Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and

Size: px
Start display at page:

Download "Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and"

Transcription

1 Supporting Information: Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and MoSe 2 /WSe 2 Albert F. Rigosi, Heather M. Hill, Yilei Li, Alexey Chernikov, and Tony F. Heinz %* Departments of Physics and Electrical Engineering, Columbia University, New York, NY 10027, United States % Present address: Department of Applied Physics, Stanford University, Stanford, CA 94305, United States and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States KEYWORDS 2D materials, heterostructures, transition metal dichalcogenides, lifetime broadening, charge transfer 1. Sample preparation and characterization Sample preparation Bulk crystals of MoS 2, WS 2, MoSe 2, and WSe 2 were mechanically exfoliated onto fused quartz to obtain monolayers. The monolayer thickness was verified using photoluminescence (PL) and atomic-force microscopy (AFM) measurements, as discussed below. Other monolayers were prepared on polypropylene carbonate (PPC) transferable film. These monolayers were transferred to build heterostructures as illustrated below in Figure S1 and Figure S2. 1

2 Figure S1. Schematic representation of the first part of the transfer process for the formation of TMDCHs. 2

3 Figure S2. Schematic representation of the second part of the transfer process for the formation of TMDCHs. The thermocouple is combined with the heating stage, which allows for temperature increases. 3

4 Sample characterization: atomic force microscopy The TMDCH systems are characterized using atomic force microscopy measurements and by comparing the relevant thicknesses of the individual layers to that of the heterostructure. Representative AFM images of the sulfur- and selenium-based heterostructures are shown in Figure S3. 5 μm 5 μm Figure S3. (Left) AFM images for a sulfur-based TMDCH. (Right) AFM profiles for the a seleniumbased TMDCH. Height profiles are shown along the indicated black lines. The dashed lines show the boundaries between different regions of the structure, with the zone inside both the blue and red boundaries corresponding to the heterostructure of the two labeled monolayers. 4

5 2. Photoluminescence and Raman spectra Photoluminescence spectra For further characterization of the individual layers and heterostructures, we carried out photoluminescence measurements of both selenium-based TMDCHs and sulfur-based TMDCHs. The measurements were performed using continuous-wave laser excitation at 532 nm in a commercial (Renishaw InVia) Raman microscope. As shown in Figure S4 for both types of heterostructures, we obtain PL spectra for both the separated monolayers and the overlapping heterostructure. The individual layers exhibit a strong peak corresponding to emission from the corresponding A exciton. For the overlapped region of TMDCHs, one observes PL features of the individual monolayers of which they are composed (Figure S4). Just as for the absorption spectra discussed in the main text, these features are not significantly shifted in energy in the heterostructure. The emission features do, however, exhibit a significant decrease in emission strength, with the tungsten chalcogen layers showing greater quenching than their molybdenum counterparts. In the tungsten chalcogen layers, the emission strength of the A exciton is reduced by a factor of 9x- 14x when the heterostructure is formed, while the molybdenum chalcogen layers experience slightly less quenching (7x-8x), as shown in Figure S4. The strong quenching of the A exciton emission in the heterostructures is expected based on the rapid charge separation predicted for the heterostructures, as discussed and analyzed in the main text. Indeed, the observed quenching by only a factor of ~10 in the PL emission appears to be anomalously small. For a charge separation time tens of fs and a reported emission lifetime of an isolated monolayer at room temperature in the range of a few hundred picoseconds 1, the expected quenching factor should be as large

6 We attribute the much lower measured PL quenching to the role of sample inhomogeneity. While the AFM data indicate that majority of the TMDCH exhibits direct contact between the two layers, there are also regions where bubbles appear to have formed between the monolayers. For a separation above a few nanometers, the coupling between the two layers will be very slight and the PL emission is expected to be largely unperturbed. We can thus understand our PL quenching observation as the result of ~10% of the TMDCH where poor interlayer contact is achieved. Because of the very strong quenching in the ideal part of the heterostructure sample, the measured PL can be dominated by the unquenched emission from the separated layers. Indeed, somewhat larger quenching factors (~60) have been reported for epitaxially-grown systems. 2 These systems might be expected to exhibit better contact between the layers and nearly approach behavior of an ideal, fully-coupled system. We note that the absorption measurements presented in the main text, unlike PL measurements described here, weight all portions of the sample equally. The absorption measurements can thus be taken as representative of the ideal part of the sample, with only a small correction from the separated regions, despite the fact that the PL may be dominated by uncoupled regions of the heterostructure. 6

7 Figure S4. (A) and (B) are PL measurements of a sulfur-based TMDCH plotted on a linear and logarithmic scales, respectively. Both the spectra of the individual layers and of the heterostructure are shown. (C) and (D) are analogous figures to (A) and (B) for a selenium-based TMDCH. No background correction has been made to the data. 7

8 Figure S5. Plot of the PL (solids lines) from a WSe 2 /MoSe 2 heterostructure and its two individual components, with the indicated scaling for better comparison. The dashed lines are fits to Lorentzian contributions for main neutral exciton emission, as well as a weaker trion feature. This analysis allows extraction of the PL linewidths, as discussed in the SI. The total PL response of the individual MoSe 2 and WSe 2 layers is presented in Figure S5 together with the corresponding fit curves, using two peaks for each layer: one peak representing the dominating neutral exciton response and weaker feature for the trion (charged exciton) response about 30 mev lower in photon energy. Keeping the transition energies unchanged for the responses of the individual MoSe 2 and WSe 2 components, good fits could be generated for heterostructure spectra (Figure S5). In the fit, the linewidth of the neutral exciton was not significantly increased (i.e., not more than 10 mev). We attribute this lack of significant broadening (as contrasted to the results for the absorption presented in the main text) as 8

9 reflecting the fact that much of the PL response comes from unquenched regions of separated layers, as discussed above. Because the PL data strongly weights imperfect regions with reduced quenching, it does not seem to provide a reliable means for the analysis of spectral linewidths of the heterostructure in our system. We thus consider the absorption measurements, which weight all regions of the sample equally, are more suitable for analysis of the spectral lineshapes of the heterostructures. Raman spectra We have performed Raman spectroscopy measurements for the two types of TMDCHs, recording spectra of the isolated layers and of the heterostructure region for both types of TMDCH (Figure S6). The spectra were recorded using laser excitation at 532 nm in a commercial Raman microscope (Renishaw InVia). The spectra of the heterostructure region roughly match the combined spectra of the individual layers, without significant spectral shifts. 9

10 Figure S6. Raman spectra for the two types of TMDCHs, with results shown for the separated layers, as well as for the overlapping region. The main peaks are labeled for the individual layers and the corresponding heterostructures. 3,4 3. Analysis of the reflectance spectra for the individual TMDC layers and heterostructures Experimental reproducibility In Figure S7, we indicate the reproducibility of the reflection contrast measurements, both from day to day and from sample to sample. Although slight changes are noticed in the amplitude, the position and width of the features are both highly reproducible. Note that measurements from three different samples presented in Figure 7 (right) all correspond to different relative crystallographic orientations for the two layers (which was not controlled in the assembly process). No significant variation is observed. We take the results as representative of a typical sample in which there is no special crystallographic alignment between the layers. 10

11 Figure S7. Reproducibility of reflection contrast measurements. (Left) Variation in reflection contrast spectra obtained by measuring the same MoS 2 /WS 2 heterostructure on different days. (Right) Reflection contrast spectra for three different MoS 2 /WS 2 heterostructure. The three different samples have arbitrary relative crystallographic orientations. Similar results were obtained for the MoSe 2 /WSe 2 heterostructures (not shown). Lorentzian peak fitting In our analysis of the spectra of the heterostructures, we made use of a simple model for the response of the individual layers based on a parameterization with a small number of Lorentzian peaks. In Figure S8, we compare the imaginary part of the dielectric function (determined from a Kramers-Kronig constrained variational analysis of the reflection contrast spectra) to the model with only a few Lorenztian peaks. Although the higher-lying peaks do not necessarily correspond to a single excitonic transition (unlike the two lowest peaks), we are able to describe the spectrum with this phenomenological treatment quite adequately. This parameterization allows us to simulate the heterostructure spectrum by introducing broadening of the peaks (as well as slight spectral shifts), as we discuss in the main text. 11

12 Figure S8. Imaginary parts of the complex dielectric functions for individual TDMC layers as obtained from the reflectance contrast data by the Kramers-Kronig constrained variational analysis and using the model with a small number of Lorentzians. In the latter, each spectrum is simulated by three (Mocompounds) or four (W-compounds) Lorentzian peaks. 4. Calculation of energy transfer rate In the main text, we consider the potential role of resonant energy transfer between the two monolayers of the heterostructure as a process contributing to the observed line broadening. We were able to exclude this as the dominant process, since the lowest energy transition in the system (for which their would be no acceptor state in the other monolayer) consistently exhibited line broadening. 12

13 It is, however, still interesting to estimate the possible rate of resonant energy transfer between the two layers under circumstances where the transition of interest in one layer (donor) does have an acceptor state in the other material. To this end, we model the energy transfer process using a treatment introduced by Prins et al. 6 to describe resonant energy transfer from a localized chromophore above a thin 2D layer. The rationale for applying this analysis to the present case of excitation into a 2D layer from another 2D layer is the fact that the initial excitation takes the form of a tightly bound exciton, for which energy transfer is expected to be similar to that from a localized chromophore. Within this framework, there is a simple analytic expression for the ratio of the rate of resonant energy transfer to the radiative rate of the donor : = Im Here is the donor emission wavelength, is the thickness of the acceptor layer, is the separation of the donor from the acceptor layer, = / is effective permittivity of the acceptor, and = / / is its anisotropy, where parallel and perpendicular denote directions in the plane of the acceptor layer. We have applied this formalism to the case of energy transfer from the WS 2 A exciton to the absorbing MoS 2 layer. The emission wavelength is taken to be = 626. The sample thickness = 0.65 is chosen as that of the layer separation in the MoS 2 van der Waals solid, in keeping with the choice made in deducing the dielectric function of the layer. The separation of the chromophore to the layer = 0.65 is the distance between the central atomic layer of the donor to the central atomic layer of the acceptor, based on van der Waals thicknesses. The in- 13

14 plane dielectric function of the MoS 2 is extracted from previously taken data 5 and a value of 7.1 is used for the perpendicular dielectric response based Prins et al 6. We then obtain for the dielectric parameters: = / = [ (7.1)] / and = / / = [ /(7.1)] /. For an estimated radiative rate of ~0.1 based on work by Sun et al 1, we then calculate by numerical evaluation of the integral above an energy transfer time of ~200 fs. Although fast for an energy transfer process, this time scale would still only account for a minor contribution to the observed line broadening in the heterostructure. References 1 Sun, D.; Rao, Y.; Reider, G. A.; Chen, G.; You, Y.; Brezin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of Rapid Exciton-Exciton Annihilation in Monolayer Molybdenum Disulfide. Nano Lett. 2014, 14, Yu, Y.; Hu, S.; Su, L.; Huang, L.; Liu, Y.; Jin, Z.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y.; Cao, L. Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS 2 /WS 2 Heterostructures. Nano Lett. 2015, 15, Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, Berkdemir, A.; Gutierrez, H. R.; Botello-Mendez, A. R.; Perea-Lopez, N.; Elias, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; Lopez-Urias, F.; Charlier, J.-C.et al. Identification of Individual and Few Layers of WS2 Using Raman Spectroscopy. Sci. Rep. 2013, 3. 5 Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H.; Van Der Zande, A. M.; Chenet, D. A.; Shih, E.; Hone, J.; Heinz, T. F. Measurement of the optical dielectric function of monolayer 14

15 transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, Prins, F.; Goodman, A. J.; Tisdale, W. A. Reduced Dielectric Screening and Enhanced Energy Transfer in Single- and Few-Layer MoS2. ACS Nano 2014, 14,

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Supporting Information. Progressive Micro-Modulation of Interlayer Coupling in. Stacked WS 2 /WSe 2 Heterobilayers Tailored by a. Focused Laser Beam

Supporting Information. Progressive Micro-Modulation of Interlayer Coupling in. Stacked WS 2 /WSe 2 Heterobilayers Tailored by a. Focused Laser Beam Supporting Information Progressive Micro-Modulation of Interlayer Coupling in Stacked WS 2 /WSe 2 Heterobilayers Tailored by a Focused Laser Beam Yayu Lee^, Zhenliang Hu^,, Xinyun Wang^,, Chorng-Haur Sow^,

More information

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal Mervin Zhao 1, 2, Ziliang Ye 1, 2, Ryuji Suzuki 3, 4, Yu Ye 1, 2, Hanyu Zhu 1, Jun Xiao 1, Yuan Wang 1,

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Confocal absorption spectral imaging of MoS 2 : Optical transitions

More information

Supporting Information. Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields

Supporting Information. Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields Supporting Information Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe2 at High Magnetic Fields Ashish Arora,*, Robert Schmidt, Robert Schneider, Maciej

More information

Optical manipulation of valley pseudospin

Optical manipulation of valley pseudospin Optical manipulation of valley pseudospin Ziliang Ye, Dezheng Sun, and Tony F. Heinz Departments of Applied Physics and Photon Science, Stanford University, 348 Via Pueblo Mall, Stanford, CA 9435, USA

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers

Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers Supporting Information Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers Yiling Yu 1,2, Yifei Yu 1, Lujun Huang 1, Haowei Peng 3, Liwei Xiong 1,4 and Linyou

More information

dots) and max max without energies

dots) and max max without energies Supplementary Figure 1 Light-polarization-dependent the crystal b-axis. Scale bar, 25 m. (b) Polarization-dependent absorption spectra of bilayer ReS 2. (c) Corresponding spectral weights of Lorentzian

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

Hall and field-effect mobilities in few layered p -WSe2 field-effect transistors Current-Voltage characteristics and leakage voltage Figure S1

Hall and field-effect mobilities in few layered p -WSe2 field-effect transistors Current-Voltage characteristics and leakage voltage Figure S1 Supplemental information to manuscript titled: Hall and field-effect mobilities in few layered p-wse 2 field-effect transistors by Nihar R. Pradhan 1, Daniel Rhodes 1, Shariar Memaran 1, Jean M. Poumirol

More information

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2 Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2 Kha Tran 1, Akshay Singh 1,*, Joe Seifert 1, Yiping Wang 1, Kai Hao 1, Jing-Kai Huang 2, Lain-Jong Li 2, Takashi Taniguchi 4, Kenji

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Supporting Information

Supporting Information Supporting Information Observation of Charge Transfer in Heterostructures Composed of MoSe 2 Quantum Dots and a Monolayer of MoS 2 or WSe 2 Shrawan Roy, a,b Guru P. Neupane, a,b Krishna P. Dhakal, a,b

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea Supporting Information for Coherent Lattice Vibrations in Mono- and Few-Layer WSe 2 Tae Young Jeong, 1,2 Byung Moon Jin, 1 Sonny H. Rhim, 3 Lamjed Debbichi, 4 Jaesung Park, 2 Yu Dong Jang, 1 Hyang Rok

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

Supporting Information. Davydov Splitting and Excitonic Resonance Effects

Supporting Information. Davydov Splitting and Excitonic Resonance Effects Supporting Information Davydov Splitting and Excitonic Resonance Effects in Raman Spectra of Few-Layer MoSe2 Kangwon Kim,,1 Jae-Ung Lee,,1 Dahyun Nam, and Hyeonsik Cheong Department of Physics, Sogang

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.105 Magnetic brightening and control of dark excitons in monolayer WSe 2 Xiao-Xiao Zhang 1,2,3, Ting Cao 4,5, Zhengguang Lu 6,

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201503131 Tuning the Excitonic States in MoS 2 /Graphene van

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Influence of the oxide thickness of SiO_2/Si(001) substrate on the optic harmonic intensity of few-layer MoSe. Miyauchi, Yoshihiro; Morishita, Ryo;

Influence of the oxide thickness of SiO_2/Si(001) substrate on the optic harmonic intensity of few-layer MoSe. Miyauchi, Yoshihiro; Morishita, Ryo; JAIST Reposi https://dspace.j Title Influence of the oxide thickness of SiO_2/Si(001) substrate on the optic harmonic intensity of few-layer MoSe Miyauchi, Yoshihiro; Morishita, Ryo; Author(s) Masatoshi;

More information

Supporting Information Title: The effect of preparation conditions on Raman and Photoluminescence of Monolayer WS2

Supporting Information Title: The effect of preparation conditions on Raman and Photoluminescence of Monolayer WS2 Supporting Information Title: The effect of preparation conditions on Raman and Photoluminescence of Monolayer WS2 Kathleen M. McCreary, Aubrey T. Hanbicki, Simranjeet Singh, Roland K. Kawakami, Glenn

More information

arxiv: v1 [cond-mat.mtrl-sci] 10 Dec 2016

arxiv: v1 [cond-mat.mtrl-sci] 10 Dec 2016 Resonant Raman imaging of MoS 2 -substrate interaction Hongyuan Li 1, 2 and Dmitri V. Voronine 1, 3 1 Institute for Quantum Science and Engineering, arxiv:1612.03354v1 [cond-mat.mtrl-sci] 10 Dec 2016 Texas

More information

Supporting Information. Carrier Trapping by Oxygen Impurities in Molybdenum Diselenide

Supporting Information. Carrier Trapping by Oxygen Impurities in Molybdenum Diselenide Supporting Information Carrier Trapping by Oxygen Impurities in Molybdenum Diselenide Ke Chen 1, Anupam Roy 2, Amritesh Rai 2, Amithraj Valsaraj 2, Xianghai Meng 1, Feng He 1,4, Xiaochuan Xu 3, Leonard

More information

Fundamental Limits of Exciton-Exciton Annihilation for Light Emission in. Transition Metal Dichalcogenide Monolayers

Fundamental Limits of Exciton-Exciton Annihilation for Light Emission in. Transition Metal Dichalcogenide Monolayers Fundamental Limits of Exciton-Exciton Annihilation for Light Emission in Transition Metal Dichalcogenide Monolayers Yiling Yu,, Yifei Yu, Chao Xu, Andy Barrette, Kenan Gundogdu *, Linyou Cao, * Department

More information

Single photon emitters in exfoliated WSe 2 structures

Single photon emitters in exfoliated WSe 2 structures Single photon emitters in exfoliated WSe 2 structures M. Koperski, 1,2 K. Nogajewski, 1 A. Arora, 1 V. Cherkez, 3 P. Mallet, 3 J.-Y. Veuillen, 3 J. Marcus, 3 P. Kossacki, 1,2 and M. Potemski 1 1 Laboratoire

More information

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer Supplementary Information for Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer MoS 2 Films Yifei Yu 1, Chun Li 1, Yi Liu 3, Liqin Su 4, Yong Zhang 4, Linyou Cao 1,2 * 1 Department

More information

Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG.

Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG. Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG. (a) The MoS2 crystals cover both of EG and WSe2/EG after the CVD growth (Scar bar: 400 nm) (b) shows TEM profiles

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via

Supporting information. Unidirectional Doubly Enhanced MoS 2 Emission via Supporting information Unidirectional Doubly Enhanced MoS 2 Emission via Photonic Fano Resonances Xingwang Zhang, Shinhyuk Choi, Dake Wang, Carl H. Naylor, A. T. Charlie Johnson, and Ertugrul Cubukcu,,*

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

Supporting Information. Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers

Supporting Information. Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers Supporting Information Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers Sefaattin Tongay 1,, Wen Fan 1,2,, Jun Kang 3, Joonsuk Park 4,Unsal Koldemir 4,Joonki

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Supporting Information

Supporting Information Supporting Information Composition-Tunable Synthesis of Large-Scale Mo1-xWxS2 Alloys with Enhanced Photoluminescence Juhong Park,#, Min Su Kim,#, Bumsu Park, Sang Ho Oh, Shrawan Roy,, Jeongyong Kim*,,,,

More information

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors.

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Jusang Park * Hyungjun Kim School of Electrical and Electronics Engineering, Yonsei University, 262 Seongsanno,

More information

Supplemental Materials for. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction

Supplemental Materials for. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction Supplemental Materials for Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction Jason S. Ross 1, Pasqual Rivera 2, John Schaibley 2, Eric Lee-Wong 2, Hongyi Yu 3, Takashi Taniguchi 4,

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.017.65 Imaging exciton-polariton transport in MoSe waveguides F. Hu 1,, Y. Luan 1,, M. E. Scott 3, J.

More information

Ultrathin transitionmetal dichalcogenides and 2D optoelectronics

Ultrathin transitionmetal dichalcogenides and 2D optoelectronics 76 Technology focus: Thin-film materials Ultrathin transitionmetal dichalcogenides and 2D optoelectronics A strong coupling of light and electrons and holes in ultrathin transition-metal dichalcogenides

More information

Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure

Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure Nanoscale optical imaging of multi-junction MoS2-WS2 lateral heterostructure Jiru Liu 1, Wenjin Xue 1, Haonan Zong 1, Xiaoyi Lai 1, Prasana K. Sahoo 2, Humberto R. Gutierrez 2 and Dmitri V. Voronine 2

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4996 Exciton Hall effect in monolayer MoS2 Masaru Onga 1, Yijin Zhang 2, 3, Toshiya Ideue 1, Yoshihiro Iwasa 1, 4 * 1 Quantum-Phase

More information

Supporting Information

Supporting Information lectronic Supplementary Material (SI) for Nanoscale This journal is The Royal Society of Chemistry 203 Supporting Information Lattice dynamics in atomically thin sheets of WS 2 and WSe 2 Weijie Zhao a,c,#,

More information

TEOS characterization of 2D materials from graphene to TMDCs

TEOS characterization of 2D materials from graphene to TMDCs Marc Chaigneau Yoshito Okuno, Andrey Krayev, Filippo Fabbri HORIBA Scientific AIST-NT Inc. IMEM-CNR Institute TEOS characterization of 2D materials from graphene to TMDCs 30-03-2017 Graphene2017 2015 2017

More information

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni

The deposition of these three layers was achieved without breaking the vacuum. 30 nm Ni Transfer-free Growth of Atomically Thin Transition Metal Disulfides using a Solution Precursor by a Laser Irradiation Process and their Application in Low-power Photodetectors Chi-Chih Huang 1, Henry Medina

More information

Supporting Information

Supporting Information Supporting Information Temperature Dependence of Emission Linewidths from Semiconductor Nanocrystals Reveals Vibronic Contributions to Line Broadening Processes Timothy G. Mack, Lakshay Jethi, Patanjali

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe 2

Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe 2 PUBLISHED ONLINE: 3 JULY 5 DOI:.38/NMAT4356 Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G.

More information

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity

Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.128 Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity Yongzhuo

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Supporting Information for. Modulating the Electron - Hole Interaction in a Hybrid Lead Halide. Perovskite with an Electric Field

Supporting Information for. Modulating the Electron - Hole Interaction in a Hybrid Lead Halide. Perovskite with an Electric Field Supporting Information for Modulating the Electron - Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field Tomas Leijtens 1,2, Ajay Ram Srimath Kandada 1, Giles E. Eperon 2, Giulia

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Recombination kinetics and effects of superacid treatment in sulfur and selenium based transition metal dichalcogenides

Recombination kinetics and effects of superacid treatment in sulfur and selenium based transition metal dichalcogenides Supporting Information For Recombination kinetics and effects of superacid treatment in sulfur and selenium based transition metal dichalcogenides Matin Amani 1,2, Peyman Taheri 1, Rafik Addou 3, Geun

More information

Spin-Conserving Resonant Tunneling in Twist- Supporting Information

Spin-Conserving Resonant Tunneling in Twist- Supporting Information Spin-Conserving Resonant Tunneling in Twist- Controlled WSe2-hBN-WSe2 Heterostructures Supporting Information Kyounghwan Kim, 1 Nitin Prasad, 1 Hema C. P. Movva, 1 G. William Burg, 1 Yimeng Wang, 1 Stefano

More information

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Supporting Information Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Ho Jin,, Minji Ahn,,,, Sohee Jeong,,, Jae Hyo Han,,, Dongwon Yoo,, Dong Hee Son, *, and Jinwoo

More information

Optical Spectroscopy of Single-Walled Carbon Nanotubes

Optical Spectroscopy of Single-Walled Carbon Nanotubes Optical Spectroscopy of Single-Walled Carbon Nanotubes Louis Brus Chemistry Department, Columbia University Groups: Heinz, O Brien, Hone, Turro, Friesner, Brus 1. SWNT Luminescence dynamics psec pump-probe

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Original phys. stat. sol. (b), 1 5 (2006) / DOI 10.1002/pssb.200669179

More information

Raman spectroscopy of transition metal dichalcogenides

Raman spectroscopy of transition metal dichalcogenides Journal of Physics: Condensed Matter TOPICAL REVIEW Raman spectroscopy of transition metal dichalcogenides To cite this article: R Saito et al J. Phys.: Condens. Matter Manuscript version: Accepted Manuscript

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

Pin-Chun Shen M.S. Photonics and Optoelectronics National Taiwan University, 2014

Pin-Chun Shen M.S. Photonics and Optoelectronics National Taiwan University, 2014 Large-area CVD Growth of Two-dimensional Transition Metal Dichalcogenides and Monolayer MoS 2 and WS 2 Metal oxide semiconductor Field-effect Transistors by Pin-Chun Shen M.S. Photonics and Optoelectronics

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research M R S Internet Journal of Nitride Semiconductor Research Volume 2, Article 25 Properties of the Biexciton and the Electron-Hole-Plasma in Highly Excited GaN J.-Chr. Holst, L. Eckey, A. Hoffmann, I. Broser

More information

Multimodal Nonlinear Optical Imaging of MoS 2

Multimodal Nonlinear Optical Imaging of MoS 2 Supporting Information for Multimodal Nonlinear Optical Imaging of MoS 2 and MoS 2 -Based van der Waals Heterostructures Dawei Li,, ± Wei Xiong,,, ± Lijia Jiang, Zhiyong Xiao, Hossein Rabiee Golgir, Mengmeng

More information

For more information, please contact: or +1 (302)

For more information, please contact: or +1 (302) Introduction Graphene Raman Analyzer: Carbon Nanomaterials Characterization Dawn Yang and Kristen Frano B&W Tek Carbon nanomaterials constitute a variety of carbon allotropes including graphene, graphene

More information

Optical transmittance of 2D crystals and ultra thin black phosphorus. Rebekah Chua

Optical transmittance of 2D crystals and ultra thin black phosphorus. Rebekah Chua Optical transmittance of 2D crystals and ultra thin black phosphorus Rebekah Chua Optical transmittance of 2D crystals and ultra thin black phosphorus Rebekah Chua Abstract Contents Nearly all bulk semiconductor

More information

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

+ - Indirect excitons. Exciton: bound pair of an electron and a hole. Control of excitons in multi-layer van der Waals heterostructures E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov University of California at San Diego, S. Hu, A. Mishchenko, A. K. Geim University

More information

Monolayers of transition metal dichalcogenides (TMDs), Observation of Rapid Exciton Exciton Annihilation in Monolayer Molybdenum Disulfide

Monolayers of transition metal dichalcogenides (TMDs), Observation of Rapid Exciton Exciton Annihilation in Monolayer Molybdenum Disulfide pubs.acs.org/nanolett Observation of Rapid Exciton Exciton Annihilation in Monolayer Molybdenum Disulfide Dezheng Sun,,# Yi Rao,,,# Georg A. Reider, Gugang Chen, Yumeng You, Louis Breźin, Avetik R. Harutyunyan,

More information

Anomalous temperature-dependent spin-valley polarization in monolayer WS 2

Anomalous temperature-dependent spin-valley polarization in monolayer WS 2 Anomalous temperature-dependent spin-valley polarization in monolayer WS 2 A.T. Hanbicki 1, G. Kioseoglou 2,3, M. Currie 1, C.S. Hellberg 1, K.M. McCreary 1, A.L. Friedman 1, and B.T. Jonker 1 1 Naval

More information

Atomically thin two-dimensional crystals have attracted

Atomically thin two-dimensional crystals have attracted pubs.acs.org/nanolett Optical Properties and Band Gap of Single- and Few-Layer MoTe 2 Crystals Claudia Ruppert, Ozgur Burak Aslan, and Tony F. Heinz* Departments of Physics and Electrical Engineering,

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2

Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2 Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2 Zhipeng Li 1,2,#, Tianmeng Wang 1,#, Zhengguang Lu 3,4, Chenhao Jin 5, Yanwen Chen 1, Yuze Meng 1,6, Zhen Lian 1, Takashi Taniguchi

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature9829 Supplementary Information S1: Movie of the photo-induced phase transition: Figures 2b-e show four selected XUV ARPES snapshots illustrating the most pronounced changes in the course

More information

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information Polaron Self-localization in White-light Emitting

More information

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V. SUPPLEMENTARY INFORMATION for Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films Tianle Guo, Siddharth Sampat, Kehao Zhang, Joshua

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.203 Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells Fatemeh

More information

Supporting Information. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials

Supporting Information. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials Supporting Information Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials Jingjing Lin 1, Liangbo Liang 2,3, Xi Ling 4, Shuqing Zhang 1, Nannan Mao 1, Na Zhang 1, Bobby G. Sumpter 2,5,

More information

Supporting information for: Ultrafast Transient. Terahertz Conductivity of Monolayer MoS 2 and WSe 2. Grown by Chemical Vapor Deposition

Supporting information for: Ultrafast Transient. Terahertz Conductivity of Monolayer MoS 2 and WSe 2. Grown by Chemical Vapor Deposition Supporting information for: Ultrafast Transient Terahertz Conductivity of Monolayer MoS 2 and WSe 2 Grown by Chemical Vapor Deposition Callum J. Docherty, Patrick Parkinson, Hannah J. Joyce, Ming-Hui Chiu,

More information

Using Visible Laser Based Raman Spectroscopy to Identify the Surface Polarity of Silicon Carbide

Using Visible Laser Based Raman Spectroscopy to Identify the Surface Polarity of Silicon Carbide Supporting Information for Using Visible Laser Based Raman Spectroscopy to Identify the Surface Polarity of Silicon Carbide Submitted by Yi-Chuan Tseng, a Yu-Chia Cheng, a Yang-Chun Lee, a Dai-Liang Ma,

More information

Electrically Driven White Light Emission from Intrinsic Metal. Organic Framework

Electrically Driven White Light Emission from Intrinsic Metal. Organic Framework Supporting Information Electrically Driven White Light Emission from Intrinsic Metal Organic Framework Golam Haider 1,2,3, Muhammad Usman 4, Tzu-Pei Chen 3, Packiyaraj Perumal 3, Kuang-Lieh Lu 4 * and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT4156 Valley-selective optical Stark effect in monolayer WS Edbert J. Sie, 1 James W. McIver, 1, Yi-Hsien Lee, 3 Liang Fu, 1 Jing Kong, 4 and Nuh Gedik 1, 1 Department of Physics, Massachusetts

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological insulator nanostructures for near-infrared transparent flexible electrodes Hailin Peng 1*, Wenhui Dang 1, Jie Cao 1, Yulin Chen 2,3, Di Wu 1, Wenshan Zheng 1, Hui Li 1, Zhi-Xun Shen 3,4, Zhongfan

More information

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan Supporting Materials High Quality Thin Graphene Films from Fast Electrochemical Exfoliation Ching-Yuan Su, Ang-Yu Lu #, Yanping Xu, Fu-Rong Chen #, Andrei N. Khlobystov $ and Lain-Jong Li * Research Center

More information

Abstract. Introduction

Abstract. Introduction Two Dimensional Maps of Photoluminescence and Second Harmonic Generation Tara Boland University of North Dakota University of Washington INT REU, 2014 Advisor: Xiaodong Xu (Dated: August 31, 2014) Abstract

More information

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial carrier concentrations: (a) N0 = 4.84 10 18 cm -3 ; (c)

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information