Analysis of Radioactive Disequilibrium in Natural Decay Chains due to Processing

Size: px
Start display at page:

Download "Analysis of Radioactive Disequilibrium in Natural Decay Chains due to Processing"

Transcription

1 Analysis of Radioactive Disequilibrium in Natural Decay Chains due to Processing Hans-Jürgen Lange 1, Rainer Dargel 2 1Canberra GmbH, Walter-Flex-Str. 66, Rüsselsheim Phone: , address: 12 jlange@canberra.com

2 Fundamental basics What do we need for accurate activity measurements of Natural Occuring Radioactive Material?

3 Fundamental basics Information about nuclear decays (nuclear data) nuclide library information Detector efficiency as a function of detector, geometry, matrix, Improvement of background by passive and active shielding, flushing with nitrogen Adjustment of peak fit algorithm. Interactive check! Information about processing of material prior to measurement True Coincidence effects on special energies for certain nuclides

4 0.72% 235 U (T 1/2 =7*10 8 a) 231 Th (T 1/2 =25,6 h) β Pa (T 1/2 =3,3*10 4 a) 227 Ac (T 1/2 =22 a) (1,2%) β - (98,8%) 223 Fr (T 1/2 =22 m) 227 Th (T 1/2 =18,7 d) Based on: U. Schkade, priv.com. Measurement of 235 U and daughters β Ra (T 1/2 =11,4 d) 219 Rn (T 1/2 =3,9 s) Gas! γ : 143,76 kev ; 10,96 % γ : 163,33 kev ; 5,08 % γ : 185,72 kev ; 57,20 % γ : 205,31 kev ; 5,01 % 223 Ra 226 Ra (144,23 kev; 3,22 %) (186,10 kev; 3,51 %) γ : 235,97 kev ; 12,3 % γ : 269,46 kev ; 13,7 % γ : 271,23 kev ; 10,8 % 228 Ac (270,25 kev; 3,46 %)

5 Measurement of 235 U and daughters 219 Rn (T 1/2 =3,9 s) Gas! 215 Po (T 1/2 =1,8 ms) 211 Pb (T 1/2 =36,1 m) β Bi (T 1/2 =2,15 m) (99,68%) β - (0,32%) 207 Tl (T 1/2 =4,8 m) 211 Po (T 1/2 =0,52 s) β Pb (stabil) Additionally 219 At, 215 Bi und 215 At are produced!

6 Measurement of 238 U and daughters 99.27% Recoil loss possible 238 U (T 1/2 =4.5*10 9 a) 234 Th (T 1/2 =24.1 d) β - 234m Pa (T 1/2 =1.2 m) β U (T 1/2 =2.5*10 5 a) 230 Th (T 1/2 =8*10 4 a) γ : 92,37 kev ; 2,42 % γ : 92,79 kev ; 2,39 % γ : 92,6 kev ; 4,81 % Th-Kα1 (93,35 kev; 5,6 %) γ : 1001,03 kev ; 0,839 % γ : 766,37 kev ; 0,316 % γ : 63,28 kev ; 4,1 % 232 Th(63,81 kev; 0,263 %)

7 Measurement of 238 U, 226 Ra and daughters Gas!! 226 Ra (T 1/2 =1600 a) 222 Rn (T 1/2 =3.8 d) 218 Po (T 1/2 =3.05 m) (99,98%) β - (0.02%) 214 Pb (T 1/2 =26.8 m) 218 At (T 1/2 =2 s) β Bi (T 1/2 =19.8 m) γ : 186,10 kev ; 3,51 % 235 U : (185,72 kev; 57,2 %) γ : 295,22 kev ; 18,15 % γ : 351,93 kev ; 35,10 % 211 Bi (351,06 kev; 12,91 %) γ : 609,31 kev ; 44,6 % γ : 1120,29 kev ; 14,7 % γ : 1764,49 kev ; 15,1 %

8 Measurement of 238 U, 226 Ra and daughters - Measurement of the 186,10 kev-linie ; 3,51 % - But interfering with 185,72 kev; 57,2 % of 235 U 1- Use of 235 U-activity from other energy lines and correct the 226 Ra-activity 2- Calculate 238 U-activity from daughter nuclides. Use of natural ration for 238 U/ 235 U=21,7 for 235 U-activity => For 2 equillibrium is essential!

9 Measurement of 238 U, 226 Ra and daughters - Measurement of daughters 214 Pb and 214 Bi - But 222 Rn gaseous => losses 214 Pb γ : 295,22 kev ; 18,15 % γ : 351,93 kev ; 35,10 % Interferenz 211 Bi (351,06 kev; 12,91 %) 214 Bi γ : 609,31 kev ; 44,6 % γ : 1120,29 kev ; 14,7 % γ : 1764,49 kev ; 15,1 % Gastight container for measurement and storage needed!

10 Measurement of 238 U, 210 Pb and daughters 214 Bi (T 1/2 =19.8 m) (0,04%) β - (0.02%) 210 Tl (T 1/2 =1.3 m) 214 Po (T 1/2 =162 µs) β Pb (T 1/2 =22a) (7.5*10-7 %) β - (100%) 206 Hg (T 1/2 =8.1 m) 210 Bi (T 1/2 =5.0 d) β - (5*10-6 %) β Tl (T 1/2 =4.3 m) 210 Po (T 1/2 =138.4 d) β Pb (stabil) γ : 46,54 kev ; 4,25 %

11 Measurement of 232 Th and daughters Efficiencycheck 232 Th (T 1/2 =1,4*10 10 a) 228 Ra (T 1/2 =5,7 a) β Ac (T 1/2 =6,13 h) β Th (T 1/2 =1,9 a) 224 Ra (T 1/2 =3,64 d) 220 Rn (T 1/2 =55,6 s) 216 Po (T 1/2 =0,15 s) γ : 63,81 kev ; 0,263 % Ra Th (63,28 kev; 4,1 %) γ : 209,25 kev ; 3,89 % γ : 338,32 kev ; 11,27 % γ : 911,20 kev ; 25,80 % γ : 968,97 kev ; 15,8 % (338,28 kev; 2,79 %) γ : 240,99 kev; 4,10 % 214 Pb Gas!! (242,00 kev; 7,12 %)

12 Measurement of 232 Th and daughters 216 Po (T 1/2 =0,15 s) 212 Pb (T 1/2 =10,6 h) β Bi (T 1/2 =60,6 m) (36,2%) β - (63,8%) 208 Tl (T 1/2 =3.1 m) 212 Po (T 1/2 =0.3 µs) β Pb (stabil) γ : 238,63 kev ; 43,30 % γ : 300,09 kev ; 3,28 % 227 Th 231 Pa (300,00 kev; 2,70 %) (300,07 kev; 2,47 %) γ : 727,33 kev ; 6,58 % γ : 583,19 kev ; 30,4 % γ : 860,56 kev ; 4,47 % γ : 2614,53 kev ; 35,64 % (Abundance * 0.362) 228 Ac (583,41 kev; 0,111 %)

13 Measurement of natural decay chains Step 1: Step 2: Is there a consistent analysis with all 3 decay chains in equilibrium? Is there a constant factor between the 238 U-chain and the 235 U-chain of 21.7 => easy interpretation Nuclide library with all lines correlated to the progenitor! 235 U, 238 U or 232 Th Abundances and halflives!

14 Measurement of natural decay chains Step 3: What are the nuclides that caused the disequilibrium? Does the disequilibrium comes from: 1- Geochemical processes 2- Effects from processing 3- Gas losses from measurement container Step 4: How do these disequilibria influence radiation protection Examples: U/ 234 U-activity Recoil followed by solution in water Pb- 214 Bi different to 226 Ra due to emanation Pb activity increased by filtering of aerosols or electrostatic effects => Exact analysis of peak areas important

15 Steps to improve accuracy of net peak areas Background reduction (passive/active shielding) Improved efficiency functions and check of results Peak fit algorithm

16 Choice of detector (Calibration factor)

17 Ultra-Low-Level measurements Cellar Collaboration Source: Cellar booklett and priv. Communication M. Köhler

18 Efficiencies for different samples 3,00E-02 2,50E-02 5,00E-02 Ta-ore 3 cm Ta-ore vs Sand Ta-ore vs Sand Efficiency 2,00E-02 4,00E-02 Reihe1 5,00E-02 1,50E-02 Reihe2 Reihe1 3,00E-02 Reihe2 1,00E-02 4,00E-02 2,00E-02 5,00E-03 3,00E-02 0,00E+00 1,00E-02 2,00E ,00E+00 1,00E Energy 600 [kev] Efficiency E fficiency 0,00E+00 Energy [kev} Energy [kev}

19 Fundamental basics x-ray energies of elements Element O Fe Ge Zr Nb I Ta Hg Pb kα1 [ev] kα2 [ev] kβ1 [ev]

20 X-ray fluorescence analysis Output of x-ray fluorescence analysis can be used as input for Monte-Carlo modelling of efficiency function Ta-ore vs Sand 5,00E-02 4,00E-02 Reihe1 Reihe2 Efficiency 3,00E-02 2,00E-02 1,00E-02 0,00E Energy [kev}

21 Validation of efficiency function

22 Validation of efficiency function

23 Validation of peak fit results E r e i g n i s s e Energy [kev]

24 Validation of peak fit results

25 Validation of peak fit results Energy [kev] FWHM Events Energy [kev] FWHM Events ,2 1,6 1,4 7 2,1 0,5 0,4 1,3 0,5 0,8 0,8

26 Time evolution of activity Example of Ra extraction from geothermal facilities D. Degering: Private communication from SAAGAS meeting september, 2010 Batemann, H. 1910, Solution of a System of Differential Equations Occuring in the Theory of Radioactive Transformations, Proc. Cambridge Philos. Soc. 15, Decay Engine, t/application/fulldecay.a spx Degering, D., Köhler, M., SAAGAS meeting, Sept. 2010

27 True Coincidence γ- γ-coincidence X-ray- γ-coincidence γ-β-coincidence More:.. Inhomogenities Input: treatment of material and sample

Gamma Analyst Performance Characteristics (MDAs)

Gamma Analyst Performance Characteristics (MDAs) Application Note Gamma Analyst Performance Characteristics (MDAs) Introduction With so much attention being given to environmental issues, the process of sample characterization is challenging today s

More information

IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO

IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO McOrist G D., Bowles C.J., Fernando K. and Wong R. Australian Nuclear Science and Technology Organisation Australia Abstract

More information

First tests of the big volume ultra low background gamma spectrometer

First tests of the big volume ultra low background gamma spectrometer First tests of the big volume ultra low background gamma spectrometer N. Todorović,, D. MrđaM rđa,, I. Bikit, M. Vesković,, S. Forkapić,, J. Slivka Departman za fiziku, PMF, Novi Sad 1. Introduction Even

More information

1 Introduction. 2 Method. Robert Metzger 1,*, Kenneth Van Riper 2, and George Lasche 3

1 Introduction. 2 Method. Robert Metzger 1,*, Kenneth Van Riper 2, and George Lasche 3 Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting Robert Metzger 1,*, Kenneth Van Riper 2,

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

A coincidence method of thorium measurement

A coincidence method of thorium measurement A coincidence method of thorium measurement Nevenka Antovic a*, Perko Vukotic a and Nikola Svrkota b a Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica,

More information

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers Zsolt Révay Institute of Isotopes, Budapest, Hungary Dept. of Nuclear

More information

Ultra-Low Background Counting and Assay Studies At SNOLAB

Ultra-Low Background Counting and Assay Studies At SNOLAB Ultra-Low Background Counting and Assay Studies At SNOLAB Ian Lawson SNOLAB 2015 CAP Congress University of Alberta 1 Outline Motivation for Low Background Counters Advantages of being deep Current Facilities

More information

Low Background Counting At SNOLAB

Low Background Counting At SNOLAB Low Background Counting At SNOLAB Ian Lawson Collaboration Meeting Minneapolis, Minnesota, June 22-23, 212 1 Outline SNOLAB and description of the SNOLAB Low Background Gamma Counting System Other material

More information

Stefano Pirro. JRA2 Highlights Scintillating Bolometers. -Milano

Stefano Pirro. JRA2 Highlights Scintillating Bolometers. -Milano JRA2 Highlights Scintillating Bolometers Stefano Pirro -Milano Background Limitation for Simple bolometers Principles of operation Cd-Mo based crystals ZnSe crystals Conclusions Ilias 6 th Annual Meeting

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

Basic hands-on gamma calibration for low activity environmental levels

Basic hands-on gamma calibration for low activity environmental levels Basic hands-on gamma calibration for low activity environmental levels Iolanda Osvath Presented by Mats Eriksson Environment Laboratories Marine Environment Laboratories, Monaco Radiometrics Laboratory

More information

Identification of Naturally Occurring Radioactive Material in Sand

Identification of Naturally Occurring Radioactive Material in Sand Identification of Naturally Occurring Radioactive Material in Sand Michael Pope 2012 NSF/REU Program Physics Department, University of Notre Dame Advisors: Dr. Ed Stech, Dr. Michael Wiescher Abstract Radionuclides

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

arxiv: v1 [physics.ins-det] 20 Dec 2017

arxiv: v1 [physics.ins-det] 20 Dec 2017 Prepared for submission to JINST LIDINE 2017: LIght Detection In Noble Elements 22-24 September 2017 SLAC National Accelerator Laboratory arxiv:1712.07471v1 [physics.ins-det] 20 Dec 2017 Radon background

More information

Environmental Applications

Environmental Applications Environmental Applications Gamma ray Spectrometry Paul Nolan University of Liverpool Gamma ray spectrometry of environmental samples is a standard technique Germanium detector Programs available for spectrum

More information

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER V.A. MOROZOV 1, N.V. MOROZOVA 1, T. BĂDICĂ 2, D. DELEANU 2,3, D. GHIŢĂ 2, S. PASCU 2,3 1 Joint

More information

THE CHART OF NUCLIDES

THE CHART OF NUCLIDES THE CHART OF NUCLIDES LAB NR 10 INTRODUCTION The term nuclide refers to an atom or nucleus as characterized by the number of protons (Z) and neutrons (N) that the nucleus contains. A chart of nuclides

More information

The Role of Reference Materials in the Measurement of Terrestrial Radionuclides

The Role of Reference Materials in the Measurement of Terrestrial Radionuclides Terrestrial Radionuclides in Environment International Conference on Environmental Protection 16-18 May 2012, Veszprém (Hungary) The Role of Reference Materials in the Measurement of Terrestrial Radionuclides

More information

Search for Low Energy Events with CUORE-0 and CUORE

Search for Low Energy Events with CUORE-0 and CUORE Search for Low Energy Events with CUORE-0 and CUORE Kyungeun E. Lim (on behalf of the CUORE collaboration) Oct. 30. 015, APS Division of Nuclear Physics meeting, Santa Fe, NM The CUORE Experiment CUORE

More information

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

RADON EQUILIBRIUM MEASUREMENT IN THE AIR * RADON EQUILIBRIUM MEASUREMENT IN THE AIR * SOFIJA FORKAPIĆ, DUŠAN MRĐA, MIROSLAV VESKOVIĆ, NATAŠA TODOROVIĆ, KRISTINA BIKIT, JOVANA NIKOLOV, JAN HANSMAN University of Novi Sad, Faculty of Sciences, Department

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN)

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN) PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN) C. Miandrinandrasana* LIAC; Faculty of Sciences University of Antananarivo

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry V. V. Bastrikov 1, M. V. Zhukovsky 2 1 Experimental Physics Department, Ural State Technical University, Mira St., 19/5, 620002, Ekaterinburg,

More information

Radioactive Decay and Radioactive Series

Radioactive Decay and Radioactive Series Radioactive Decay and Radioactive Series by Michele Laino June 7, 2015 Abstract In this short paper I will explain some general aspects of radioactive decays, furthermore, some useful tables, concerning

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1 Physics 3650 Quiz 1 October 1, 009 Name SOLUTION 1. If the displacement of the object, x, is related to velocity, v, according to the relation x = A v, the constant, A, has the dimension of which of the

More information

Precise Measurement of αt for the keV E3 transition in 103 Rh A Further Test of Internal Conversion Theory. Vivian Sabla N. Nica, J.C.

Precise Measurement of αt for the keV E3 transition in 103 Rh A Further Test of Internal Conversion Theory. Vivian Sabla N. Nica, J.C. Precise Measurement of αt for the 39.76-keV E3 transition in 103 Rh A Further Test of Internal Conversion Theory Vivian Sabla N. Nica, J.C. Hardy Internal Conversion In the radioactive gamma decay of an

More information

F. Cappella INFN - LNGS

F. Cappella INFN - LNGS + INR Kiev 100 Congresso SIF Pisa, 26 Settembre 2014 F. Cappella INFN - LNGS Double beta decay of 106 Cd 106 Cd is an attractive candidate: Q 2β = (2775.39 ± 0.10) kev [one of only six 2β + candidate nuclides]

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D.,

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D., Chapter 18: Radioactivity And Nuclear Transformation Presented by Mingxiong Huang, Ph.D., mxhuang@ucsd.edu 18.1 Radionuclide Decay Terms and Relationships Activity Decay Constant Physical Half-Life Fundamental

More information

Ultra-Low Background Measurement Capabilities At SNOLAB

Ultra-Low Background Measurement Capabilities At SNOLAB Ultra-Low Background Measurement Capabilities At SNOLAB Ian Lawson SNOLAB Greater Sudbury, Canada Torino, Italy 1 Brief Outline Motivation for low background counters Advantages of being deep Current facilities

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

Nuclear Physics Part 2A: Radioactive Decays

Nuclear Physics Part 2A: Radioactive Decays Nuclear Physics Part 2A: Radioactive Decays Last modified: 23/10/2018 Links What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are electrons Anti-particles

More information

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell NUKLEONIKA 2007;52(4):167 171 ORIGINAL PAPER Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell Bronisław Machaj, Piotr Urbański, Jakub Bartak Abstract.

More information

Radiological Characterization of Buildings at the Ranstad Uranium Works

Radiological Characterization of Buildings at the Ranstad Uranium Works Radiological Characterization of Buildings at the Ranstad Uranium Works Report presented at the Workshop on Radiological Characterization for Decommissioning Studsvik, Nyköping, Sweden 17 19 April 2012

More information

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment Kevin A. McCarthy Massachusetts Institute of Technology On behalf of the SuperCDMS and CDMS Collaborations

More information

THALES Project No. 65/1205

THALES Project No. 65/1205 THALES Project No. 65/1205 Monte Carlo simulation of radioactivity γ-ray spectra recorded by a NaI detector in the marine environment Research Team C.T.Papadopoulos (P.I.), Assoc.Professor, Physics Department,

More information

Natural Radiation K 40

Natural Radiation K 40 Natural Radiation There are a few radioisotopes that exist in our environment. Isotopes that were present when the earth was formed and isotopes that are continuously produced by cosmic rays can exist

More information

Study well-shaped germanium detectors for lowbackground

Study well-shaped germanium detectors for lowbackground Journal of Physics: Conference Series PAPER OPEN ACCESS Study well-shaped germanium detectors for lowbackground counting To cite this article: W-Z Wei et al 2015 J. Phys.: Conf. Ser. 606 012019 View the

More information

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Birgit Schneider Technische Universität Dresden Institut für Kern- und Teilchenphysik DPG-Frühjahrstagung Mainz 25th

More information

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration.

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration. Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration. Raffaele Buompane Dipartimento di Matematica e Fisica, Università degli Studi della Campania Luigi

More information

Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences

Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences UNIMIB - Dipartimento di Fisica G. Occhialini INFN Sezione di Milano Bicocca UNIPV- LENA UNIMIB-DISAT Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences Massimiliano

More information

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

Hrant Gulkanyan and Amur Margaryan

Hrant Gulkanyan and Amur Margaryan ALPHA-SPECTROSCOPY OF 252 Cf DECAYS: A NEW APPROACH TO SEARCHING FOR THE OCTONEUTRON YerPhI Preprint -1628 (2014) Hrant Gulkanyan and Amur Margaryan A.I. Alikhanyan National Science Laboratory (Yerevan

More information

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 2 INTRODUCTION TO THE PERIODIC TABLE Contents 1. The Structure of the Periodic Table 2. Trends in the Periodic Table Key words: group, period, block,

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

Chem 112, Fall 05 Exam 2a

Chem 112, Fall 05 Exam 2a Name: YOU MUST: Put your name and student ID on the bubble sheet correctly. Put all your answers on the bubble sheet. Please sign the statement on the last page of the exam. Please make sure your exam

More information

Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO

Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO M. Wójcik, G. Zuzel Institute of Physics, Jagiellonian University 7 th of June 2017, MPI Heidelberg From Cosmochemistry

More information

Chemistry 19 Prep Test - Nuclear Processes

Chemistry 19 Prep Test - Nuclear Processes Chapter 9 Prep-Test Chemistry 9 Prep Test - Nuclear Processes Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.. Which of the illustrations above

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po Nuclear Instruments and Methods in Physics Research A 450 (2000) 568} 572 Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po D. NikezicH, K.N. Yu* Department of Physics

More information

More Energetics of Alpha Decay The energy released in decay, Q, is determined by the difference in mass of the parent nucleus and the decay products, which include the daughter nucleus and the particle.

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay Chapter 10 Nuclear Physics 10.1 Nuclear Structure and Stability 10.1.1 Atomic Number and Nucleon Number 10.2 Radioactivity and Radioactive Decay 10.2.1 Types of Radioactive Decay 10.2.2 Predicting the

More information

Practical Approaches using TDCR Measurements and Alpha/Beta Separation

Practical Approaches using TDCR Measurements and Alpha/Beta Separation Practical Approaches using TDCR Measurements and Alpha/Beta Separation Jost Eikenberg, Maya Jäggi, Andreas Brand Division for Radiation Protection and Safety Paul Scherrer Institute, CH-5232 Villigen Overview

More information

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration Status of CUORE and Results from CUORICINO SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration 11th Seminar on Innovative Particle and Radiation Detectors Siena, 1 October 2008

More information

arxiv:nucl-ex/ v2 21 Jul 2005

arxiv:nucl-ex/ v2 21 Jul 2005 Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration arxiv:nucl-ex/0506029v2 21 Jul 2005 Cong Tam Nguyen and József Zsigrai Institute of Isotopes of the Hungarian Academy of Sciences

More information

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration) SuperNEMO Double Beta Decay Experiment A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration) 1 OUTLINE NEMO-3 SuperNEMO DEMONSTRATOR: present status and plans for the future 2 NEMO-3 Collaboration

More information

X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory

X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory X-Ray Data Booklet X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Now Available Order X-Ray Data Booklet

More information

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty Science 10 Unit 4:Physics Book 3: radioactivty Name: Block: 1 5.1 : Radioactivity & Nuclear Equations Isotopes are versions of an element with the same but Because the number of protons is the same for,

More information

INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA)

INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA) Instrumental neutron activation analysis (INAA) is used to determine the concentration of trace and major elements in a variety of matrices. A sample is subjected to a neutron flux and radioactive nuclides

More information

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar A. T. Al-Kinani*, M. A. Amr**, K. A. Al-Saad**, A. I. Helal***, and M. M. Al Dosari* *Radiation and Chemical

More information

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up: Page 17a Objective: We will identify different types of radioactive decay. Warm-up: What are the three subatomic particles? Where is each particle located in the atom? What is an isotope? Page 17a (again)

More information

Radiological risk assessment to workers of a dicalciumphosphate industry

Radiological risk assessment to workers of a dicalciumphosphate industry Radiological risk assessment to workers of a dicalciumphosphate industry 1 A. HIERRO 1,D. MULAS 1, G.TREZZI 1, N. CASACUBERTA 2, V. MORENO 1, P. MASQUÉ 1, J. GARCIA- ORELLANA 1 1 D E P A R T A M E N T

More information

Modelling of decay chain transport in groundwater from uranium tailings ponds

Modelling of decay chain transport in groundwater from uranium tailings ponds Modelling of decay chain transport in groundwater from uranium tailings ponds Nair, R.N., Sunny, F., Manikandan, S.T. Student : 曹立德 Advisor : 陳瑞昇老師 Date : 2014/12/04 Outline Introduction Model Result and

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

ARMUG New CAM Developments. Arran Morgan MSc Physicist

ARMUG New CAM Developments. Arran Morgan MSc Physicist New CAM Developments Arran Morgan MSc Physicist Topics Particulate sampling considerations Alpha spectral analysis Concentration calculation Spectrum stabilisation Beta measurement Loose filter Bi detection

More information

Behaviour of. 222 Rn. and its daughters in liquid nitrogen. GERDA Collaboration Meeting Jagellonian University,, Kraków 2008

Behaviour of. 222 Rn. and its daughters in liquid nitrogen. GERDA Collaboration Meeting Jagellonian University,, Kraków 2008 Behaviour of Rn 222 Rn and its daughters in liquid nitrogen Marcin Wójcik,, Nikodem Frodyma,, Krzysztof Pelczar GERDA Collaboration Meeting Jagellonian University,, Kraków 2008 1 Problems and Questions

More information

Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data. Todd Davidson

Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data. Todd Davidson Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data Todd Davidson Introduction According to Regulatory Guide 8.34 Monitoring Criteria and Methods

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION Concordia University CHEM 205 Fall 2009, B LAST NAME: FIRST NAME: STUDENT ID: Chem 205 - GENERAL CHEMISTRY I MIDTERM EXAMINATION PLEASE READ THIS BOX WHILE WAITING TO START INSTRUCTIONS: Calculators are

More information

Radionuclides in hot mineral spring waters in Jordan

Radionuclides in hot mineral spring waters in Jordan Journal of Environmental Radioactivity 52 (2001) 99}107 Technical note Radionuclides in hot mineral spring waters in Jordan S. A. Saqan, M. K. Kullab *, A. M. Ismail Physics Department, Jordan University

More information

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy Acoustics and Ionising Radiation Formulation and Strategy 13 November 2008 Alan DuSautoy Contents What is the future of Programme Formulation? What is Rolling Formulation? Programme Overview Roadmaps Future

More information

General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) Two atoms must represent the same element if they both have the same: A) number of electron shells

More information

Background optimization for a new spherical gas detector for very light WIMP detection

Background optimization for a new spherical gas detector for very light WIMP detection Background optimization for a new spherical gas detector for very light WIMP detection a, I. Giomataris b, G. Gerbier b, J. Derré b, M. Gros b, P. Magnier b, D. Jourde b, E.Bougamont b, X-F. Navick b,

More information

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity 2.1 Multiple-Choice 1) The smallest particle of an element that can be identified as that element is: A) a proton

More information

Radon Emanation Testing for DRIFT

Radon Emanation Testing for DRIFT Radon Emanation Testing for DRIFT DRIFT-IIa @ Boulby Direct & independent measurement of Rn emanation from detector components. Sean Paling - Sheffield. 1 CYGNUS mtg - July 2007 Boulby Cathode crossers

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

Calibration of A Small Anode Germanium Well Detector

Calibration of A Small Anode Germanium Well Detector Calibration of A Small Anode Germanium Well Detector DTU Nutech, Roskilde, Denmark Joonas Tikkanen Introduction Small anode germanium (SAGe) well detector manufactured by Canberra/Mirion Measurements possible

More information

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods N. Stefanakis 1 1 GMA Gamma measurements and analyses e.k. PO Box 1611, 72706 Reutlingen,

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration CANDLES Experiment Current Status and Future Plan X. Li for the CANDLES Collaboration 1 Neutrinoless Double Beta Decay (0νββ) 2νββ decay 0νββ decay (A, Z) => (A, Z+2) + 2e - process beyond Standard Model

More information

Measurement of induced radioactivity in air and water for medical accelerators

Measurement of induced radioactivity in air and water for medical accelerators Measurement of induced radioactivity in air and water for medical accelerators K. Masumoto 1, K. Takahashi 1, H. Nakamura 1, A. Toyoda 1, K. Iijima 1, K. Kosako 2, K. Oishi 2, F. Nobuhara 1 High Energy

More information

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment Physikalisches Institut Kepler Center for Astro and Particle Physics : a test facility for the characterization of BEGe detectors for the GERDA experiment Raphael Falkenstein for the GERDA collaboration

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

Gamma-Spectrum Generator

Gamma-Spectrum Generator 1st Advanced Training Course ITCM with NUCLEONICA, Karlsruhe, Germany, 22-24 April, 2009 1 Gamma-Spectrum Generator A.N. Berlizov ITU - Institute for Transuranium Elements Karlsruhe - Germany http://itu.jrc.ec.europa.eu/

More information

Distillation purification and radon assay of liquid xenon

Distillation purification and radon assay of liquid xenon Distillation purification and radon assay of liquid xenon Yasuo Takeuchi Kamioka Observatory, ICRR, Univ. of Tokyo, Kamioka-cho, Hida-shi, Gifu 56-125, Japan Abstract. We succeeded to reduce the Kr contamination

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO G. Gerbier 1 for the NEWS collaboration 2, 1 Queen s University, Physics Department, Kingston, Canada 2 New Experiments With Spheres

More information

A Liquid Argon Scintillation Veto for the GERDA Experiment

A Liquid Argon Scintillation Veto for the GERDA Experiment A Liquid Argon Scintillation Veto for the GERDA Experiment for the GERDA Collaboration 2nd European Nuclear Physics Conference Bucharest, 18/09/2012 Institut für Kern- und Teilchenphysik GERDA - GERmanium

More information

An active-shield method for the reduction of surface contamination in CUORE

An active-shield method for the reduction of surface contamination in CUORE An active-shield method for the reduction of surface contamination in CUORE Marisa Pedretti on behalf of CUORE Collaboration INFN - Milano Università degli Studi dell Insubria Outline of the talk Introduction

More information

Neutron Activation Cross Sections for Fusion

Neutron Activation Cross Sections for Fusion Neutron Activation Cross Sections for Fusion Adelle Hay The University of York/Culham Centre for Fusion Energy March 30, 2015 Adelle Hay (UoY/CCFE) Neutron activation cross sections March 30, 2015 1 /

More information

The 46g BGO bolometer

The 46g BGO bolometer Nature, 3 The g BGO bolometer 1 Photograph of the heat [g BGO] and light [Ge; =5 mm] bolometers: see Fig. 1c for description Current events: Amplification gains: 8, (heat channel) &, (light channel). The

More information

The Radiological Hazard of Plutonium Isotopes and Specific Plutonium Mixtures

The Radiological Hazard of Plutonium Isotopes and Specific Plutonium Mixtures LA-13011 The Radiological Hazard of Plutonium Isotopes and Specific Plutonium Mixtures Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information