okimura and Y. Abe, Anal. Sci., 5, 345 (1989). 6. R. E. Kirk and D. F. Othmer, ed., "Encyclopedia of Chemical Technology", Supplement, pp , Interscience Encyclopedia Inc., New York (1957). 7. The unit of weight per unit time for the flow rate was adopted in the reference 1. However, we used volume per unit time, because it is more practical and there is no need to change equations. 8. The plate number (n) can be calculated also from Eqs. (2) and (10), if D is known. But, our method can provide both the values of E (from Eq. (9)) and n (from Eq. (11) through a measurement of R,f and Rhf without knowing D. (Received September 8, 1988) (Accepted April 4, 1989)

Chromatography Extraction and purification of Chlorophyll CHM 220

Chromatography Extraction and purification of Chlorophyll CHM 220 INTRODUCTION Extraction and purification of naturally occurring molecules is of the most common methods of obtaining organic molecules. Locating and identifying molecules found in flora and fauna can provide

More information

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance

More information

Separation Methods Based on Distributions in Discrete Stages (02/02/15)

Separation Methods Based on Distributions in Discrete Stages (02/02/15) Separation Methods Based on Distributions in Discrete Stages (0/0/5). Chemical Separations: The Big Picture Classification and comparison of methods. Fundamentals of Distribution Separations 3. Separation

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Chemistry Instrumental Analysis Lecture 31. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 31 High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) Solvent Delivery

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography Technical Overview 2D-LC Conventional 1D-LC Abstract This Technical Overview presents

More information

SAFETY NOTE: Before beginning this procedure, read all of the Material Safety Data Sheets for the chemicals listed in Section 5 of this procedure.

SAFETY NOTE: Before beginning this procedure, read all of the Material Safety Data Sheets for the chemicals listed in Section 5 of this procedure. USTUR 300: ANION EXCHANGE ISOLATION OF AMERICIUM FROM PREPARED TISSUE SOLUTIONS Purpose Anion exchange for 241 Am Method Number USTUR 300 Original Date 10/10/95 Author Radiochemistry Staff Revision Number

More information

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009. Translated English of Chinese Standard: GB5009.17-2014 www.chinesestandard.net Sales@ChineseStandard.net NATIONAL STANDARD OF GB THE PEOPLE S REPUBLIC OF CHINA National Food Safety Standard-Determination

More information

Open Access. Yoichi Shibusawa *,1, Go Morikawa 1, Akio Yanagida 1 and Yoichiro Ito 2. Science, Horinouchi, Hachioji, Tokyo , Japan

Open Access. Yoichi Shibusawa *,1, Go Morikawa 1, Akio Yanagida 1 and Yoichiro Ito 2. Science, Horinouchi, Hachioji, Tokyo , Japan The Open Analytical Chemistry Journal, 2012, 6, 9-14 9 Open Access Counter-Current Chromatographic Separation of Nucleic Acid Constituents with a Polar Volatile Organic-Aqueous Two-Phase Solvent Systems

More information

CHAPTER 19 PARACETAMOL + IBUPROFEN

CHAPTER 19 PARACETAMOL + IBUPROFEN CHAPTER 19 PARACETAMOL + IBUPROFEN SUMMARY 246 A combination of paracetamol and ibuprofen is marketed in India. Literature survey indicated that one titrimetnc-1-** and one HPLC193 methods are reported

More information

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP))

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP)) 12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP)) O - O - O N + O N + O N NH N H N H O 1,3-bis(4-nitrophenyl)urea, 4,6-dimethyl-1H-pyrimidin-2-one C 13

More information

Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography

Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography 1998 The Japan Society for Analytical Chemistry 571 Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography Shinya KITAGAWA and Takao TSUDA Department of Applied

More information

TECHNICAL TEMEPHOS. 1. Specification. Full specification WHO/SIT/19.R4 Revised 10 December Description

TECHNICAL TEMEPHOS. 1. Specification. Full specification WHO/SIT/19.R4 Revised 10 December Description WHO/SIT/19.R4 TEMEPHOS TECHNICAL TECHNICAL TEMEPHOS 1. Specification 1.1 Description Full specification WHO/SIT/19.R4 Revised 10 December 1999 The material shall consist of temephos together with related

More information

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Background: In this week s experiment, a metal hydride will be used as a reducing agent. Metal hydrides can be quite reactive, and

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Part 1, p. 184: Separation of spinach pigments by TLC. (4 th Ed. P. 180) Part 2, p. 192: Separation of Fluorene and Fluorenone by

More information

Introductory Remarks:

Introductory Remarks: Introductory Remarks: At all times while you are in the laboratory you should wear safety spectacles or own spectacles if they have been approved. Eating of any kind of food or drinking is strictly prohibited

More information

SEPARATION TECHNIQUES

SEPARATION TECHNIQUES SEPARATION TECHNIQUES If a substance does not dissolve in a solvent, we say that it is insoluble. For example, sand does not dissolve in water it is insoluble. Filtration is a method for separating an

More information

Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 1260 Infinity Binary LC system with UV detection

Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 1260 Infinity Binary LC system with UV detection Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 126 Infinity Binary LC system with UV detection Application Note Food Author Srividya Kailasam Agilent Technologies,

More information

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NP 4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Classification Reaction types and substance

More information

Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form

Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form International Journal of PharmTech Research CDEN (USA): IJPRIF ISSN : 0974-4304 Vol.4, No.3, pp 1228-1232, July-Sept 2012 Validated RP-HPLC Method for Estimation of Cefprozil in Tablet Dosage Form Manzoor

More information

3. Separation of a Mixture into Pure Substances

3. Separation of a Mixture into Pure Substances 3. Separation of a Mixture into Pure Substances Paper Chromatography of Metal Cations What you will accomplish in this experiment This third experiment provides opportunities for you to learn and practice:

More information

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS Overview In the first few weeks of this semester you will

More information

IDENTIFICATION OF STEROIDS IN COSMETIC PRODUCTS BY TLC AND HPLC 1 02/12/2005 ACM 007 A. THIN LAYER CHROMATOGRAPHY (TLC)

IDENTIFICATION OF STEROIDS IN COSMETIC PRODUCTS BY TLC AND HPLC 1 02/12/2005 ACM 007 A. THIN LAYER CHROMATOGRAPHY (TLC) Document A. THIN LAYER CHROMATOGRAPHY (TLC) 1. SCOPE AND FIELD OF APPLICATION The method describes the identification of hydrocortisone acetate, dexamethasone, betamethasone, betamethasone 17-valerate

More information

PYRIPROXYFEN TECHNICAL

PYRIPROXYFEN TECHNICAL WHO/IS/TC/715/2001 TECHNICAL TECHNICAL 1. Specification 1.1 Description Interim specification WHO/IS/TC/715/2001 The material shall consist of pyriproxyfen together with related manufacturing impurities.

More information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2016 The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Development of a rapid solvent extraction apparatus for aqueous chemistry of the heaviest elements

Development of a rapid solvent extraction apparatus for aqueous chemistry of the heaviest elements Development of a rapid solvent extraction apparatus for aqueous chemistry of the heaviest elements Yukiko Komori for a RIKEN Niigata Univ. JAEA Univ. Tsukuba Tohoku Univ. Univ. Oslo collaboration (The

More information

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

Lab 10 Guide: Column Chromatography (Nov 3 9)

Lab 10 Guide: Column Chromatography (Nov 3 9) Lab 10 Guide: Column Chromatography (Nov 3 9) Column Chromatography/ Isolation of Caffeine from Tea, Exp. 7B, pages 67-72 in Taber After an organic reaction it s common to get a mixture of products. Usually

More information

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Solid-Supported DA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Soyoung Park, * a Keiichi Ikehata, a and iroshi Sugiyama*,a,b,c a Department of Chemistry, Graduate School of

More information

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A MAIN EXAMINATION P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu JANUARY APRIL 2014 TRIMESTER

More information

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014 The Physical Separation of Matter Chemistry 11 Methods of Separation n Depending upon the physical properties of the substances involved, various methods of separation can be used. n Hand separation: A

More information

CHEMICAL SEPARATION EXPERIMENT 2

CHEMICAL SEPARATION EXPERIMENT 2 CHEMICAL SEPARATION EXPERIMENT 2 INTRODUCTION The term analysis in chemistry usually refer to the quantitative and qualitative determination of the components of a sample. Qualitative refering to the identity

More information

An introduction to high performance CCC for sample purification

An introduction to high performance CCC for sample purification e An introduction to high performance CCC for sample purification When should you consider using High Performance CCC in your laboratory? e HPCCC is a unique technique that allows you to achieve high quality

More information

Chromatography 1 of 26 Boardworks Ltd 2016

Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 2 of 26 Boardworks Ltd 2016 What is chromatography? 3 of 26 Boardworks Ltd 2016 Different instrumental methods can be used to analyse and identify

More information

Supporting Information

Supporting Information Supporting Information A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions Simon Kuhn, a Timothy oёl, b Lei Gu, a Patrick L. eider a and Klavs F. Jensen a* a

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

Ondansetron Hydrochloride Tablets

Ondansetron Hydrochloride Tablets Ondansetron Hydrochloride Tablets Dissolution Perform the test with 1 tablet of Ondansetron Hydrochloride Tablets at 50 revolutions per minute according to the Paddle method, using 900 ml of water

More information

Abstract. Introduction

Abstract. Introduction Investigating the Techniques of Solid- Liquid Extraction by isolating lycopene from tomato paste and Column Chromatography &Thin-Layer Chromatography (TLC)by purifying lycopene Mengying Li Department of

More information

Mercaptan Sulfur in Gasoline and Kerosene Aviation Turbine and Distillate Fuels

Mercaptan Sulfur in Gasoline and Kerosene Aviation Turbine and Distillate Fuels Application Note Mercaptan Sulfur in Gasoline and Kerosene Aviation Turbine and Distillate Fuels USING ASTM D 3227 Introduction For the determination of mercaptan sulfur in a range from 3 mg/kg 100 mg/kg.

More information

Gas-Liquid Chromatographic Separation of Chlorophenols and Determination of Pentachlorophenol as Methyl Ethers* BY Jun KANAZAWA

Gas-Liquid Chromatographic Separation of Chlorophenols and Determination of Pentachlorophenol as Methyl Ethers* BY Jun KANAZAWA [Agr. Biol. Chem., Vol.27, No.3, p.153,-158, 1963] Gas-Liquid Chromatographic Separation of Chlorophenols and Determination of Pentachlorophenol as Methyl Ethers* BY Jun KANAZAWA Agricultural Chemicals

More information

Principles of Thin Layer Chromatography

Principles of Thin Layer Chromatography REVISED & UPDATED Edvo-Kit #113 Principles of Thin Layer Chromatography Experiment Objective: The objective of this experiment is to gain an understanding of the theory and methods of thin layer chromatography.

More information

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Application Note Inorganic Ions, Water Testing, Minerals, Metals, Basic Chemicals Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Authors Anne Mack, Adam Bivens

More information

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43 Extraction Background Extraction is a technique that separates compounds (usually solids) based on solubility. Depending on the phases involved, extractions are either liquid-solid or liquid-liquid. If

More information

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) Introduction 1-bromobutane is a primary alkyl halide (primary alkyl) and therefore it is produced

More information

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION The method describes the identification of hydroquinone in cosmetic products. 2. PRINCIPLE Hydroquinone is identified by thin layer chromatography

More information

CHAPTER CHROMATOGRAPHIC METHODS OF SEPARATIONS

CHAPTER CHROMATOGRAPHIC METHODS OF SEPARATIONS Islamic University in Madinah Department of Chemistry CHAPTER - ----- CHROMATOGRAPHIC METHODS OF SEPARATIONS Prepared By Dr. Khalid Ahmad Shadid Chemistry Department Islamic University in Madinah TRADITIONAL

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

5.37 Introduction to Organic Synthesis Laboratory

5.37 Introduction to Organic Synthesis Laboratory MIT pencourseware http://ocw.mit.edu 5.37 Introduction to rganic Synthesis Laboratory Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. URIECA

More information

SUPERCRITICAL FLUID CHROMATOGRAPHY PROCESS OPTIMISATION OF THE SEPARATION OF TOCOPHEROL HOMOLOGUES

SUPERCRITICAL FLUID CHROMATOGRAPHY PROCESS OPTIMISATION OF THE SEPARATION OF TOCOPHEROL HOMOLOGUES SUPERCRITICAL FLUID CHROMATOGRAPHY PROCESS OPTIMISATION OF THE SEPARATION OF TOCOPHEROL HOMOLOGUES S. Peper, S. Cammerer, M. Johannsen, G. Brunner Technical University Hamburg-Harburg, Thermal Separation

More information

Exceptional Selectivity of Agilent ZORBAX Eclipse Plus Phenyl-Hexyl Columns to Separate Estrogens

Exceptional Selectivity of Agilent ZORBAX Eclipse Plus Phenyl-Hexyl Columns to Separate Estrogens Exceptional Selectivity of Agilent ZORBAX Eclipse Plus Phenyl-exyl Columns to Separate Estrogens Application Note Pharmaceutical, Environmental Authors John W. enderson Jr. and William J. Long Agilent

More information

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco INTRODUCTION For this lab, students attempted to synthesize

More information

Reverse Phase High Performance Liquid Chromatography method for determination of Lercanidipine hydrochloride in bulk and tablet dosage form

Reverse Phase High Performance Liquid Chromatography method for determination of Lercanidipine hydrochloride in bulk and tablet dosage form Research Article ISSN: 0974-6943 M.V.Kumudhavalli et al. / Journal of Pharmacy Research 2014,8(11), Available online through http://jprsolutions.info Reverse Phase High Performance Liquid Chromatography

More information

NEVIRAPINE ORAL SUSPENSION Final text for addition to The International Pharmacopoeia (February 2009)

NEVIRAPINE ORAL SUSPENSION Final text for addition to The International Pharmacopoeia (February 2009) February 2009. NEVIRAPINE ORAL SUSPENSION Final text for addition to The International Pharmacopoeia (February 2009) This monograph was adopted at the Forty-third WHO Expert Committee on Specifications

More information

Improvement of Process for Reducing the Benzene Content in Motor Gasoline Using an Emulsion Liquid Membrane and Distillation

Improvement of Process for Reducing the Benzene Content in Motor Gasoline Using an Emulsion Liquid Membrane and Distillation [Note] Improvement of Process for Reducing the Benzene Content in Motor Gasoline Using an Emulsion Liquid Membrane and Distillation 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, JAPAN 2-12-1 O-okayama,

More information

Separation Methods Based on Distributions in Discrete Stages (02/04/15)

Separation Methods Based on Distributions in Discrete Stages (02/04/15) Separation Methods Based on Distributions in Discrete Stages (02/04/15) 1. Chemical Separations: The Big Picture Classification and comparison of methods 2. Fundamentals of Distribution Separations 3.

More information

Available online at ScienceDirect. Energy Procedia 89 (2016 )

Available online at   ScienceDirect. Energy Procedia 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 89 (2016 ) 366 372 CoE on Sustainable Energy System (Thai-Japan), Faculty of Engineering, Rajamangala University of Technology Thanyaburi

More information

Experiment Nine Thin Layer Chromatography

Experiment Nine Thin Layer Chromatography Name: Lab Section: 09 Thin Layer Chromatography Experiment Nine Thin Layer Chromatography Introduction Objective Separation of compounds from a mixture is an incredibly important aspect of experimental

More information

Lab #3 Reduction of 3-Nitroacetophenone

Lab #3 Reduction of 3-Nitroacetophenone Lab #3 Reduction of 3-Nitroacetophenone Introduction: Extraction: This method uses a different technique in which the two chemical compounds being separated are in immiscible solvents, also known as phases.

More information

Methods of Separating Mixtures. Filtration separates a liquid from a solid. Chromatography 9/13/2013. Magnet Filter Decant Evaporation Centrifuge

Methods of Separating Mixtures. Filtration separates a liquid from a solid. Chromatography 9/13/2013. Magnet Filter Decant Evaporation Centrifuge Methods of Separating Mixtures Magnet Filter Decant Evaporation Centrifuge Chromatography Distillation Filtration separates a liquid from a solid Mixture of solid and liquid Funnel Filter paper traps solid

More information

Introduction. Chapter 1. Learning Objectives

Introduction. Chapter 1. Learning Objectives Chapter 1 Introduction Learning Objectives To understand the need to interface liquid chromatography and mass spectrometry. To understand the requirements of an interface between liquid chromatography

More information

Simultaneous HPLC Determination of Methocarbamol, Paracetamol and Diclofenac Sodium

Simultaneous HPLC Determination of Methocarbamol, Paracetamol and Diclofenac Sodium ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2011, 8(4), 1620-1625 Simultaneous HPLC Determination of Methocarbamol, Paracetamol and Diclofenac Sodium DESHMUKH HAFSA, S. CHANDA

More information

Simultaneous estimation of amitryptyline and chlordiazepoxide by RP-HPLC method

Simultaneous estimation of amitryptyline and chlordiazepoxide by RP-HPLC method IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page: ISSN: 2320-2831 Research article Open Access Simultaneous estimation of amitryptyline and chlordiazepoxide by RP-HPLC method Dr.R.Srinivasan*, K.Lurdhu

More information

MERCAPTAN SULFUR IN GASOLINE & KEROSENE AVIATION TURBINE & DISTILLATE FUELS USING ASTM D3227

MERCAPTAN SULFUR IN GASOLINE & KEROSENE AVIATION TURBINE & DISTILLATE FUELS USING ASTM D3227 MERCAPTAN SULFUR IN GASOLINE & KEROSENE AVIATION TURBINE & DISTILLATE FUELS USING ASTM D3227 Titration Application Use For the determination of mercaptan sulfur in a range from 3 mg/kg 100 mg/kg. Required

More information

A NEW MATHEMATICAL MODEL FOR THE OPTIMIZATION OF THE MOBILE PHASE COMPOSITION IN HPTLC AND THE COMPARISON WITH OTHER MODELS

A NEW MATHEMATICAL MODEL FOR THE OPTIMIZATION OF THE MOBILE PHASE COMPOSITION IN HPTLC AND THE COMPARISON WITH OTHER MODELS J. LIQ. CHROM. & REL. TECHNOL., 22(10), 1429 1441 (1999) A NEW MATHEMATICAL MODEL FOR THE OPTIMIZATION OF THE MOBILE PHASE COMPOSITION IN HPTLC AND THE COMPARISON WITH OTHER MODELS C. Cimpoiu, L. Jantschi,

More information

EXPERIMENTAL SETUP AND PROCEDURE

EXPERIMENTAL SETUP AND PROCEDURE CHAPTER 3 EXPERIMENTAL SETUP AND PROCEDURE 3.1 Determination of vapour-liquid equilibria Isobaric Vapour-Liquid Equilibria date have been obtained, using a Smith and Bonner [39] type still which is a modified

More information

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine.

Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine. ANALYTICAL SCIENCES AUGUST 1994, VOL. 10 595 Ion Chromatographic Determination of Sulfide, and Thiosulfate in Mixtures by Means of Their Postcolumn Reactions with Iodine Sulfite Yasuyuki MIURA, Mieko TSUBAMOTO

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Determination of Retention Factors of Aromatic Compounds by Gradient-Elution Reverse-Phase High Performance Liquid Chromatography

Determination of Retention Factors of Aromatic Compounds by Gradient-Elution Reverse-Phase High Performance Liquid Chromatography Korean J. Chem. Eng., 19(6), 978-985 (22) Determination of Retention Factors of Aromatic Compounds by Gradient-Elution Reverse-Phase High Performance Liquid Chromatography Ju Weon Lee and Kyung Ho Row

More information

Retention Behavior of p-alkylphenols in Reversed-Phase Liquid Chromatography Using Ethanol/Water Mixtures

Retention Behavior of p-alkylphenols in Reversed-Phase Liquid Chromatography Using Ethanol/Water Mixtures 1998 The Japan Society for Analytical Chemistry 355 Retention Behavior of p-alkylphenols in Reversed-Phase Liquid Chromatography Using Ethanol/Water Mixtures Kanji MIYABE, Noboru NOMURA, Fumie MORISHITA,

More information

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY CHAPTER 9 DETERMINATION OF DRUG RELEASE DURING DISSOLUTION OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY CHAPTER 9 Determination of drug release during

More information

Experiment 6: Dehydration of 2-Methylcyclohexanol

Experiment 6: Dehydration of 2-Methylcyclohexanol Experiment 6: Dehydration of 2-Methylcyclohexanol Dehydration of 2-Methylcyclohexanol This week's reaction: A B - dehydration of a 2 alcohol to give a mixture of alkene isomers - H 3 PO 4 is a catalyst

More information

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers.

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers. Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers. 1 Scope This document describes a chromatographic method which allows the identification as well as the determination of

More information

DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE

DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE Journal of Agricultural, Food and Environmental Sciences UDC 635.546.173/.175]:543.544.5.068.7 Original scientific paper DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE A. Najdenkoska*

More information

1Determination of optical purity of N-acetyl-1-naphthylethylamine by chiral chromatography and NMR spectroscopy

1Determination of optical purity of N-acetyl-1-naphthylethylamine by chiral chromatography and NMR spectroscopy Printed in the Republic of Korea "/"-:5*$"- 4$*&/$& 5&$)/0-0(: Vol. 23, No. 1, 97-101, 2010 1Determination of optical purity of N-acetyl-1-naphthylethylamine by chiral chromatography and NMR spectroscopy

More information

Matter & Measurement. Brown, LeMay Ch 1 AP Chemistry Monta Vista High School

Matter & Measurement. Brown, LeMay Ch 1 AP Chemistry Monta Vista High School Matter & Measurement Brown, LeMay Ch 1 AP Chemistry Monta Vista High School 1.2 & 1.3: The Basics States of matter: solid, liquid, gas, plasma, BEC Elements: substances that cannot be decomposed into simpler

More information

Experimental techniques

Experimental techniques Experimental techniques 2.1 Measurement Apparatus used in the lab: Name Use Picture Beaker Used to hold liquids Burette Used to add accurate volumes of liquid Conical Flask Used to hold liquids Crystallizing

More information

Spectrophotometric Determination of Anionic Surfactants in River Water with Cationic Azo Dye by Solvent Extraction- Flow Injection Analysis

Spectrophotometric Determination of Anionic Surfactants in River Water with Cationic Azo Dye by Solvent Extraction- Flow Injection Analysis ANALYTICAL SCIENCES JUNE 1987, VOL. 3 265 Spectrophotometric Determination of Anionic Surfactants in River Water with Cationic Azo Dye by Solvent Extraction- Flow Injection Analysis Shoji MOTOMIZU, Yoshito

More information

The analysis of organic acid content of additives, premix, feed, and water.

The analysis of organic acid content of additives, premix, feed, and water. The analysis of organic acid content of additives, premix, feed, and water. Contents Foreword Introduction Warnings 1. Scope 2 1.1 LOD and LOQ 3 2. Normative References 3 3. Definitions 3 3.1 Feed (or

More information

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Content: Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of

More information

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture 1 The results of some tests on a colourless liquid X are shown. oiling point = 102 Universal Indicator turns green What is X? ethanol hydrochloric acid pure water sodium chloride (salt) solution 2 blue

More information

ANALYTICAL METHOD PROCEDURES

ANALYTICAL METHOD PROCEDURES HPLC ASSAY AND RELATED SUBSTANCE Column Eurospher 100, C18, 25 x 0.40 cm 5µ Mobile Phase Buffer ph 2.0*: Acetonitrile (88:12 v/v) * Buffer ph 2 Potassium dihydrogen phosphate (KH 2 PO 4 ) - 0.68g Hepatane

More information

Iron Catalyzed Chlorpromazine-Hydrogen

Iron Catalyzed Chlorpromazine-Hydrogen ANALYTICAL SCIENCES APRIL 1996, VOL. 12 243 A Kinetic Study of the Peroxide Reaction and Iron Catalyzed Chlorpromazine-Hydrogen Its Analytical Implications TakaShi TOMIYASU, Hayao SAKAMOTO and Norinobu

More information

LUMEFANTRINUM LUMEFANTRINE

LUMEFANTRINUM LUMEFANTRINE July 2008 LUMEFANTRINE: Final text for addition to The International Pharmacopoeia (July 2008) This monograph was adopted at the Forty-second WHO Expert Committee on Specifications for Pharmaceutical Preparations

More information

Determination of Caffeine by HPLC

Determination of Caffeine by HPLC Determination of Caffeine by HPLC Introduction It was a long history before real high performance liquid chromatography (HPLC) had evolved. The very first indication of a chromatographic separation was

More information

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION Andrew J. Aubin and Tanya L. Jenkins Waters Corporation, Milford, MA, USA INTRODUCTION Benzocaine (4-Aminobenzoic

More information

637. Thiamethoxam. HPLC method

637. Thiamethoxam. HPLC method 637. Thiamethoxam HPLC method CIPAC Collaborative Trial according to CIPAC Information Sheet N o 293 Dr. Sven Adolph Syngenta Crop Protection Münchwilen AG CH-4333 Münchwilen Switzerland May 212 page 1

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2010, 2(5):399-417 Method develpopment and validation of Hydrochloride

More information

CIPAC. CIPAC Free relevant impurities methods:

CIPAC. CIPAC Free relevant impurities methods: CIPAC COLLABORATIVE INTERNATIONAL PESTICIDES ANALYTICAL COUNCIL LIMITED Commission Internationale des Méthodes d'analyse des Pesticides (CIMAP) CIPAC Free relevant impurities methods: Methods for relevant

More information

ISEC The 21st International Solvent Extraction Conference. Standardized Settling Cell to Characterize Liquid-Liquid Dispersion

ISEC The 21st International Solvent Extraction Conference. Standardized Settling Cell to Characterize Liquid-Liquid Dispersion Standardized Settling Cell to Characterize Liquid-Liquid Dispersion David LELEU*, Andreas PFENNIG University of Liège, Department of Chemical Engineering - Products, Environment, and Processes (PEPs),

More information

Gas Chromatographic Analysis of Aromatic Hydrocarbons from C6 through C10*

Gas Chromatographic Analysis of Aromatic Hydrocarbons from C6 through C10* Gas Chromatographic Analysis of Aromatic Hydrocarbons from C6 through C10* Hiroshi Miyake** and Mitsuynki Mitooka** Introduction Summary: Retention data on C6 through C10 aromatic hydrocarbons were determined

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information