sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

Size: px
Start display at page:

Download "sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito"

Transcription

1 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

2 1. Introduction 2

3 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only six electrons in its valence shell Chem. Rev. 2000, 100, Dumans firstly proposed to prepare carbene CH2: 1925 Chugaev firstly synthesized carbene metal complex 1954 Discovery of cyclopropanation reaction 1957 Appearance of NHC catalysts 1988 Bertland firstly reported isolable carbene nd generation Grubbs catalyst (Nobel Prize 2005) etc. Chem.Rev., 2015, 115, 11503

4 Singlet carbene and Triplet carbene 4 Chem. Rev., 2000, 100, 39 Triplet carbene Singlet carbene ウォーレン有機化学

5 Representative reactions of carbene 5 Triplet carbene reacts radically Biradical intermediate Acta.Chem.Scand., 1992, 46, 680 JACS, 1995, 117, Dimerization Cyclopropanation with loss of stereochemistry

6 Carbene metal complex Firstly synthesized by Chugaev Fischer carbene and Schrock carbene Anorg. Allg. Chem., 1925, 148, 37 Fishcer carbene Carbocation-like (electrophilic) weak π back-donaton adjacent to heteroatom (stabilization by π donation) Schrock carbene Carbonion-like (nucleophilic) strong π back-donation adjacent to C or H atom (no stabilization)

7 Generation of carbene from diazo compound 7 Thermally or photochemically generated carbenes Unselective Metal carbene from α-diazo carbonyl compound M (Rh, Ru, Cu, Au etc.) and L control the reactivity and selectivity of carbene center Reactivity (electrophilicity) is depend on the metal(+ligand) and substituent of carbene center Chem. Rev. 2010, 110, 704

8 Ligands affect the reactivity and selectivity(1) 8 ex.1 Chemoselectivity R=C3F7 Rh2(pfb)4 Rh2(cap)4 JACS , 8669

9 Ligands affect the reactivity and selectivity(2) 9 ex.2 Stereoselectivity JACS , 4507

10 2. Gold carbene 10

11 Characteristics of Gold 11 79Au Group 11, 6 th period Electron configuration [Xe], 4f 14, 5d 10, 6s 1 Oxidation state 5,4, 3, especially Au(Ⅲ) and Au(Ⅰ) are stable (work as soft Lewis acid) Most electronegative transition metal in the Pauling`s scale Gold carbene exhibits special characteristics

12 Gold catalysts can activate alkyne(1) 12 Soft Lewis acidities Activate alkyne,allene,alkene for attack of nuicleophile J. Chem. Soc. Perkin. Trans.1., 1976, 29, 123 Gold coordinated intermediates are trapped by various types of nucleophile Alkyne + amine Heterocycles, 1987, 25, 297

13 Gold catalysts can activate alkyne(2) 13 Alkyne+Carboxylic acid Allene+Thiol JACS, 2006, 128, 3112 Angew. Chem. Int. Ed., 2006, 45, 1897

14 Gold is less effective in π-back donation than Rh(1) 14 π-back donation ability depends on the electronegativity Most electronegative transition metal weak π-back donation π-back donation from metal stabilizes the carbene center weak π-back donation makes more reactive (electrophilic) Gold-coordinated carbocation Gold carbene Gold-stabilized singlet carbene Electrophilicity

15 Gold is less effective in π-back donation than Rh(2) 15 Gold carbene is so electrophilic that it can abstract Cl from solvent Org. Biomol. Chem., 2012, 10, 3168

16 Gold is less effective in π-back donation than Rh(3) 16 In the case of Rh carbene J. Org. Chem., 1995, 60, 2112 Tetrahedron, 2003, 59, 9333 Rh carbene intermediates are flanked by two electro-withdrawing carbonyl groups Electrophilicity Au carben intermediates with one electro-withdrawing carbonyl groups

17 Gold is less effective in π-back donation than Rh(4) 17 Diazo compound and gold catalysts give azine compound So electrophilic to be attacked by diazo compound cf. Inorganica. Chimica. Acta.,1994, 222, 267 Stable enough for characterization by UV, IR, NMR Angew. Chem.Int. Ed., 2015, 54, 15452

18 Gold is less effective in π-back donation than Rh(5) 18 Intermediates as gold carbene Tetrahedron. Let., 2003, 44, 2019 Chem. Commun., 2015, 51, 13937

19 Gold carbene and Gold stabilized carbocation(1) 19 What decides the character of carbene center? Computational and experimental analysis Focusing on ligand and substituent (By Toste`s group) 1 Substituent Structural and electronic comparison of cationic metal-free and [AuPMe3] + substituted substrates Nat. Chem., 2009, 1, 482

20 Gold carbene and Gold stabilized carbocation(2) 20 Bond length Natural atomic charge A = (C 1 C 2 )/(C 2 C 3 ) Lower A Positive charge is stabilized by C 3 substituent Higher A Positive charge is stabilized by C 1 substituent (AuL) A increases with less-donating C 3 substituent (O Me ester) A increases by the stabilization of positive charge at C 1 from AuL Au C 1 stabilization grows with increasing electrophilicity of the allyl cation Effect on natural atomic charge at C 3 grows with increasing electrophilicity of the allyl cation ( , , )

21 Gold carbene and Gold stabilized carbocation(3) 21 The effect of AuL on rotational barrier with different substituents Nat. Chem., 2009, 1, kcal mol 1 *M06, B3LYP, BP86 Functional +8.1 kcal mol 1 Expt. experiment C 2 C 3 bond of carbene resonance extreme has double bond character High rotation barrier indicates character of carbene intermediate AuL C stabilization (carbene character) is dependent on carbene substituent!!

22 Gold carbene and Gold stabilized carbocation(4) 22 Experiment analysis Experimental analysis also shows electron-donating substituent decrease carbene character!! Ligand effect is important?

23 Gold carbene and Gold stabilized carbocation(5) 23 2 Ligand Calculated bond length Short bond length = Double bond character= carbene-like reactivity Polymerized product carbocation-like reactivity IPr Cyclopropanation carbene-like reactivity Computational and experimental analyses are consistent with each other!! What difference is deciding ligand effect?

24 Representative bond of metal carbene 24 Representative bond of carbene L M σ donation M :C σ donation High Low (weak σ bonding) C: M π donation M L π donation High Low (strong π bonding) π-acidic weak strong Carbene-like reactivity Ligand Carbocation-like reactivity strong σ-donating weak

25 NHC ligand 25 NHC N- Heterocyclic Carbene Stable singlet carbene N C π donation stabilize carbene center Strongly σ-donating and weakly π-acidic ligand Increase Au C π-donation

26 18 Gold is less effective in π-back donation than Rh(5`) Intermediates as gold carbene Tetrahedron. Let., 2003, 44, 2019 Less donating catalysts give allene (Reaction time is very short)

27 3. α-oxo gold carbene 26

28 α-oxo gold carbene (By Zhang`s group) 27 Nucleophile/Electrophile α-carbrene gold carbene Angew. Chem. Int. Ed., 2007, 46,5156 Hazardous Potentially / explosive O Y + + alkyne is equivalent of diazo carbonyl compounds

29 Intramolecular oxidation (1) 28 Intramolecular oxidation Using sulfoxide as oxidant 5-exo-dig cyclization Aromatic substitution of α-gold carbene route was ruled out by mechanistic studies Facile 3,3-sigmatropic rearrangement is favorable α-oxo gold carbene can`t be generated? Angew. Chem.Int.Ed., 2007, 46, 5156

30 Intramolecular oxidation (2) 29 Evidence of α-oxo gold carbene formation Pinacol-type rearrangement α-oxo gold carbene 4 IPr(NHC) ligand is suitable 8 o-chlorinated benzene ring is good substrate to inhibit competitive 3,3-sigmatropic rearrangement Angew. Chem.Int.Ed., 2007, 46, 5156

31 Intermolecular oxidation (1) 30 Intermolecular oxidation Aryl sulfoxide as oxidant Reaction at the position adjacent to C-S=O was only observed Apparently good result More activated C5 position didn`t occur aromatic substitution Formation of α-oxo gold carbene < 3,3-sigmatropic rearrangement Org. Lett., 2009, 11, 4906 Sulfoxide isn`t suitable for intermolecular oxidation

32 Intermolecular oxidation (2) 31 Pyridine N-oxide as oxidant Avoid 3,3-sigmatropic rearrangement Acidic condition is needed (Pyridine deactivate catalyst?) Phosphine ligand is better than NHC ligand JACS, 2010, 132, 3258

33 Intermolecular oxidation (3) 32 The condition is so mild MOM and Boc can tolerate Highly reactive intermediate Less stable trans-fused ring Reaction efficiency depends on kinetics of OH trapping JACS, 2010, 132, 3258

34 Other type of Ligand (1) 33 P,N-bidentate ligand JACS, 2012, 134, 17412

35 Other type of Ligand (2) 34 The role of ligand 1 Steric shield on carbene center by rigid conformation 2 N Au donation increase Au :C donation (Carbene like Carbocation like) 1,2 Decrease electrophilicity (= Increase selectivity)

36 α-oxo gold carbene to C-H insertion (1) 35 sp 3 C-H insertion ( cyclopentanone) 1Conformation control by Thorpe-Ingold effect 2β-diketone-α-gold carbene (more electrophilic = more reactive to C-H insertion) Outset substrate Intermediate 3Bulky acyl group to hinder intermolecular side reactions JACS, 2015, 137, 5316

37 α-oxo gold carbene to C-H insertion (2) 36 9 L4 ligand (Most bulky P,N-bidentate ligand) is the most favorable for reactivity and selectivity 13 More hindered oxidant and NTf2 as counteranion are the most suitable

38 α-oxo gold carbene to C-H insertion (3) 37 Proposed mechanism of the reaction

39 α-oxo gold carbene to C-H insertion (4) 38 Substrate scope with Ynones A B

40 α-oxo gold carbene to C-H insertion (5) 39 Key points for control of reactivity 1 Thorpe-Ingold effect is important! Higher yield and selectivity Lower yield and selectivity (3j) 2 Masking of competing nucleophile is important!

41 Summary 40 More electrophilic Reactivity Less electrophilic Less donating ligand Ligand More donating ligand (Phosphine ligand) (NHC, P,N bidentate ligand) α-oxo gold carbene Prepared from alkyne + AuL + pyridine N-oxide ( Safe method without hazardous α-diazo carbonyl compounds) For C-H insertion NHC or P,N bidentate ligand is suitable Thorpe-Ingold effect is important (cyclization) Blocking of competing nucleophile is required

Nitrogen Centered Radical Ligands Nagashima Nozomu

Nitrogen Centered Radical Ligands Nagashima Nozomu 1 Nitrogen Centered Radical Ligands 2015. 7. 4. Nagashima Nozomu 1. Introduction 2 3 Aminyl radical 1) D. E. Wiliams, JACS, 1966, 88, 5665 2) Y. Teki et al. JOC, 2000, 65, 7889 Sterically protected aminyl

More information

N-Heterocyclic Carbenes

N-Heterocyclic Carbenes N-Heterocyclic Carbenes References 1. "N-Heterocyclic Carbenes as Organocatalysts." Marion, N.; Diez- Gonzalez, S.; Nolan, S.P. Angew. Chem. Int. Ed. 2007, 26, 2988. (general review) 2. "Stable Carbenes."

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES Zachery Matesich 24 February 2015 Roadmap 2 Introduction Synthetic Methods History of NHCs Properties of NHCs Nature of the carbene Structural properties

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

Rhodium Carbenoids and C-H Insertion

Rhodium Carbenoids and C-H Insertion hodium Carbenoids and C- Insertion Literature Talk Uttam K. Tambar March 1, 2004 8pm, oyes 147 h h h h h h irreversible reversible carbenoid 2 h2l4 1 h2l4 or h2l4 2 utline I. What is a Carbene? II. What

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom.

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom. There are two main classes of carbene ligands Alkylidene (or Schrock carbene) ligands (A) have one or two alkyl or aryl substituents on the alpha carbon atom. Fischer carbenes (B) have a heteroatom substituent

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

PHOTOCATALYSIS: FORMATIONS OF RINGS

PHOTOCATALYSIS: FORMATIONS OF RINGS PHOTOCATALYSIS: FORMATIONS OF RINGS Zachery Matesich 15 April 2014 Roadmap 2 Photoredox Catalysis Cyclizations Reductive Oxidative Redox-neutral Electron Transfer Conclusion http://www.meta-synthesis.com/webbook/11_five/five.html

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

O CH 3. Mn CH 3 OC C. 16eelimination

O CH 3. Mn CH 3 OC C. 16eelimination igratory Insertion igratory Insertion/Elimination 1 A migratory insertion reaction is when a cisoidal anionic and neutral ligand on a metal complex couple together to generate a new coordinated anionic

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Carbenes and Olefin Metathesis

Carbenes and Olefin Metathesis arbenes and Olefin etathesis Peter H.. Budzelaar etal-carbon multiple bonds any transition metals form not only - single bonds but also = and (more rare) even bonds. omplexes containing an = bond are called

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Substitution and Elimination reactions

Substitution and Elimination reactions PART 3 Substitution and Elimination reactions Chapter 8. Substitution reactions of RX 9. Elimination reactions of RX 10. Substit n/elimin n of other comp ds 11. Organometallic comp ds 12. Radical reactions

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

A Simple Introduction of the Mizoroki-Heck Reaction

A Simple Introduction of the Mizoroki-Heck Reaction A Simple Introduction of the Mizoroki-Heck Reaction Reporter: Supervisor: Zhe Niu Prof. Yang Prof. Chen Prof. Tang 2016/2/3 Content Introduction Intermolecular Mizoroki-Heck Reaction Intramolecular Mizoroki-Heck

More information

Dr. P. Wipf Chem /26/2007

Dr. P. Wipf Chem /26/2007 I. Basic Principles I-L. Radicals & Carbenes Features of Radical Reactions Review: Curran, D. P. In Comprehensive Organic Synthesis; B. M. Trost and I. Fleming, Ed.; Pergamon Press: Oxford, 1991; Vol.

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Advanced Organic FOURTH. Part A: Structure and Mechanisms

Advanced Organic FOURTH. Part A: Structure and Mechanisms Advanced Organic FOURTH Chemistry EDITION Part A: Structure and Mechanisms Advanced Organic Chemistry PART A: Structure and Mechanisms PART B: Reactions and Synthesis Advanced Organic Chemistry FOURTH

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

Examples of Substituted Benzenes

Examples of Substituted Benzenes Organic Chemistry 5 th Edition Paula Yurkanis Bruice Examples of Substituted Benzenes Chapter 15 Reactions of Substituted Benzenes Irene Lee Case Western Reserve University Cleveland, OH 2007, Prentice

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

N-Heterocyclic carbenes (NHCs): A comprehensive organocatalyst & reagent

N-Heterocyclic carbenes (NHCs): A comprehensive organocatalyst & reagent N-Heterocyclic carbenes (NHCs): A comprehensive organocatalyst & reagent Gowrisankar Parthasarathy Leibniz Universität Hannover, Institut für Organische Chemie AK Kalesse group seminar 1 Outline Introduction

More information

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides

Chapter 11, Part 1: Polar substitution reactions involving alkyl halides hapter 11, Part 1: Polar substitution reactions involving alkyl halides Overview: The nature of alkyl halides and other groups with electrophilic sp 3 hybridized leads them to react with nucleophiles and

More information

LECTURE #14 Thurs., Oct.20, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

LECTURE #14 Thurs., Oct.20, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections CHEM 221 section 01 LECTURE #14 Thurs., Oct.20, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSIGNED READINGS: TODAY S CLASS: NEXT LECTURE: Sections 4.7-4.10 finish Ch.4,

More information

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Introduction - Conjugated unsaturated systems

More information

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo C H activation of aliphatic amines without unnecessary mask 2017.11.25 M2 Takaya Togo 1 Outline 1.Introduction 2.Free amines as DG Discovery of new activation mode Mechanistic studies Application of the

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

π-alkyne metal complex and vinylidene metal complex in organic synthesis

π-alkyne metal complex and vinylidene metal complex in organic synthesis Literature Seminar 080220 Kenzo YAMATSUGU (D1) π-alkyne metal complex and vinylidene metal complex in organic synthesis 0. Introduction ' ' = π-alkyne metal complex vinylidene metal complex ecently, electrophilic

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Bowman Chem 345 Lecture Notes by Topic. Electrophilic Aromatic Substitution (EAS):

Bowman Chem 345 Lecture Notes by Topic. Electrophilic Aromatic Substitution (EAS): lectrophilic Aromatic Substitution (AS): Aromatic rings have a tendency to be unreactive due to their inherent stability. However, aromatic rings can react given the right incentives. ne way, they can

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Bio-inspired C-H functionalization by metal-oxo complexes

Bio-inspired C-H functionalization by metal-oxo complexes 1 Literature Seminar Bio-inspired C-H functionalization by metal-oxo complexes 2016. 7. 23. Nagashima Nozomu 2 C-H functionalization by enzymes Enzymes enable aliphatic C-H functionalization 3 P450 oxidation

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

SIX MEMBERED AROMATIC HETEROCYCLES

SIX MEMBERED AROMATIC HETEROCYCLES SIX MEMBERED AROMATIC HETEROCYCLES Ṇ. Pyridine Pyridine is aromatic as there are six delocalized electrons in the ring. Six-membered heterocycles are more closely related to benzene as they are aromatic

More information

Organic Reactions Susbstitution S N. Dr. Sapna Gupta

Organic Reactions Susbstitution S N. Dr. Sapna Gupta Organic Reactions Susbstitution S N 2 Dr. Sapna Gupta Kinetics of Nucleophilic Reaction Rate law is order of reaction 0 order is when rate of reaction is unaffected by change in concentration of the reactants

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Hour Examination # 1

Hour Examination # 1 CEM 347 rganic Chemistry II Spring 2015 Exam # 1 Solutions Key Page 1 of 11 CEM 347 rganic Chemistry II Spring 2015 Instructor: Paul Bracher our Examination # 1 Wednesday, February 11 th, 2015 6:00 8:00

More information

Physical organic chemistry

Physical organic chemistry Physical organic chemistry Second edition Neil S. Isaacs Foreword to first edition Foreword to second edition Symbols and abbreviations Mechanistic designations vi i ix xxvi i xxvii r Models of chemical

More information

Chromium Arene Complexes

Chromium Arene Complexes Go through Reviews Chem. Reviews Chem. Soc. Reviews Book by Prof. A. J. Elias Chromium Arene Complexes Complexation of Cr(CO) 3 with ARENES Chromium arene complexes Metal complexation is appealing in organic

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-9 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry xidative Addition, Reductive Elimination, Migratory Insertion, Elimination

More information

Sonogashira: in situ, metal assisted deprotonation

Sonogashira: in situ, metal assisted deprotonation M.C. White, Chem 253 Cross-Coupling -120- Week of ctober 11, 2004 Sonogashira: in situ, metal assisted deprotonation catalytic cycle: ' (h 3 ) n d II The first report: h Sonogashira T 1975 (50) 4467. h

More information

-catalyzed reactions utilizing isocyanides as a C 1

-catalyzed reactions utilizing isocyanides as a C 1 Pure Appl. Chem., Vol. 78, No. 2, pp. 275 280, 2006. doi:10.1351/pac200678020275 2006 IUPAC GaCl 3 -catalyzed reactions utilizing isocyanides as a C 1 source* Mamoru Tobisu, Masayuki Oshita, Sachiko Yoshioka,

More information

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation Asymmetric Synthesis of Medium-Sized ings by Intramolecular Au(I)-Catalyzed Cyclopropanation 1 2 Iain D. G. Watson, Stefanie itter, and F. Dean Toste JACS, ASAP, 1/22/2009 DI: 10.1021/ja8085005 2.5 mol%

More information

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES - 1 - STEREOCHEMISTRY AND STEREOELECTRONICS NOTES Stereochemistry in Organic Molecules Conventions used in drawing molecules Also, Fischer projections can sometimes be useful for acyclic molecules with

More information

AROMATIC & HETEROCYCLIC CHEMISTRY

AROMATIC & HETEROCYCLIC CHEMISTRY - 1 - AROMATIC & HETEROCYCLIC CHEMISTRY Aromatic Chemistry Aromaticity This confers an energetic stability over the equivalent double bond system. This can be explained from an MO point of view. The Huckel

More information

H 2 SO 4 Ar-NO 2 + H2O

H 2 SO 4 Ar-NO 2 + H2O Phenyl group: Shorthand for phenyl: Ph, C 6 5,. An aryl group is an aromatic group: phenyl, substituted phenyl, or other aromatic group. Shorthand: Ar Generalized electrophilic aromatic substitution: E

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 ct. 8, 2013 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes, such as cyclohexane

More information

Reactions of Benzene Reactions of Benzene 1

Reactions of Benzene Reactions of Benzene 1 Reactions of Benzene Reactions of Benzene 1 2 Halogenation of Benzene v Benzene does not react with Br 2 or Cl 2 unless a Lewis acid is present (a catalytic amount is usually enough) 3 v Mechanism v Mechanism

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information