Re2 O 7 +17CO. WCl 6 +CO+Et 3 Al

Size: px
Start display at page:

Download "Re2 O 7 +17CO. WCl 6 +CO+Et 3 Al"

Transcription

1 Chapter 2: Dative igands 2.1 Introduction Chapters 2-4: presents illustrative summary of the types of complexes Chapter 2: steric and electronic properties of neutral ligands (Chapters 3&4: formally anionic ligands) 2.2 Carbon onoxide and elated igands Properties of Free Carbon onoxide small dipole moment with negative end located on carbon strongvibrationiniat2143cm -1 neutral ligand, commonly binds to metal C's lone pair elecrtrons normally binds to one metal, but bridging coordination is possible (-C-angleismuchlessthan120 ) Types of etal Carbonyl Complexes Preparation of metal-carbonyl complexes from bulk metal from reduction of complexes in higher oxidation state 1atm Ni Ni() 4 e2 O e 2 () WCl 6 ++Et 3 Al W() 6 polynuclear carbonyl complexes Fe() 5 Os() 5 Os 3 () 12 stable much less stable more stable homoleptic carbonyl complexes in2ndand3rdrow polynuclear structure is more favorable Classification of metal carbonyl complexes: Figure odels for Binding: Introduction of Backbonding binds strongly to electron-rich, low valent metals(backbonding, soft metal and soft ligand) Evidnce for Backbonding in Terminal Carbonyl Infrared and X-ray Diffraction Data for Complexes with Bridiging Carbonyls I, C-O length

2 Thermodynamics of the - Bonds dissociation of ligands: key step in many reactions Table 2.3 Cr() 6 <o() 6 <W() 6 Ni() 4 <Cr() 6 Ir(P i Pr 3 ) 2 Cl()(particularystrong) higher enegy of orbitals, backdonation third row, electron-rich alkylphosphine Isoelectronic Analogs of : Isocyanides and Thiocarbonyls C N isocyanide stronger -donor, weaker -acceptor than weakerc-x -bondthan 2.3 Dative Phosphorous igands and eavier Congeners Tertiary Phosphines and elated igands Chelating Phosphines bidentate, asymmetric bisphosphine, P--P angle trans coordination Ph 2 P Fe e Fe P P Ph 2 Ph 2 Transphos e PPh 2 Ph-Trap Properties of Free Phosphines P 3 vs N 3 binding: to transition metals more strongly(soft-soft) steric effect: less pronounced(larger atom, longer -P) high inversion barrier => P-chiral phosphine Ar 3 P,(O) 3 Plesssensitivetoair(lesselectronrich) Properties of Phosphine Complexes Bonding and Electronic Properties Electron-donatingability: 3 P>Ar 3 P>(O) 3 P greaters-characterofsp 2 -hybridizedorbitalofaryl =>weaker electron donor than alkyl electron-donation: alkyl > alkoxy -acceptor orbital: hybrid of P-X *-orbital and phosphorus d-orbital(figure 2.9) -acceptor ability: NF 3 Py P 3 P(Oe) 3 PF 3 PCl Ne 3 N PPh 3 Pe theoretical scale

3 electrondonatingability( in[ni() 3 ]) (cm -1 ) (cm -1 ) PtBu 3 PCy 3 Pe 3 P(C Oe) PPh 3 P(Oe) 3 P(OPh) 3 PF Steric Properties cone angle, solid angle(figure 2.11) Effect of Phosphine Steric and Electronic Properties on Structure and eactivity liganddissociationinni 4 (and related Pd complexes) Pe 3 <Pe 2 Ph<PePh 2 <PEt 3 <PPh 3 <PiPr 3 <PCy 3 <PPhtBu 2 bulky phosphines bind trans to one another deviation from the ideal coordination geomety because of bulky phosphines e.g.)wilkinsoncomplexhcl(pph 3 ) 3 =>nonplanar(normally,squareplanarford 8 h(i)) Pathways for the Decomposition of Phosphorus igands oxidation: more electron rich phosphine P-C bond cleavage Ar 3 P X Pd PAr 3 Ar' Ar 3 P Ar 3 P Pd X Ar'PAr Pd 3 X PAr 2 Ar' Ar P-Xclevage(X=O,N 2 )bywateroralcohol N Spectroscopic Properties of Phosphines 31 P:1/2spin,100%abundant relative receptivity: ( = 1, C = ) Cl Pe e 3 P Pe 3 3 u e 3 P Cl u e 3 P Pe 3 Cl e 3 P Cl Pe 3 trans cis :-6.63(s) :9.0(t)-12.7(t) J=35z eavier Congeners of Phosphorus igands - bond strength Steric effect of substituents P-C/As-C cleavage P>As>Sb>Bi P>As>Sb(-bondlength) P>As

4 Organometallics Study eeting#6 2011/5/12 Kimura 2.4 Carbenes Classes of Free and Coordinated Carbenes Properties of Free Carbenes carbenes with electron negative substituents with only hydrogen or alkyl groups more stable in singlet state triplet state N N NC nitrogen acts as strong -donor to unoccupied p-orbital Properties of Carbene Complexes Fischer Carbene Schrock Carbene e.g.) () 5 Cr Oe e.g.) t-bu t-bu Ta t-bu e t-bu electrophilic at carbene carbon carbene with electronegative substituents groups6-8(late)metalinalowoxdationstate bearing -accepting ligands such as -C bond: not strongly polarized considered as neutral ligands ( -donation and -backdonation like ) nucleophilic at carbene carbon carbene with hydrogen or alkyl groups groups 4-6(early) metal, high oxidation state more polar -C bond considered as dianionic ligands ybrid of Fischer and Schrock Carbene e.g.) Vinylidene complex e.g.) 3 P 3 P u C 2 Ph 2 P u e e PPh 2 C C Ph late metal, low oxidation state carbane ligand lacking heteroatom substituent with strongly donating ligand inatead of unsaturated hydrocarbyl group suchasphenylorvinyl considered as neutral ligand one methylene substituent at carbene carbon free vinyldene: electrophilic(like dihalocarbene) :pronetorearrangetoalkyne tautomers of alkyne and vinylidene(eq. 2.10a,b) (relative stability depends on the number and identity of ligand) electrophilic at carbene carbon(c ) nucleophilic at metal and C

5 Bonding of Carbenes siglet carbene triplet carbene closely related with donate two electrons to metal through a dative bond accept d-electrons in -backbonding oftenhaveweakp-bonds(large Ebet.d andp ) low rotation barrier(8~10 kcal/mol) considered as dianionic donationoftwoelectronpairstometal( ) NC Spectroscopic Characteristics of Carbene Complexes N N 13 C Fischer X=O X=N 290~365ppm 185~280ppm strong -donor, weak -acceptor : carbon is soft and less electronegative than most heteroatom ewis base : p-orbital of carbene carbon participates in strong -bonding with amino subsituents like phosphine, but stronger -donor two fold symmetry("fences rather than cones") Schrock 240 ~ 330 ppm 1 10~20ppm

6 2.5 Transition etal Carbyne Complexes C General Preparation ethod (1)viametathesisof-or-triplebondwithalkyne (2) transformation of existing ligand(carbene) into carbyne (3) modification of existing carbyne to exchange substituents at carbyne C carbyne eactivity [2+2] cycloaddition(chapters 13 and 20) attack by nucleophiles(chpter 11) by electrophiles(chapter 12) Bonding and Structure of Carbyne Comlexes C carbyne mostly, group 5~7 metal complexes carbene is typically considered trianionic (cf. monocationic like linear nitrosyl) bonding interaction: carbene + additional -bond in the case of heteroatom-substituted carbyne OO: metal UO:oneofthe *-orbitalsof-cbond => nuclephiles attack carbyne carbon C C C =N 2 ( -donorgroup):decrease -acidity = 3 Si(electropositivegroup):increase -acidity =alkyl( -donorgroup):increasethe enegiesofalltheorbitals => more polarized -C bond, C becmes more nucleophlic C Spectroscopic Characteristics of Carbyne Comlexes 13 C:200~350ppm,triplebondvibration:1250~1400cm Organic igands Bound Through ore than One Atom Olefin Comlexes * C-C Chatt-Dewar-Duncanson model C-C Stability of etal-olefin Comlexes electron-rich metal => olefin bering EWG (e.g. Ni(0)) inhigeroxdationstate(withchargesgreaterthan+1andd 0 ): olefin complexes are less common(cf. olefin polymerization) also sensitive to steric effects(binding: ethylene > -olefins)

7 Structures of etal-olefin Comlexes StructuralChangesUponBinding *backbonding:sp 2 =>sp 3 Cr( 5 ) + + Cr() 5 trans-cycloctene cis-cycloctene Structural Changes Upon Binding -donor + -acceptor electronic preference for orientaion about -olefin axis orientation of olefin: controlled by metal OO d 10 trigonal planar d 8 trigonal bipyramidal d 6 trigonal bipyramidal Spectral Properties of etal-olefin Comlexes N electron-poor metal complex: close to free olefin electron-rich metal complex: upfield shift Alkyne Comlexes -Bonding -Donation -Backbonding Structural Characteristics of Alkyne Complexes distorted to the geometry of cis-olefin if -backdonation is strong enough "metallacyclopropene" strained alkynes stabilized upon coordinationto the metal

8 Physical and Chemical Properties of Alkyne Complexes Complexes of Organic Carbonyl Compounds electron-rich metal fragments (low-valent late metal) e.g.) bind to aldehyde/ketone in 2 -fassion Cp 2 o O C 2 Ph 3 P Ph 3 P Ni O C CF 3 CF AreneandelatedComplexes n arene is stronger electron donor than three ligands electron-releasingsubstituentsonaromaticringinvariablystabilize 6 -areneligand steric interactions counteract this electronic effect coordination with T deplets arene of much of its -electron density N 2 2 Cr Cr less basic than aniline more acidic than benzoic acid u 4 -arenecomplexes distortion from planarity, large loss of aromaticity preparedbyreductionof( 6 -arene)dication 2.7ComplexesofigandsBoundThroughN,OandS Neutral Nitrogen Donor igands Amine Complexes ammonia, amines: classic ligand in coordination chemistry these ewis bases are less commonly used N proton of coordinated amine tend to be reactive tertiary amines bind weakly(hard-soft mismatch) tertiary amins are morer sterically congested than tertially phosphine (shorter C-N bond, larger C-N-C angle) N u 2 1 N O

9 Pyridine and Imine Complexes nitrogens in pyridine, imine, oxazoline are softer heteroarenes can act as -acceptors * examples: figure 2.39 they lack reactive N- bond monoimines tend to be reactive species Dinitrogen Complexes N 2 isisoelctronicwith,bindsmostoftenasan 1 -ligand lessbasicthan,less -acidicthan N 2 acceptingabilityofn 2 isstrongerthan -donatingpropety N 2 isgenerallymoreelectron-acceptingthanitiselectron-donating most dinitrogen complexes contain electron-rich metal center mostly, mononuclear complex, weak interaction Cp* Zr N 2 N 2 N N ZrCp* Cp* Zr N 2 N 2 N N ZrCp* dinuclearcomplex N-Nbondismuchlonger muchmoreactivatedn 2 insideoncomplex Complexes of Neutral Oxygen Donors 2 O,eO,TF,DE,acetoneDSO,Ar 3 POetc. Cp 2 Zr NtBu O even dessociate readily from more-oxophilic high-valent transition metals 3 POtendtobindmorestronglythan 2 O despite of weak bindings, these can influence reaction chemistry (without forming stable complexes) TF, DE, phosphine oxides are common(figure 2.44) dissociate readily => temporaly masking of reactive intermediate bindentate ligand with mixture of P and O(figure 2.45) Complexes of Neutral Sulfur Donors Se Pd X Se neutral sulfur donors: softer and more polarizable than neutral oxygen donors thioethers and sulfoxides are most common trans influence of neutral sulfur donor is greater than neutral oxygen donor compatible with amine -S 2 isstrongerthan-n 3 bond,butweakerthan-p 3 bond spectrochemicalseries:p 3 >S 2 >Cl - O 3 P O S u P 3 DSO to low-valent late metals: through electron pair on sulfur to harder high-valent metals: through electron pairs on oxygen DSO can induce isomerization of square-planar complexes to nonrigid five-coordinate intermediate

10 2.8 Sigma Complexes Overview of Sigma Complexes n n * dihydrogen, alkanes, silane, boranes(x- bond) electron donation from X- -bonding orbital backdonation from metal to X- *-orbital like olefin's Chatt-Dewar-Duncanson model ( donation from -bonding and backbonding to *-orbital) bonding intercation is much weaker than olefin -bonding enegy is in lower(less basic) -bonding is higher in enegy(less -acidic) E between and is too large? ->complexation=>longerx-bond=>less E n Dihydrogen Complexes PropertiesthateadtoStable 2 Complexes Ph 3 P PPh 3 u PPh 3 2 -complexes:arrestedoxidativeadditionofdihidrogen metalbackbondsto 2 *,butcleaves-onlypartially most metal: in low oxidation state(backbonding) many of these low-valent complexes are cationic (neutral, low-valent metal is too much electron-rich) neutral 2 complexeshave -acceptingcarbonylgroup [o( 2 )()(dppe) 2 ]:dihydrogencomplex [W 2 ()(dppe) 2 ]:dihydridecomplex second-row metals: dihydrogen complex third-row metals: dihydride complex SpectroscopicSignaturesof 2 Complexes eactivityof 2 Complexes * reactivity dissociation of dihydrogen addition of dihydrogen to form dihydride deprotonation of hydrogen by external base Dissociationof 2 PCy 3 W PCy 3 +P(Oe) 3-2 PCy 3 P(Oe) 3 W PCy 3 2 isreplacedby,p 3,nitriles notreplacedby 2 Onorethers binding entropic term is surprizingly large rate of substitution reaction => 0 order in incoming ligand rateofdisplacement=rateofdissociationof 2

11 P 3 W P 3 P 3 W P 3 Additionof 2 toformdihydride oxidative addition to cleave - bond inmanycases.equibriumbetween 2 anddyhydride barrier: structural change to accomodate two hydrides in some cases: dihydrogen as kinetic product at low temp Alkane and Silane Comlexes Si property and reactivity: closely related to those of dihydrogen complexes silane complexes: similar stability to dihydrogen-comlex(or slightly unstable) alkane complexes: not so much study (too unstable in solution) Stabilityelativeto 2 Complexes Si silane complexes: similar stabiliy to dihydrogen complexes(despite greater steric effect) Si-bondismorebasicthan-or-bond Si- bond is much longer weaker, has lower energy *-orbital alkanecomplexses:lessstablethan 2 orsi-complexes steric effect is not compensated by smaller E between and *-orbitals Evidence for Alkane Complexes Intramolecular Coordination of Aliphatic C- Bonds(Agostic Interactions) -agostic -agostic -agostic agostic interaction with a dative ligand intermediate to -hydrogen elimination (Chapte 10) electrophilic metal carbene in high oxidation state unsaturated metal (dpme)cl 3 Ti 86 severe distortion from agostic interaction agostic interaction: dynamic C-inmethyl:singlepeakinN

O CH 3. Mn CH 3 OC C. 16eelimination

O CH 3. Mn CH 3 OC C. 16eelimination igratory Insertion igratory Insertion/Elimination 1 A migratory insertion reaction is when a cisoidal anionic and neutral ligand on a metal complex couple together to generate a new coordinated anionic

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N2 Kashiwa ampus, October 16, 2009 Properties I. Nature of II. Nature of L II.a. Ligands with -atom attached to II.b. Ligands

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles M Transition metal alkene complexes The report in 1825 by William

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

Organometallics Study Meeting

Organometallics Study Meeting rganometallics Study eeting 04/21/2011.itsunuma 1. rystal field theory(ft) and ligand field theory(lft) FT: interaction between positively charged metal cation and negative charge on the non-bonding electrons

More information

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom.

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom. There are two main classes of carbene ligands Alkylidene (or Schrock carbene) ligands (A) have one or two alkyl or aryl substituents on the alpha carbon atom. Fischer carbenes (B) have a heteroatom substituent

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Carbenes and Olefin Metathesis

Carbenes and Olefin Metathesis arbenes and Olefin etathesis Peter H.. Budzelaar etal-carbon multiple bonds any transition metals form not only - single bonds but also = and (more rare) even bonds. omplexes containing an = bond are called

More information

σ Bonded ligands: Transition Metal Alkyls and Hydrides

σ Bonded ligands: Transition Metal Alkyls and Hydrides σ Bonded ligands: Transition Metal Alkyls and Hydrides Simplest of organo-transitionmetal species Rare until and understanding of their stability in the 60 s and 70 s Metal alkyls can be considered as

More information

EPIC LIGAND SURVEY: CARBON MONOXIDE

EPIC LIGAND SURVEY: CARBON MONOXIDE EPIC LIGAND SURVEY: CARBON MONOXIDE As a young, growing field, organometallic chemistry may be taught in many ways. Some professors (e.g., Shaugnessy) spend a significant chunk of time discussing ligands,

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-9 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry xidative Addition, Reductive Elimination, Migratory Insertion, Elimination

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl Reaction chanisms - igand Substitutions igand Substitutions 1 A substitution reaction is one in which an existing ligand on a metal center is replaced by another ligand. Exactly how this occurs depends

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

Chapter 8. Acidity, Basicity and pk a

Chapter 8. Acidity, Basicity and pk a Chapter 8 Acidity, Basicity and pk a p182 In this reaction water is acting as a base, according to our definition above, by accepting a proton from HCl which in turn is acting as an acid by donating a

More information

Organometallic Study Meeting#11 Chapter 5. Ligand Substitution Reactions

Organometallic Study Meeting#11 Chapter 5. Ligand Substitution Reactions rganometallic Study eeting#11 Chapter 5. igand Substitution Reactions 5.1 Introdution 011/6/18 K.isaki igand Substitution = A reaction in which a free ligand replaces a coordinated ligand Dissociative

More information

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls Subject Paper No and Title Module No and Title Module Tag 11: INORGANIC CHEMISTRY-III (METAL π- COMPLEXES AND METAL CLUSTERS) 1: π-acidity, Metal carbonyls, their classification and general features CHE_P11_M1

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Paper 3: INORGANIC CHEMISTRY I (Stereochemistry, Metal-Ligand Equilibria and Reaction Mechanism of Transition Metal Complexes) Module 3: dπ-pπ bonding

Paper 3: INORGANIC CHEMISTRY I (Stereochemistry, Metal-Ligand Equilibria and Reaction Mechanism of Transition Metal Complexes) Module 3: dπ-pπ bonding Subject Paper No and Title Module No and Title Module Tag 3, INORGANIC CHEMISTRY I (Stereochemistry, Metal- Ligand Equilibria and Reaction Mechanism of Transition Metal Complexes) 3, dπ-pπ bonding CHE_P3_M3

More information

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another.

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another. Introduction 1) Lewis Structures 2) Representing Organic Structures 3) Geometry and Hybridization 4) Electronegativities and Dipoles 5) Resonance Structures (a) Drawing Them (b) Rules for Resonance 6)

More information

Effect of nucleophile on reaction

Effect of nucleophile on reaction 1 Effect of nucleophile on reaction X DS c X c c X DS c + X cleophile not involved in DS of S N 1 so does not effect the reaction (well obviously it controls the formula of the product!) cleophile has

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

p Bonds as Electrophiles

p Bonds as Electrophiles Chapter 7 p Bonds as Electrophiles REACTIONS OF CARBONYLS AND RELATED FUNCTIONAL GROUPS Copyright 2018 by Nelson Education Limited 1 7.2.1 Orbital structure of the carbonyl group Because oxygen is more

More information

Organometallic Rections 1: Reactions at the Metal

Organometallic Rections 1: Reactions at the Metal E Organometallic Rections 1: Reactions at the Metal Three major classes of reactions: 1 Ligand Substitution associative (cf. S N 2) dissociative (cf. S N 1) interchange (not dealt with in this course)

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives Module 6 : General properties of Transition Metal Organometallic Complexes Lecture 2 : Synthesis and Stability Objectives In this lecture you will learn the following Understand the role lead by ligands

More information

18-Electron Rule: Myth or Reality? An NBO Perspective

18-Electron Rule: Myth or Reality? An NBO Perspective 18-Electron Rule: Myth or Reality? An NBO Perspective Eric CLOT UMR 5253 - CNRS, UM2, ENSCM, UM1 Interaction Experiment/Theory Experimental Chemists have Questions Where are the Nucleophilic and Electrophilic

More information

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY )

ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) CHAPTER IV ACTIVATION OF C H BONDS BY LOW-VALENT METAL COMPLEXES ( THE ORGANOMETALLIC CHEMISTRY ) n the end of the 1960s the leading specialist in homogeneous catalysis Jack Halpern wrote [1]: to develop

More information

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes rganometallics Study eeting art 4. eactions of rganometallic Complexes 1. asics 2011/4/28 oshino(d1).10 1-1. igand Exchange Dissosiative echanism ' n n-1 ' n-1 Fe(C) 5 (18e):hoto-promoteddissociationofigand

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

PART 2. -BONDED ORGANOMETALLICS

PART 2. -BONDED ORGANOMETALLICS PART 2. -BODED ORGAOETALLIS V() 6 r() 6 o() 6 W() 6 Fe() 5 Ru() 5 Os() 5 i() 4 Figure 1. Binary, ononuclear etal arbonyls n n O Fe O O Fe O o O o n 2 () 10 Fe 2 () 9 o 2 () 8 Fe Fe Fe Ir() 3 Os Os Os o

More information

ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS

ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS - 1 - ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS Introduction to Metal-Carbon Bonding Organometallic chemistry involves the interaction of an organic compound with a transition metal

More information

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES CONTENTS Introduction... 1 1. Organization of the text... 1 2. Frontiers of organometallic chemistry... 2 3. Situation of the book with respect to teaching... 2 4. Reference books and other selected references...

More information

Ammonia and Amines. Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. secondary 2. Et Me.

Ammonia and Amines. Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. secondary 2. Et Me. Ammonia and Amines threefold axis of rotation 111 107 Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. trigonal pyramidal primary 1 secondary 2 tertiary 3 quaternary

More information

EPIC LIGAND SURVEY: METAL ALKYLS - I

EPIC LIGAND SURVEY: METAL ALKYLS - I EPIC LIGAND SURVEY: METAL ALKYLS - I With this post we finally reach the defining ligands of organometallic chemistry, alkyls. Metal alkyls feature a metal-carbon σ bond and are usually actor ligands,

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Substitution and Elimination reactions

Substitution and Elimination reactions PART 3 Substitution and Elimination reactions Chapter 8. Substitution reactions of RX 9. Elimination reactions of RX 10. Substit n/elimin n of other comp ds 11. Organometallic comp ds 12. Radical reactions

More information

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following Module 10 : Reaction mechanism Lecture 1 : Oxidative addition and Reductive elimination Objectives In this lecture you will learn the following The oxidative addition reactions. The reductive elimination

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Solution problem 22: Non-Benzoid Aromatic Sytems

Solution problem 22: Non-Benzoid Aromatic Sytems Solution problem 22: on-enzoid Aromatic Sytems 22.1 & 22.2 Each double bond and each heteroatom (, ) with lone pairs donates 2 π- electrons as well as a negative charge. oron or a positive charge does

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Chapter 21 Coordination chemistry: reactions of complexes

Chapter 21 Coordination chemistry: reactions of complexes CHEM 511 chapter 21 page 1 of 7 Chapter 21 Coordination chemistry: reactions of complexes Reactions of Complexes Typically measure ligand substitution reactions in solution (usually water) Lability and

More information

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Synthesis of Organometallic Complex Hydrides Reaction of MCO with OH -, H -, or CH 2 CHR 2 M(CO) n + OH - = M(CO) n-1 (COOH) - = HM(CO) n-1 -

More information

Chapter 22: Amines. Organic derivatives of ammonia, NH 3. Nitrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic

Chapter 22: Amines. Organic derivatives of ammonia, NH 3. Nitrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic hapter 22: Amines. rganic derivatives of ammonia, 3. itrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic 22.1: Amines omenclature. (please read) sp 3 Amines are classified

More information

Structure and Reactivity: Prerequired Knowledge

Structure and Reactivity: Prerequired Knowledge Structure and eactivity: Prerequired Knowledge!!! The concepts presented in this summary are required for lecture and examination!!! 1. Important Principles in rganic Chemistry In general, structures which

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-8 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. Organometallic hemistry yclopentadienyl, Alkyl and Alkene yclopentadienyl p The cyclopentadienyl ligand

More information

NAME: FIRST EXAMINATION

NAME: FIRST EXAMINATION 1 Chemistry 64 Winter 1994 NAME: FIRST EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

Oxidative Addition oxidative addition reductive elimination

Oxidative Addition oxidative addition reductive elimination Oxidative Addition We have seen how neutral ligands such as C 2 H 4 or CO can enter the coordination sphere of a metal by substitution. We now look at a general method for simultaneously introducing pairs

More information

Inorganic Chemistry Year 3

Inorganic Chemistry Year 3 Inorganic Chemistry Year 3 Transition Metal Catalysis Eighteen Electron Rule 1.Get the number of the group that the metal is in (this will be the number of d electrons) 2.Add to this the charge 1.Negative

More information

1. Determine the oxidation state of the metal centre and count the number of electrons.

1. Determine the oxidation state of the metal centre and count the number of electrons. Exercise sheet : Organometallic chemistry Gunnar Bachem 1. Determine the oxidation state of the metal centre and count the number of electrons. 2. The metal fragment 1 reacts with the amine to give a carbene

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Lecture Notes Chemistry 342 Mukund P. Sibi Lecture 33 Amines

Lecture Notes Chemistry 342 Mukund P. Sibi Lecture 33 Amines Lecture otes Chemistry 342 Mukund P. Sibi Amines Amines are organic compounds derived from ammonia. The nitrogen in amines contains a lone pair of electrons. The presence of this lone pair of electrons

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9 ydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry Lecture 9 Inorganic Chemistry Chapter 1: Figure 10.1 2009 W.. Freeman Synthesis of Organometallic Complex ydrides Reaction of MCO

More information

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry E3012 - ore hemistry 3 eaction echanisms in Organometallic hemistry In an earlier section of this lecture course we considered the mechanisms of substitution reactions in organometallic species, and noted

More information

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Nomenclature: In carboxylic acid chlorides, anhydrides, esters and amides, the parent is the carboxylic acid. In each case be sure

More information

Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary

Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary Amines Amines are organic compounds containing a nitrogen functionality Depending upon the number of alkyl, or aryl, groups attached to nitrogen determines its classification, or order 2 primary secondary

More information

CSIR-UGC-NET/JRF GATE CHEMISTRY TEST : ORGANOMETALLIC COMPOUNDS

CSIR-UGC-NET/JRF GATE CHEMISTRY TEST : ORGANOMETALLIC COMPOUNDS 1 CSIR-UGC-NET/JRF GATE CHEMISTRY TEST : ORGANOMETALLIC MPOUNDS Time 00 : Hour Date : 1-10-2017 M.M. : 0 INSTRUCTION : 1. There are Two Parts. Part-A contains 10 objective type questions, each question

More information

5 Polyatomic molecules

5 Polyatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 5 Polyatomic molecules Answers to worked examples WE 5.1 Formal charges in N 2 (on p. 221 in Chemistry 3 ) Use formal charges to decide whether oxygen

More information

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: An Overview of Organic Reactions Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: 1. Addition (forward) Gain of atoms across a bond Example:

More information

1990 AL Chemistry paper II marking scheme

1990 AL Chemistry paper II marking scheme 1990 AL Chemistry paper II marking scheme 1.(a)(i) According to the equation: A 2 (g) + 3B 2 (g) 2AB 3 (g) 4 mol of AB 3 will consume 2 mol of A 2 & 6 mol of B 2. Therefore at equilibrium: [B 2 ] = (12-6)

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Exam Analysis: Organic Chemistry, Midterm 1

Exam Analysis: Organic Chemistry, Midterm 1 Exam Analysis: Organic Chemistry, Midterm 1 1) TEST BREAK DOWN: There are three independent topics covered in the first midterm, which are hybridization, structure and isomerism, and resonance. The test

More information

Introduction to Organometallic Chemistry. Stability of organometallic reagents

Introduction to Organometallic Chemistry. Stability of organometallic reagents Introduction to rganometallic hemistry. rganometallic chemistry is the chemistry of compounds that contain M- bonds, where M is either a main group metal or a transition metal.. ne common feature of all

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms Dr. Solomon Derese 1 A chemical reaction is the transformation of one chemical or collection of chemicals into another

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR St. Olaf College Northfield, Minnesota Contents PREFACE xiii 1 INTRODUCTION TO INORGANIC CHEMISTRY 1 1-1 What Is Inorganic Chemistry? 1 1-2 Contrasts

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hem A225 Notes Page 67 I. Introduction hapter 20: Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group (=) with no other heteroatoms attached. An aldehyde has at least one hydrogen attached;

More information

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation 8.12 Sites of unsaturation Many compounds have numerous sites of unsaturation If sites are well separated in molecule they react independently If sites are close together they may interact with one another

More information

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis Some artwig Chemistry Experimental Approaches and Detailed chanistic Analysis b. 1964 1986 A.B. Princeton U, Maitland Jones 1990.D. UC Berkeley, obert Bergman and ichard Anderson 1990-92 Post-doc, MIT,

More information

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation rganometallic Study Meeting Chapter 17. Catalytic Carbonylation 17.1 verview C or 3 3 C 3 C C 3 horrcat. Ar-X or alkene ' d cat. 2011/10/6 K.isaki or ' or N n 2 1 alkene, 2 Coorhcat. d cat. alkene C carbon

More information

O CHEM 2 CONCEPT PACKET Complete

O CHEM 2 CONCEPT PACKET Complete O CHEM 2 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

Recapping where we are so far

Recapping where we are so far Recapping where we are so far Valence bond constructions, valence, valence electron counting, formal charges, etc Equivalent neutral classification and MLX plots Basic concepts for mechanism and kinetics

More information

: Bond Order = 1.5 CHAPTER 5. Practice Questions

: Bond Order = 1.5 CHAPTER 5. Practice Questions CAPTER 5 Practice Questions 5.1 5.3 S 5.5 Ethane is symmetrical, so does not have a dipole moment. owever, ethanol has a polar group at one end and so has a dipole moment. 5.7 xygen has the valence electron

More information