Metals Production in The Future

Size: px
Start display at page:

Download "Metals Production in The Future"

Transcription

1 Laboratory of Chemical Reactor Engineering Metals Production in The Future Opportunities for Spinning Disc Technology John van der Schaaf

2 Laboratory of Chemical Reactor Engineering Chemicals Production in The Future Opportunities for Spinning Disc Technology John van der Schaaf

3 Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk 50 TW Wind Turbines 5 TW Highly variable supply Distributed production Storage/transport inefficient Use for chemicals production Highly variable production rate

4 Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk 0.5 MW Highly variable resources Biomass, recycle, waste Distributed production Safe, robust, efficient, versatile equipment + processes

5 Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk Low CAPEX High ROI Multipurpose, Scalable Robust, Safe Millions vs. Billions

6 Multiphase Systems: Bottlenecks Reaction rate kinetically limited mass transfer limited Gas Liquid Solid Catalyst concentration/activity C g a gl C L a s δ r A 1 H H H = C k a k a k a ηk Lδa g g gl l gl s s r t s 1 Gas Liquid Solid rr AA HH RR VV RR = UUUU TT llll

7 Rotor Stator Spinning Disc Reactor Von Karman Liquid flow only

8 Rotor Stator Spinning Disc Reactor Von Karman 35 rpm; slowed down factor rpm; slowed down factor 120

9 Rotor Stator Spinning Disc Reactor disc rotational speed: 1500 rpm; gas flow rate: 500 ml/min 1 gas inlet movies slowed down factor gas inlets

10 Mass Transfer v r v θ Gas bubbles detach from gas inlet due to shear: Increase in gas-liquid interfacial area a GL High rate of renewal of liquid at bubble interface: Increase in mass transfer coefficient k L

11 Mass Transfer Bubble column: ka < 0.15 m m s L GL L R Bubble column: ka L ε G GL 0.5 m m s L G

12 Gas-Liquid Mass Transfer Van Eeten et al., A theoretical study on gas-liquid mass transfer in the rotor stator spinning disc reactor, CES

13 Multiple Spinning Discs Reactor Diameter disc 13.2 cm Maximum disc speed 4000 rpm Disc spacing mm Cooled or heated discs Discs coated with catalyst Co- and countercurrent operation

14 Spinning Disc Technology Technical characteristics: High mass transfer (GL ~ 10 1/s, LL ~ 300 1/s, LS ~ /s) High heat transfer (U. A ~ 40 MW/m 3 /K) Short micro mixing times (t m ~ 0.1 ms) Counter-current flow ( kg/hr) Plug flow (~ 4 tons/hr) Low volume ( V R ~ 1 L) Application areas: Extreme fast and exothermic reactions (nitrification) Multiphase reactions (sulfonation, halogenation) Extraction (LL, LS) Distillation (RPB), Absorption Crystallization Electrochemistry, Photochemistry

15 Intensification Chlor-alkali production Dot on the horizon State-of-the-art operation (now) 15 kton/yr High pressure operation (~10 bar) High current density operation High temperature operation (~150 ºC)

16 Vision Back-of-a-truck production plant Dot on the (10 horizon kton/yr~ 1 m 3 ) Transported to clients Plug n Produce Remote controlled Transport NaCl from clients or... recycle salt stream

17 Intensification Chlor-alkali production Cl 2 (l) + H 2 O(l) Cl 2 7,2H 2 O Cl 2 (l) + Hydrate(s) Cl 2 (g) + H 2 O(l) Cl 2 (g) + Hydrate(s) 0.35 m 3 /s 1 m 3 /s 2 % 25 % H 2 SO 4 Source: A. T. Bozzo et al., 1975

18 Intensification Chlor-alkali production

19 Intensification Chlor-alkali production 0.03 ka/m 2, 2.33 V 0.12 ka/m 2, 3.03 V 0.21 ka/m 2, 3.59 V 0.30 ka/m 2, 4.32 V 0.39 ka/m 2, 4.60 V 1.40 ka/m 2, 9.92 V

20 Intensification Chlor-alkali production 300 rpm 1000 rpm Centrifugal force removes bubbles from electrode Turbulence increases mass transfer

21 Intensification Chlor-alkali production Sherwood (-) x Grunow Soo&Princeton Disc Mesh Mesh (fit) k LS a LS Disc(Ir) Mesh (Ir) Reynolds (-) x Sh=2.2Re Sc Reynolds (-) x10 5 Disc: a = 477 m / m 2 3 LS e. a. R Mesh: a = 1322 m / m 2 3 LS e. a. R

22 Intensification Chlor-alkali production Paola Granados-Mendoza Shohreh Moshtarikhah

23 Intensification Chlor-alkali production Voltage [V] current density [ka.m -2 ] voltage=4 V rpm Voltage [V] 1 Electrocell Spinning Disc Electrolyser current density [ka.m -2 ] 3.14 ka.m rpm

24 Intensification Chlor-alkali production Cl 2 (l) + H 2 O(l) Cl 2 7,2H 2 O Cl 2 (l) + Hydrate(s) 300 ppm m 3 /s 0.05m 3 /s 1 % Cl 2 (g) + H 2 O(l) Cl 2 (g) + Hydrate(s) 0.35m 3 /s 1m 3 /s 2 % 25 % H 2 SO 4 Source: A. T. Bozzo et al., 1975

25 Intensification Chlor-alkali production Dot on the horizon: Electrolysis: 8 m 2, 100 ka/m 2 16 discs, 0.8 m ID, 0.08 m 3 Chlorine drying: <0.5 m 3 Evaporation: ~ 1 m 3 State-of-the-art operation (now) 15 kton/yr High pressure operation (~10 bar) High current density operation High temperature operation (~150 ºC)

26 Spinning Disc Zinc Production Molten zinc metal can be easily transformed in small particles (µm range)

27 Zinc hydrogen production 1) Zinc + Concentrated sulfuric acid (10 mol/l) Zn (s) + 2 H + (aq) Zn 2+ (aq) + H 2(g) (ambient, 0.9 mol H2 /L, 0.36 mol H2 /kg) 2) Addition of catalytic amount of copper + Hot water Zn (s) + 2 H 2 O (l) Zn(OH) 2(s) + H 2(g) (~100 o C, 28 mol H2 /L, 21 mol H2 /kg) 3) Molten zinc + steam Zn (l) + H 2 O (g) ZnO (s) + H 2(g) (~450 o C, 55 mol H2 /L, 34 mol H2 /kg) Exothermic!

28 Iron Fuel: gas phase oxidation/reduction Cyclic operation packed bed Energy production from heat of oxidation 2 Fe + 3/2 O 2... Fe 2 O 3 + ΔH R = -823 kj/mol Fe Fe 2 O H 2... Fe + 3 H 2 O + ΔH R = +196 kj/mol Fe T>570 o C 1) Oxygen from air: high T leads to NO x 2) Oxygen and hydrogen from water electrolysis (recycle water) 3) Direct electrochemical reduction after dissolution Fe 2 O 3 in sulfuric acid Fe 2+ (aq) + 2 e- Fe (s) Solid iron poorly accessible for oxygen

29 Dendrite formation One-dimensional ferromagnetic dendritic iron wire array growth by facile electrochemical deposition, Nanoscale 4 (2012) , DOI: /C2NR11780KRi Qiu, et al.,

30 Use of oxygen from electrolysis 13 1 kw 14 MJ/kg, 58 MJ/L kw

31 Ragone Chart 10 7 Fe 10 6 Fe Fe k g a g =30 1/s C O2 = 13 mol/m 3 ~40 mol Fe /m R3 /s ~32 MW

32 A(S) Current & Future Work: Chemical Production Process A(S), C(S), D(S) D(s) Reactor Extractor E Crystallizer B(g) C(E), D(E) E Evaporation C(E), D(E) D(E) Crystallizer C(s) A(S) + B(g) ----> C(S) C(S) + B(g) ----> D(S)

33 Current & Future Work: Chemical Production Process

34 Current & Future Work: Chemical Production Process

35 Current & Future Work: Chemical Production Process

Hydrogen production by electrolysis. Ann Cornell, Department of Chemical Engineering, KTH

Hydrogen production by electrolysis. Ann Cornell, Department of Chemical Engineering, KTH Hydrogen production by electrolysis Ann Cornell, Department of Chemical Engineering, KTH amco@kth.se Sources for hydrogen International Energy Agency. Technology Roadmap Hydrogen and Fuel Cells, 2015

More information

Electrochemical reaction

Electrochemical reaction Electrochemical reaction electrochemistry electrochem. reaction mechanism electrode potential Faradays law electrode reaction kinetics 1 Electrochemistry in industry Chlor-Alkali galvano industry production

More information

Unit 4: Chemical Changes (Higher Content)

Unit 4: Chemical Changes (Higher Content) Metals react with oxygen to produce metal oxides. E.g. Copper + Oxygen > Copper Oxide The reactions are oxidation reactions because the metals gain oxygen. Reactivity of Metals Metal Extraction Metals

More information

CHM 2046 Test #4 Review: Chapter 17 & Chapter 18

CHM 2046 Test #4 Review: Chapter 17 & Chapter 18 1. Which of the following is true concerning a nonspontaneous reaction? a. It s impossible for the reaction to occur b. The reaction occurs, but very slowly c. It can be made spontaneous by adding a catalyst

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell?

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell? Unit - 3 ELECTROCHEMISTRY 1. What is a galvanic cell? VSA QUESTIONS (1 - MARK QUESTIONS) 2. Give the cell representation for Daniell Cell. 3. Mention the purpose of salt-bridge placed between two half-cells

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 20.4-3 In a voltaic cell electrons flow from the anode to the cathode. Value 2. chem10b 20.1-35 How many grams

More information

GraspIT AQA GCSE Chemical and Energy Changes

GraspIT AQA GCSE Chemical and Energy Changes A. Reactivity of metals The reactivity series, metal oxides and extractions 1. Three metals, X, Y and Z were put into water. The reactions are shown below: a) Use the diagrams to put metals X, Y and Z

More information

1. The following reaction was studied at a certain temperature and the data below were collected. H 2 SeO 3 (aq) + 6I (aq) + 4H + (aq) Se(s) + 2I 3

1. The following reaction was studied at a certain temperature and the data below were collected. H 2 SeO 3 (aq) + 6I (aq) + 4H + (aq) Se(s) + 2I 3 1. The following reaction was studied at a certain temperature and the data below were collected. H 2 SeO 3 (aq) + 6I (aq) + 4H + (aq) Se(s) + 2I 3 (aq) + 3H2 O(l) [H 2 SeO 3 ] 0, [H + ] 0, [I ] 0, M Initial

More information

MOKASA JOINT EVALUATION EXAM K. C. S. E. (Kenya Certificate of Secondary Education) 233/2 CHEMISTRY Paper 2 Time: 2 Hours

MOKASA JOINT EVALUATION EXAM K. C. S. E. (Kenya Certificate of Secondary Education) 233/2 CHEMISTRY Paper 2 Time: 2 Hours NAME:. INDEX NO:... CANDIDATE S SIGNATURE 233/2 CHEMISTRY Paper 2 March/April, 2016 Time: 2 Hours DATE:. MOKASA JOINT EVALUATION EXAM K. C. S. E. (Kenya Certificate of Secondary Education) 233/2 CHEMISTRY

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

CH 223 Sample Exam Exam II Name: Lab Section:

CH 223 Sample Exam Exam II Name: Lab Section: Exam II Name: Lab Section: Part I: Multiple Choice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. Which of the following equations is the solubility

More information

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 CHEMICAL PLANT CONTINUOUS FLOW REACTOR The continuous flow reactor is a safe system, running chemical reactions in reduced volume with

More information

Complete and balance these equations to show the reactions during electrolysis. Na Na (2)

Complete and balance these equations to show the reactions during electrolysis. Na Na (2) Q1. The diagram shows electrolysis of sodium chloride solution. (a) Complete and balance these equations to show the reactions during electrolysis. At the positive electrode Cl e Cl At the negative electrode

More information

ELECTROCHEMISTRY (SUMMER VACATION WORKSHEET)

ELECTROCHEMISTRY (SUMMER VACATION WORKSHEET) ELECTROCHEMISTRY (SUMMER VACATION WORKSHEET) QUESTION CARRYING 1 MARK 1. What is the effect of temperature on molar conductivity? 2. Why is it not possible to measure single electrode potential? 3. Name

More information

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2 Section A (50 M) Aa) trend The number of electron shell increases The number of valence electrons increases Proton number increases There is a change in character from metallic to non-metallic Only true

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Homework 11. Electrochemical Potential, Free Energy, and Applications

Homework 11. Electrochemical Potential, Free Energy, and Applications HW11 Electrochemical Poten!al, Free Energy, and Applica!ons Homework 11 Electrochemical Potential, Free Energy, and Applications Question 1 What is the E for Zn(s) Zn (aq) Ce (aq) Ce (aq) + cell + 4+ 3+

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Electrochem Lecture Problems

Electrochem Lecture Problems Electrochem Lecture Problems Problem 1 - A mercury battery uses the following electrode half-reactions.. HgO(s) + H O(l) + e - ---> Hg(l) + OH -. E Hg 0.098V ZnO(s) + H O(l) + e - ---> Zn(s) + OH -. E

More information

IB Topics 5 & 15 Multiple Choice Practice

IB Topics 5 & 15 Multiple Choice Practice IB Topics 5 & 15 Multiple Choice Practice 1. Which statement is correct for this reaction? Fe 2O 3 (s) + 3CO (g) 2Fe (s) + 3CO 2 (g) ΔH = 26.6 kj 13.3 kj are released for every mole of Fe produced. 26.6

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

Chapter Nineteen. Electrochemistry

Chapter Nineteen. Electrochemistry Chapter Nineteen Electrochemistry 1 Electrochemistry The study of chemical reactions through electrical circuits. Monitor redox reactions by controlling electron transfer REDOX: Shorthand for REDuction-OXidation

More information

Electrochemistry. Outline

Electrochemistry. Outline Electrochemistry Outline 1. Oxidation Numbers 2. Voltaic Cells 3. Calculating emf or Standard Cell Potential using Half-Reactions 4. Relationships to Thermo, Equilibrium, and Q 5. Stoichiometry 6. Balancing

More information

Edexcel Chemistry Checklist

Edexcel Chemistry Checklist Topic 1. Key concepts in chemistry Video: Developing the atomic model Describe how and why the atomic model has changed over time. Describe the difference between the plum-pudding model of the atom and

More information

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1) To pic. Student Checklist

AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table (Paper 1) To pic. Student Checklist Personalised Learning Checklist AQA TRILOGY Chemistry (8464) from 2016 s T5.1 Atomic structure and the periodic table (Paper 1) State that everything is made of atoms and recall what they are 5.1.1 A simple

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

Standard reduction potentials are established by comparison to the potential of which half reaction?

Standard reduction potentials are established by comparison to the potential of which half reaction? HW10 Electrochemical Poten al, Free Energy, and Applica ons This is a preview of the draft version of the quiz Started: Nov 8 at 5:51pm Quiz Instruc ons Question 1 What is the E for cell + 4+ 3+ Zn(s)

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

C4 Quick Revision Questions

C4 Quick Revision Questions C4 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Write the equation which shows the formation of iron oxide Answer 1... of 50 4Fe + 3O 2 2Fe 2 O 3 Question

More information

Electrochemistry Worksheets

Electrochemistry Worksheets Electrochemistry Worksheets Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Practice Exam Topic 9: Oxidation & Reduction

Practice Exam Topic 9: Oxidation & Reduction Name Practice Exam Topic 9: Oxidation & Reduction 1. What are the oxidation numbers of the elements in sulfuric acid, H 2 SO 4? Hydrogen Sulfur Oxygen A. +1 +6 2 B. +1 +4 2 C. +2 +1 +4 D. +2 +6 8 2. Consider

More information

Kenya Certificate of Secondary Education (K.C.S.E.)

Kenya Certificate of Secondary Education (K.C.S.E.) Name: Index No. School:. Candidate s Sign.... Date:... 233/1 CHEMISTRY PAPER 1 JULY /AUGUST 2011 TIME: 2 HOURS Kenya Certificate of Secondary Education (K.C.S.E.) Chemistry Paper 1 INSTRUCTIONS TO THE

More information

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE CHLORINE RECOVERY FROM HYDROGEN CHLORIDE The Project A plant is to be designed for the production of 10,000 metric tons per year of chlorine by the catalytic oxidation of HCl gas. Materials Available 1.

More information

1.11 Redox Equilibria

1.11 Redox Equilibria 1.11 Redox Equilibria Electrochemical cells Electron flow A cell has two half cells. The two half cells have to be connected with a salt bridge. Simple half cells will consist of a metal (acts an electrode)

More information

RDF-LIGNITE CO-COMBUSTION IN A CFB BOILER

RDF-LIGNITE CO-COMBUSTION IN A CFB BOILER WIEN 48 th IEA-FBC MEETING 24.5.2004 RDF-LIGNITE CO-COMBUSTION IN A CFB BOILER Kari Peltola, Foster Wheeler Energia Oy, Finland Pekka Lehtonen, Foster Wheeler Energia Oy, Finland Bernhard Röper, RWE Power

More information

Chem 1412 SU06 Exam 4

Chem 1412 SU06 Exam 4 Chem 1412 SU06 Exam 4 Student: 1. Which of the following is necessary for a process to be spontaneous? A. H sys < 0 B. S sys > 0 C. S surr < 0 D. S univ > 0 E. G sys = 0 2. Which of the following is always

More information

Experiment 28 DIRECT METHANOL FUEL CELL

Experiment 28 DIRECT METHANOL FUEL CELL Experiment 28 Direct methanol fuel cell 1 Experiment 28 DIRECT METHANOL FUEL CELL Objective The purpose of this experiment is to learn the principle of direct methanol fuel cell (DMFC) and set up a simple

More information

AQA Chemistry (Combined Science) Specification Checklists. Name: Teacher:

AQA Chemistry (Combined Science) Specification Checklists. Name: Teacher: AQA Chemistry (Combined Science) Specification Checklists Name: Teacher: Paper 1-4.1 Atomic structure and the periodic table 4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic

More information

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful

What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful What is the importance of redox reactions? Their importance lies in the fact that we can use the transfer of electrons between species to do useful work. This is accomplished by constructing a voltaic

More information

Solved Examples On Electrochemistry

Solved Examples On Electrochemistry Solved Examples On Electrochemistry Example 1. Find the charge in coulomb on 1 g-ion of Charge on one ion of N 3- = 3 1.6 10-19 coulomb Thus, charge on one g-ion of N 3- = 3 1.6 10-19 6.02 10 23 = 2.89

More information

TRANS-NZOIA COUNTY KCSE REVISION MOCK EXAMS 2015

TRANS-NZOIA COUNTY KCSE REVISION MOCK EXAMS 2015 TRANS-NZOIA COUNTY KCSE REVISION MOCK EXAMS 2015 TIME: 2 HOURS233/2 CHEMISTRY PAPER 2 (THEORY) SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88 22

More information

0620 Chemistry Paper 3 (Extended) Paper 32 O/N/10. Paper 32 M/J/10. Paper 3 O/N/09

0620 Chemistry Paper 3 (Extended) Paper 32 O/N/10. Paper 32 M/J/10. Paper 3 O/N/09 0620 Chemistry Paper 3 (Extended) Paper 32 O/N/10 no. 1 properties of elements and compounds 4,21 44, 266 2 zinc and zinc blende chemistry, distillation 8,2,23 90,19,280 3 breaking down MnO 2, rate of

More information

Personalised Learning Checklists AQA Chemistry Paper 1

Personalised Learning Checklists AQA Chemistry Paper 1 AQA Chemistry (8462) from 2016 Topics C4.1 Atomic structure and the periodic table State that everything is made of atoms and recall what they are Describe what elements and compounds are State that elements

More information

S4 CHEMISTRY SUMMARY NOTES

S4 CHEMISTRY SUMMARY NOTES S4 CHEMISTRY SUMMARY NOTES 1. The Mole One mole of a substance = GRAM FORMULA MASS e.g. H 2 SO 4 RAM from databook pg.7 2H 2 x 1 = 2 1S 1 x 32 = 32 4O 4 x 16 = 64 98g Mass = number of moles x Mass of 1

More information

G-L Taylor Flow reactor system Oxidation of ethylbenzene R. Sumbharaju L.A. Correia D.F. Meyer Y.C. van Delft A. de Groot

G-L Taylor Flow reactor system Oxidation of ethylbenzene R. Sumbharaju L.A. Correia D.F. Meyer Y.C. van Delft A. de Groot G-L Taylor Flow reactor system Oxidation of ethylbenzene R. Sumbharaju L.A. Correia D.F. Meyer Y.C. van Delft A. de Groot This presentation was presented at the CAMURE-8 & ISMR-7 conference, Naantali,

More information

Aim: What are electrochemical cells?

Aim: What are electrochemical cells? Aim: What are electrochemical cells? Electrochemistry Electrochemistry- involves a redox reaction and a flow of electrons TWO TYPES of ELECTROCHEMICAL CELLS 1.Voltaic (similar to a battery) 2.Electrolytic

More information

Foundation Support Workbook AQA GCSE Combined Science Chemistry topics. Sunetra Berry

Foundation Support Workbook AQA GCSE Combined Science Chemistry topics. Sunetra Berry Foundation Workbook AQA GCSE Combined Science Chemistry topics Sunetra Berry 224708 Foundation Workbook_Sample_Chemistry.indd 1 4/22/16 4:17 PM Contents Section 1 Atomic structure and the periodic table

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 17 Thermochemistry 17.1 The Flow of Energy 17. Measuring and Expressing Enthalpy Changes 17.3 Heat in Changes of State 17.4 Calculating Heats of Reaction Why does sweating help

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction

We use a special symbol to denote a reaction which is reversible: The double-headed arrow means the reaction can go in either direction Reversible reactions Some reactions do not go to completion we don t get 100% yield because not all of the reactants react to form products. One of the reasons for this is that some reactions are reversible

More information

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium

In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium salt to produce potassium Q1. This question is about potassium. (a) Humphrey Davy was a professor of chemistry. In 1807 Davy did an electrolysis experiment to produce potassium. Davy first tried to electrolyse a solid potassium

More information

IB Topics 9 & 19 Multiple Choice Practice

IB Topics 9 & 19 Multiple Choice Practice IB Topics 9 & 19 Multiple Choice Practice 1. What are the oxidation states of chromium in (NH 4) 2Cr 2O 7 (s) and Cr 2O 3 (s)? 2. Which of the following is a redox reaction? 3Mg (s) + 2AlCl 3 (aq) 2Al

More information

Redox reactions & electrochemistry

Redox reactions & electrochemistry Redox reactions & electrochemistry Electrochemistry Electrical energy ; Chemical energy oxidation/reduction = redox reactions Electrochemistry Zn + Cu 2+ º Zn 2+ + Cu Oxidation-reduction reactions always

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? 1 Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? A) The collisions between gas molecules are perfectly elastic. B) At absolute zero, the average kinetic

More information

PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPS CAPE WINELANDS EDUCATION DISTRICT

PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPS CAPE WINELANDS EDUCATION DISTRICT PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPE WINELANDS EDUCATION DISTRICT MARKS 150 TIME 3 hours This question paper consists of 15 pages and 4 data sheets. PHYSICAL SCIENCES/ P2 2 SEPTEMBER 2015 INSTRUCTIONS

More information

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions

Describe how the inter-conversion of solids, liquids and gases are achieved and recall names used for these inter-conversions Understand the arrangements, movements and energy of the particle in each of the 3 states of matter : solid, liquid and gas Describe how the inter-conversion of solids, liquids and gases are achieved and

More information

The electrolysis of sodium chloride solution produces useful substances. covalent ionic non-metallic

The electrolysis of sodium chloride solution produces useful substances. covalent ionic non-metallic 1 The electrolysis of sodium chloride solution produces useful substances. (a) (i) Choose a word from the box to complete the sentence. covalent ionic non-metallic Electrolysis takes place when electricity

More information

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12

SCHOOL YEAR CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 SCHOOL YEAR 2017-18 NAME: CH- 19 OXIDATION-REDUCTION REACTIONS SUBJECT: CHEMISTRY GRADE: 12 TEST A Choose the best answer from the options that follow each question. 1. During oxidation, one or more electrons

More information

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry

11.3. Electrolytic Cells. Electrolysis of Molten Salts. 524 MHR Unit 5 Electrochemistry 11.3 Electrolytic Cells Section Preview/ Specific Expectations In this section, you will identify the components of an electrolytic cell, and describe how they work describe electrolytic cells using oxidation

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

KULLEĠĠ SAN BENEDITTU Secondary School, Kirkop

KULLEĠĠ SAN BENEDITTU Secondary School, Kirkop KULLEĠĠ SAN BENEDITTU Secondary School, Kirkop Mark HALF-YEARLY EXAMINATION 2014/2015 FORM 4 CHEMISTRY TIME: 1h 30min Question 1 2 3 4 5 6 7 8 Global Mark Max. Mark 10 8 6 7 14 15 20 20 100 Mark DO NOT

More information

Technical Resource Package 1

Technical Resource Package 1 Technical Resource Package 1 Green Chemistry Impacts in Batch Chemical Processing UNIDO IAMC Toolkit Images may not be copied, transmitted or manipulated 1/5 The following list provides an overview of

More information

Study of the Hybrid Cu-Cl Cycle for Nuclear Hydrogen Production

Study of the Hybrid Cu-Cl Cycle for Nuclear Hydrogen Production Study of the Hybrid Cu-Cl Cycle for Nuclear Hydrogen Production Sam Suppiah, J. Li and R.Sadhankar Atomic Energy of Canada Limited Chalk River Laboratories Canada Michele Lewis et al Argonne National Laboratory

More information

One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p.

One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p. 1 One mole of electrons carries a charge of 96500C or 1 Faraday Q=It One mole of any gas occupies 22.4dm 3 at standard temperature and pressure (s.t.p.) Standard temperature is 0 0 C or 273K and standard

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Chemical measurements QuestionIT

Chemical measurements QuestionIT Chemical measurements QuestionIT 1. What is the law of conservation of mass? Mass of reactants = mass products. 2. Why might some reactions appear to show a change in mass? A reactant or a product is a

More information

UNIT-3 ELECTROCHEMISTRY CONCEPTS

UNIT-3 ELECTROCHEMISTRY CONCEPTS UNIT-3 ELECTROCHEMISTRY CONCEPTS Electrochemistry may be defined as the branch of chemistry which deals with the quantitative study of interrelation ship between chemical energy and electrical energy and

More information

Redox. Question Paper. Cambridge International Examinations Chemical Reactions. Score: /43. Percentage: /100

Redox. Question Paper. Cambridge International Examinations Chemical Reactions. Score: /43. Percentage: /100 Redox Question Paper Level Subject Exam oard Topic Sub-Topic ooklet O Level hemistry ambridge International Examinations hemical Reactions Redox Question Paper Time llowed: 52 minutes Score: /43 Percentage:

More information

Personalised Learning Checklists AQA Trilogy Chemistry Paper 1

Personalised Learning Checklists AQA Trilogy Chemistry Paper 1 AQA TRILOGY Chemistry (8464) from 2016 Topics T5.1 Atomic structure and the periodic table State that everything is made of atoms and recall what they are Describe what elements and compounds are State

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

METE 215 MATERIALS PROCESSING. Prepared by: Prof.Dr. İshak Karakaya

METE 215 MATERIALS PROCESSING. Prepared by: Prof.Dr. İshak Karakaya Experiment 6: METE 215 MATERIALS PROCESSING LEACHING AND ELECTROWINNING Prepared by: Prof.Dr. İshak Karakaya THEORY Leaching is the process of extracting a soluble constituent from a solid by means of

More information

Zinc electrode. 1M zinc sulphate solution

Zinc electrode. 1M zinc sulphate solution 16. Redox Equilibria Electrochemical cells Electron flow A cell has two half cells. The two half cells have to be connected with a salt bridge. Simple half cells will consist of a metal (acts an electrode)

More information

Same theme covered in Combined but extra content Extra parts atomic symbols (first 20, Group 1 and Group 7)

Same theme covered in Combined but extra content Extra parts atomic symbols (first 20, Group 1 and Group 7) Co-teaching document new ELC Science 5960 and Foundation Level GCSE Combined Science: Trilogy (8464) Chemistry: Component 3 Elements, mixtures and compounds ELC Outcomes Summary of content covered in ELC

More information

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?

CHEM N-12 November In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A? CHEM161 014-N-1 November 014 In the electrolytic production of Al, what mass of Al can be deposited in.00 hours by a current of 1.8 A? What products would you expect at the anode and the cathode on electrolysis

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015

MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015 MUTOMO SUB-COUNTY KCSE REVISION MOCK EXAMS 2015 233/1 CHEMISTRY PAPER 1 (THEORY) TIME: 2 HOURS SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88 22

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date...

IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date... IGCSE TEST_ (Ch. 2,3,4,5,6) Name... Date... 1 Winston Churchill, a British Prime Minister, had his false teeth electroplated with gold. The teeth were coated with a thin layer of carbon and were then placed

More information

Sample Exercise 20.2 Practice Exercise 1 with feedback

Sample Exercise 20.2 Practice Exercise 1 with feedback Homework Chapter 20 Due: 11:59pm on Wednesday, November 16, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Sample Exercise 20.2 Practice Exercise 1 with

More information

Iron is extracted in a blast furnace. Figure 1 is a diagram of a blast furnace. Calcium carbonate decomposes at high temperatures.

Iron is extracted in a blast furnace. Figure 1 is a diagram of a blast furnace. Calcium carbonate decomposes at high temperatures. Q1.This question is about iron and aluminium. (a) Iron is extracted in a blast furnace. Figure 1 is a diagram of a blast furnace. Calcium carbonate decomposes at high temperatures. Complete the word equation

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Mass Transfer Coefficients (MTC) and Correlations II

Mass Transfer Coefficients (MTC) and Correlations II Mass Transfer Mass Transfer Coefficients (MTC) and Correlations II 7.2- Correlations of Mass Transfer Coefficients Mass transfer coefficients (MTCs) are not physical properties like the diffusion coefficient.

More information

Definition 1 An element or compound is oxidized when it gains oxygen atoms

Definition 1 An element or compound is oxidized when it gains oxygen atoms Oxidation and Reduction Part I Learning Outcomes 1. Introduction to oxidation and reduction: simple examples only, e.g. Na with Cl 2, Mg with O 2, Zn with Cu 2+. 2. Oxidation and reduction in terms of

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1)

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1) Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1) *0123456789* CHEMISTRY 0971/03 Paper 3 Theory (Core) For Examination from 2018 SPECIMEN PAPER

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET:

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: 40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: **THIS IS NOT A COMPLETE REVIEW. CONTINUE TO READ ALL COURSE NOTES, GO OVER ALL WORKSHEETS, HANDOUTS, AND THE UNIT TESTS TO BE BETTER PREPARED. To prepare

More information

N Goalby chemrevise.org

N Goalby chemrevise.org Redox Equilibria Electrochemical cells This type of cell can be called a Voltaic cell or Galvanic cell. Voltaic cells convert energy from spontaneous, exothermic chemical processes to electrical energy.

More information

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe

Page 1 Name: 2Al 3+ (aq) + 3Mg(s) 3Mg 2+ (aq) + 2Al(s) Fe 2 O 3 + 2Al Al 2 O 3 + 2Fe 9666-1 - Page 1 Name: 1) What is the oxidation number of chromium in the chromate ion, CrO 2-4? A) +8 B) +3 C) +2 D) +6 2) What is the oxidation number of sulfur in Na 2 S 2 O 3? A) +6 B) +4 C) +2 D) -1

More information

5 Energy from chemicals

5 Energy from chemicals 5 Energy from chemicals Content 5.1 Enthalpy 5.2 Hydrogen fuel cell Learning Outcomes Candidates should be able to: (a) (b) (c) (d) (e) describe the meaning of enthalpy change in terms of exothermic (H

More information

(c) Na is deposited at the cathode (d) Na appears at the anode

(c) Na is deposited at the cathode (d) Na appears at the anode year chemiry n0tes new CHAPTER 10 ELECTROCHEMISTRY MCQS Q.1 Electrolysis is the process in which a chemical reaction takes place at the expense of (a) chemical energy (b) electrical energy (c) heat energy

More information