P. Wipf - Chem /29/2006. To achieve high diastereo- and enantioselectivity, it is necessary to:

Size: px
Start display at page:

Download "P. Wipf - Chem /29/2006. To achieve high diastereo- and enantioselectivity, it is necessary to:"

Transcription

1 P. Wipf - Chem /29/2006 The Ivanov Reaction rationalization: Zimmerman-Traxler, JACS 1957, 79, To achieve high diastereo- and enantioselectivity, it is necessary to: - control the enolization step - use an auxiliary with a large diastereofacial bias - control competing transition states, e.g. - half-chair vs. twist boat - closed vs. open - use metal-derivatives that have clearly defined coordination geometries. 1

2 P. Wipf - Chem /29/2006 The stereochemical implications of the Zimmerman-Traxler transition state model for the aldol reaction can be summarized as follows: Zimmerman-Traxler transition states represent the most frequently used models, but other possibilities have always to be considered as well: 2

3 P. Wipf - Chem /29/2006 Enolization a. Lithium enolates 3

4 P. Wipf - Chem /29/2006 Transition states for enolization: Kinetic ratios for LDA/THF enolization: 4

5 P. Wipf - Chem /29/2006 Busch-Petersen, J.; Corey, E. J., "Sterically shielded secondary N-tritylamines and N-tritylamide bases, readily available and useful synthetic reagents." Tetrahedron Lett. 2000, 41, Heathcock s synthesis of ristosamine (THL 1983, 24, 4637; see also: JOC 1989, 54, 2936). 5

6 P. Wipf - Chem /29/2006 b. Boron enolates Selectivities: The boron-halide coordinates to the carbonyl oxygen, thereby increasing the acidity of the α- proton so that it can be removed by amine bases. * but: w/ Chx 2 B(OTf)/NEt 3 : E : Z = 20 : 80 data from: Evans, JACS 1981, 103, 3099; Brown, JOC 1993, 58, 147. at least a partial rationalization of these results is provided by the following transition state models: 6

7 P. Wipf - Chem /29/2006 Asymmetric Induction Arya, P.; Qin, H., "Advances in asymmetric enolate methodology." Tetrahedron 2000, 56, Heathcock/Masamune auxiliaries: Highly selective additions of these auxiliaries have been achieved via all four of the postulated pathways (JOC 1991, 56, 2499): 7

8 P. Wipf - Chem /29/2006 Evans Chiral Oxazolidinone Auxiliary D. A. Evans, JACS 1981, 103, 2127 Smith, A. B.; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117,

9 P. Wipf - Chem /29/2006 Abiko, A.; Liu, J.-F.; Wang, G.; Masamune, S. Tetrahedron Lett. 1997, 38,

10 P. Wipf - Chem /29/2006 Crimmins, M. T.; King, B. W.; Tabet, E. A., "Asymmetric aldol additions with titanium enolates of acyloxazolidinethiones: Dependence of selectivity on amine base and Lewis acid stoichiometry." J. Am. Chem. Soc. 1997, 119,

11 P. Wipf - Chem /29/2006 Experiments employing N-acyloxazolidinethione auxiliaries (sulfur has a higher affinity to titanium than oxygen), 2 equiv of TiCl 4 and 1 equiv of Hünig s base gave excellent selectivity for the non-evans syn aldol product. Crimmins believes that the second equivalent of Lewis acid abstracts the chlorine ion and leads to a chelated transition state (in contrast to the acyclic transition state postulated by Heathcock). In addition, very high (>98:2) Evans syn aldol selectivities could be obtained by using 1 equiv of TiCl 4 in combination with sparteine (2.5 equiv). The role of sparteine is presently unknown. An added advantage of oxazolidinethiones is that they are easily removed under mild conditions: Crimmins, M. T.; King, B. W., "Asymmetric total synthesis of callystatin A: Asymmetric aldol additions with titanium enolates of acyloxazolidinethiones." J. Am. Chem. Soc. 1998, 120,

12 P. Wipf - Chem /29/2006 Two methods for the synthesis of 4-benzyloxazolidine-2-thione from 2-amino-3- phenyl-1-propanol (phenylalaninol) have been described. The appropriate amino alcohol is readily prepared from (R)-phenylalanine or (S)-phenylalanine by reduction with sodium borohydride and iodine in THF. Exposure of phenylalaninol to carbon disulfide and aqueous sodium carbonate for 15 min at 100 C provided 4-benzyloxazolidine-2-thione in 63% yield. Alternatively, treatment of the amino alcohol with thiophosgene and triethylamine in dichloromethane for 30 min at 0 C provided 95% of the oxazolidinethione. The former method often results in the oxazolidinethione contaminated with varying amounts of the corresponding thiazolidinethione. Delaunay, D.; Toupet, L.; Le Corre, M. J. Org. Chem. 1995, 60, Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, McKennon, M. J.; Meyers, A. I. J. Org. Chem. 1993, 58, Oxazolidinethiones can be N-acylated by a variety of standard methods including acylation of the lithium salt or sodium salt by treatment with an acyl chloride or mixed anhydride or by acylation with an acid chloride in the presence of triethylamine. Yan, T.-H.; Tan, C.-W.; Lee, H.-C.; Lo, H.-C.; Huang, T.-Y. J. Am. Chem. Soc. 1993, 115, Yan, T.-H.; Hung, A.-W.; Lee, H.-C.; Chang, C.-S.; Liu, W.-H. J. Org. Chem. 1995, 60, Crimmins, M. T.; McDougall, P. J. Org. Lett. 2003, 4, 591. Crimmins, M. T.; She, J., "An improved procedure for asymmetric aldol additions with N-acyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones." Synlett 2004,

13 P. Wipf - Chem /3/2006 Tin(II) Enolates of N-acyloxazolidinethiones. Tin(II) enolates of oxazolidinethiones show moderate diastereoselectivity for the non-evans aldol products presumably proceeding through a chelated transition state. The N- acetyl oxazolidinethiones are generally less selective than the corresponding thiazolidinethiones in diastereoselective acetate aldol reactions. Nagao, Y.; Fujita, E. J. Chem. Soc., Chem. Commun. 1985, Boron enolates of N-acyloxazolidinethiones. Boron enolates of N- propionyloxazolidinethiones can be generated under standard enolization conditions with dibutylboron triflate and diisopropylethylamine. The boron enolates react with aldehydes to provide the Evans syn-aldol products with excellent diastereoselectivity. No oxidative workup was necessary in the examples reported. Hsiao, C. Miller, M. Tetrahedron Lett. 1985, 26, ; Hsiao, C. Miller, M. J. Org. Chem. 1987, 52, Guz, N. R.; Phillips, A. J., "Practical and highly selective oxazolidinethione-based asymmetric acetate aldol reactions with aliphatic aldehydes." Org. Lett. 2002, 4,

14 P. Wipf - Chem /29/2006 The use of excess titanium (IV) chloride with N-glycolyloxazolidinethiones leads to the anti aldol adducts selectively. These aldol additions most likely proceed through an open transition state where the additional Lewis acid serves to activate the aldehyde for the aldol addition reaction. indirect solution for anti-aldol (D. A. Evans, THL 1986, 27, 4957: 14

15 P. Wipf - Chem /29/2006 For important modern concepts on selective anti-aldol processes, see work by Masamune (Tetrahedron Lett. 1992, 33, 1729) Mikami (J. Am. Chem. Soc. 1994, 116, 4077) Denmark (J. Am. Chem. Soc. 1999, 121, 4982) Evans (J. Am. Chem. Soc. 1997, 119, 10859) Kobayashi (Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S., "Highly anti-selective catalytic asymmetric aldol reactions." J. Am. Chem. Soc. 2000, 122, ) and others: Corey, E. J.; Li, W.; Reichard, G. A. "A new magnesium-catalyzed doubly diastereselective antialdol reaction leads to a highly efficient process for the total synthesis of lactacystin in quantity." J. Am. Chem. Soc. 1998, 120, Gosh, A. K.; Fidanze, S. "Asymmetric synthesis of (-)-tetrahydrolipstatin: An anti-aldol-based strategy." Org. Lett. 2000, 2, Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. "Diastereoselective magnesium halidecatalyzed anti-aldol reactions of chiral N-acyloxyoxazolidinones." J. Am. Chem. Soc. 2002, 124, Chow, K. Y.-K.; Bode, J. W. "Catalytic generation of activated carboxylates: Direct, stereoselective synthesis of β-hydroxyesters from epoxyaldehydes." J. Am. Chem. Soc. 2004, 126, Assumed catalytic cycle: 15

16 P. Wipf - Chem /29/2006 Double Diastereoselectivity D. A. Evans, JACS 1985, 107, Note: Reagent-based stereocontrol does not always superseed substrate control: from: cytovaricin synthesis; Paterson, THL 1988, 29,

17 P. Wipf - Chem /29/2006 Evans Bispropionate Synthon Keck, G. E.; Lundquist, G. D., "Synthetic studies toward the total synthesis of swinholide. 1. Stereoselective construction of the C 19 -C 35 subunit." J. Org. Chem. 1999, 64,

18 P. Wipf - Chem /29/2006 Paterson s Ipc-Enolate (TH 1990, 46, 4663): This strategy is particularly useful for aldol reactions of large, chiral fragments in macrolide synthesis. Catalytic Asymmetric Aldol: Eder-Sauer-Wiechert-Hajos Process For a further development, see: List, B.; Lerner, R. A.; Barbas, C. F., "Proline-catalyzed direct asymmetric aldol reactions." J. Am. Chem. Soc. 2000, 122, Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F. "Organocatalytic direct asymmetric aldol reactions in water." J. Am. Chem. Soc. 2006, 128, Storer, R. I.; Macmillan, D. W. C., "Enantioselective organocatalytic aldehyde-aldehyde cross-aldol couplings. The broad utility of α-thioacetal aldehydes." Tetrahedron 2004, 60, Houk, K. N.; List, B., "Asymmetric organocatalysis." Acc. Chem. Res. 2004, 37, 487. Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.-Y.; Houk, K. N., "Theory of asymmetric organocatalysis of aldol and related reactions: Rationalizations and predictions." Acc. Chem. Res. 2004, 37,

Cornforth: Nature is an organic chemist with a preference for the aldol reaction.

Cornforth: Nature is an organic chemist with a preference for the aldol reaction. I. Basic Principles IC. The Aldol Reaction Cornforth: Nature is an organic chemist with a preference for the aldol reaction. Many natural products contain polyhydroxylated carbon arrays, usually a mix

More information

Michael T. Crimmins,* Bryan W. King, Elie A. Tabet, and Kleem Chaudhary

Michael T. Crimmins,* Bryan W. King, Elie A. Tabet, and Kleem Chaudhary 894 J. Org. Chem. 2001, 66, 894-902 Asymmetric Aldol Additions: Use of Titanium Tetrachloride and (-)-Sparteine for the Soft Enolization of N-Acyl Oxazolidinones, Oxazolidinethiones, and Thiazolidinethiones

More information

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005 Ward, D.E; Jheengut, V.; Akinnusi, O.T. Enantioselective Direct Intermolecular Aldol Reactions with Enantiotopic Group Selectivity and Dynamic Kinetic Resolution, Organic Letters 2005, ASAP. Department

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Dual enantioselective control by heterocycles of (S)-indoline derivatives* Pure Appl. Chem., Vol. 77, No. 12, pp. 2053 2059, 2005. DOI: 10.1351/pac200577122053 2005 IUPAC Dual enantioselective control by heterocycles of (S)-indoline derivatives* Yong Hae Kim, Doo Young Jung,

More information

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04 Morita Baylis Hillman Reaction Aaron C. Smith 11/10/04 Outline 1. Background 2. Development of Asymmetric Variants 3. Aza-Baylis Hillman Reaction 4. Applications of Baylis Hillman Adducts Outline 1. Background

More information

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions 1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions 2. Copper Catalyzed One-Pot Synthesis of Multisubstituted Quinolinones Hao Wang Denmark Group Presentation

More information

Tautomerism and Keto Enol Equilibrium

Tautomerism and Keto Enol Equilibrium Tautomerism and Keto Enol Equilibrium Enols & enolates are important nucleophiles in organic & biochemistry. Keto-Enol Equilibrium: Tautomerisation can be catalyzed by either acids or bases. Relative stability

More information

The Vinylogous Aldol Reaction

The Vinylogous Aldol Reaction The Vinylogous Aldol Reaction Reporter: Sixuan Meng Supervisor: Prof. Huang 2013-09-09 Zanardi, F. et al. Chem. Rev. 2000, 100, 1929 Zanardi, F. et al.. Chem. Rev. 2011, 111, 3076 Introduction 2 3 Regiochemical

More information

Stereoselective Allylation of Imines. Joshua Pierce Research Topic Seminar

Stereoselective Allylation of Imines. Joshua Pierce Research Topic Seminar Stereoselective Allylation of Imines Joshua Pierce esearch Topic Seminar 10-30-04 Josh Pierce @ Wipf Group 1 11/3/2004 Topic Overview: Introduction Imines: Why is C=N different? Synthesis of Allylating

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Chapter 4 Functional Group Transformations: Oxidation and Reduction. 4.8 Terminology for Reduction of Carbonyl Compounds

Chapter 4 Functional Group Transformations: Oxidation and Reduction. 4.8 Terminology for Reduction of Carbonyl Compounds Chapter 4 Functional Group Transformations: Oxidation and Reduction Oxidation states (numbers) Less E.N. than C = -1 More E.N. than C = +1 C = 0 H H H C C OH H H 4.8 Terminology for Reduction of Carbonyl

More information

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Requirements for an Effective Chiral Auxiliary Enolate Alkylation Requirements for an Effective Chiral Auxiliary Enolate Alkylation 1. Xc must be low cost, and available in both enentiomeric forms 2. The cleavage of Xc from the substrate must occur under mild enough

More information

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols A Modular Approach to Polyketide Building Blocks: Cycloadditions of itrile xides and Homoallylic Alcohols rganic Letters, 2005, ASAP ina Lohse-Fraefel and Erick M. Carreira * H H H + ' 1. t-bucl, -78 C

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

acetaldehyde (ethanal)

acetaldehyde (ethanal) hem 263 Nov 2, 2010 Preparation of Ketones and Aldehydes from Alkenes zonolysis 1. 3 2. Zn acetone 1. 3 2. Zn acetone acetaldehyde (ethanal) Mechanism: 3 3 3 + - oncerted reaction 3 3 3 + ozonide (explosive)

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization

Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization Denmark, S.E. and Collins, W.R. rg. Lett. 2007, 9, 3801-3804. C 2 H + Se Lewis Base CH 2 Cl 2 Se Presented

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary Chiral Auxiliaries Previously on Advanced ynthesis... Discussed the need for stereoselective synthesis Looked at the use of resolution, the chiral pool and substrate control t there are some potential

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

Thione-Based Auxiliaries in Organic Synthesis

Thione-Based Auxiliaries in Organic Synthesis Thione-Based Auxiliaries in rganic ynthesis C 2 An Evans Group Evening eminar Wade Downey Friday, March 1, 2002 00-title 2/28/02 6:46 PM Thione-Based Auxiliaries in rganic ynthesis Thiazolidinethione xazolidinethione

More information

Organometallic Compounds of Magnesium *

Organometallic Compounds of Magnesium * OpenStax-CNX module: m32494 1 Organometallic Compounds of Magnesium * Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 While beryllium

More information

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine -oxide rg. Biomol. Chem., 2007, 5, 3428 Luo, Z.-B.; Wu, J.-Y.; ou, X.-L.; Dai, L.-X. Ts toluene Ts 80 o C John

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Answer Key Question 1.

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Asymmetric Alklylation of Enolates

Asymmetric Alklylation of Enolates Asymmetric Alklylation of Enolates M with material from A G Meyers http://faculty.chemistry.harvard.edu/myers/pages/chem-215-handouts 745 rganic Synthesis Spring 2015 Asymmetric Alkylation - eed to control

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010 Enantioselective Borylations David Kornfilt Denmark Group Meeting Sept. 14 th 2010 30.000-foot View Enantioenriched Organoboranes What to do with them Crudden C. M. et. al., Eur. J. Org. Chem. 2003, 46

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp 2 Zr(H)Cl: Scope and Mechanistic Insight

Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp 2 Zr(H)Cl: Scope and Mechanistic Insight Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp 2 Zr(H)Cl: Scope and Mechanistic Insight Jared T. Spletstoser, Jonathan M. White, Ashok Rao Tunoori, and Gunda I. George J. Am. Chem.

More information

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr.

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. Rainer Glaser Announced Reading: Prins Cyclization Reactions 1 Question 1. Aldol-Prins

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

Mechanistic Studies of Proline-Catalyzed Reactions

Mechanistic Studies of Proline-Catalyzed Reactions chanistic Studies of Proline-Catalyzed Reactions N C 2 Jack Liu July 25, 2006 ow It Got Started (L)-proline (47 mol %), 1 N Cl 4, CN, reflux, 22 h 87%, e.r. = 84/16 Eder, U.; Sauer, G.; Wiechert, R. German

More information

Asymmetric Synthesis of α-substituted Allyl Boranes and Their Application in the Synthesis of Iso-agatharesinol

Asymmetric Synthesis of α-substituted Allyl Boranes and Their Application in the Synthesis of Iso-agatharesinol Asymmetric Synthesis of αsubstituted Allyl oranes and Their Application in the Synthesis of Isoagatharesinol Yuang Yu Fang and Varinder K. Aggarwal University of ristol, UK Angew. Chem. Int. Ed. 2007,

More information

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex Supporting information Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex Ömer Reis, Serkan Eymur, Barbaros Reis, Ayhan S. Demir* Department of Chemistry, Middle

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

B X A X. In this case the star denotes a chiral center.

B X A X. In this case the star denotes a chiral center. Lecture 13 Chirality III October 29, 2013 We can also access chiral molecules through the use of something called chiral auxiliaries, which basically is a chiral attachment that you add to your molecule

More information

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo C H activation of aliphatic amines without unnecessary mask 2017.11.25 M2 Takaya Togo 1 Outline 1.Introduction 2.Free amines as DG Discovery of new activation mode Mechanistic studies Application of the

More information

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz

Chiral Amplification. Literature Talk Fabian Schneider Konstanz, Universität Konstanz Chiral Amplification Literature Talk Fabian Schneider Konstanz, 18.10.2017 Overview 1) Motivation 2) The nonlinear Effect in asymmetric catalysis - First encounters - Basic principles - Formalization and

More information

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Angew. Chem. Int. Ed. 2017, 10.1002. 1 N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Reporter: En Li Supervisor: Prof. Yong

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

Dr. P. Wipf Chem /10/2007

Dr. P. Wipf Chem /10/2007 I. Basic Principles I-N. Epoxides 1. High-Valent TM(d0) Epoxidations Mo, V, W (H 2 WO 4 ), Ti, Al serve as catalysts with t-buo 2 H or other peroxides as stoichiometric oxidants. Toluene is a frequent

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course: hem 263 Nov 7, 2013 Preparation of Ketones and Aldehydes from Alcohols xidation of Alcohols [] must have at least 1 E elimination reaction [] = oxidation; removal of electrons [] = reduction; addition

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Make-Up Carbonyl Compounds and Amines. Wednesday, November 30, 2011, 10 10:50 am Name: Answer Key Question

More information

Update to 2011 Bode Research Group TOPIC: ENANTIOSELECTIVE ALDOL REACTIONS

Update to 2011 Bode Research Group  TOPIC: ENANTIOSELECTIVE ALDOL REACTIONS Update to 2011 ode esearch Group http://www.bode.ethz.ch/ TPIC: EATIELECTIVE ALDL EACTI 1 ITDUCTI Formation of a new C-C bond with the possibility of forming two new stereocentersà 4 diastereomers. First

More information

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15

Highlights from the MacMillan Lab. Kelly Craft Group Meeting Presentation 7/8/15 Highlights from the MacMillan Lab Kelly Craft Group Meeting Presentation 7/8/15 David MacMillan! Born in Bellshill, Scotland (1968)! Undergraduate degree: University of Gaslow (Ernie Colvin)! PhD: University

More information

Chiral phenyl-bis(oxazoline) as an efficient auxiliary for asymmetric catalysis*

Chiral phenyl-bis(oxazoline) as an efficient auxiliary for asymmetric catalysis* Pure Appl. Chem., Vol. 80, No. 4, pp. 743 749, 2008. doi:10.1351/pac200880040743 2008 IUPAC Chiral phenyl-bis(oxazoline) as an efficient auxiliary for asymmetric catalysis* Hisao Nishiyama, Jun-ichi Ito,

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

Copper-mediated asymmetric transformations*

Copper-mediated asymmetric transformations* Pure Appl. Chem., Vol. 74, No. 1, pp. 37 42, 2002. 2002 IUPAC Copper-mediated asymmetric transformations* Alexandre Alexakis Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet,

More information

1. WORK PROGRESS AND ACHIEVEMENTS DURING THE PERIOD. A summary of progress towards objectives and details for each task;

1. WORK PROGRESS AND ACHIEVEMENTS DURING THE PERIOD. A summary of progress towards objectives and details for each task; 1. WORK PROGRESS AND ACHIEVEMENTS DURING THE PERIOD A summary of progress towards objectives and details for each task; In Nature, a vast array of complex biomolecules, including peptides, oligonucleotides,

More information

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation eactions of Substituted Ketenes Scott G. elson, Cheng Zhu, and Xiaoqiang Shen J. Am. Chem Soc. 2004, 126, 14-15. Michael C. Myers, Literature

More information

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives Lecture 5: bjectives: Nucleophilic Addition eactions of Carboxylic Acid Derivatives By the end of this lecture you will be able to: draw the mechanism of a nucleophilic addition-elimination reaction with

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs)

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs) Catalyzed -acylation of carbamates and oxazolidinones by eteropolyacids (PAs) Ali Gharib 1,2 *, Manouchehr Jahangir 1, Mina Roshani 1 1 Department of Chemistry, Islamic Azad University, Mashhad, IRA 2

More information

Development of Small Organic Molecules as Catalysts for Asymmetric

Development of Small Organic Molecules as Catalysts for Asymmetric Development of Small Organic Molecules as Catalysts for Asymmetric Organic Transformations The development of new and efficient catalysts capable of catalyzing enantioselective transformation in a controlled

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton)

Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) 314 Arrow Pushing practice/eauchamp 1 Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) ucleophile = nucleus/positive loving = any general electron

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Reducing Agents. Linda M. Sweeting 1998

Reducing Agents. Linda M. Sweeting 1998 Reducing Agents Linda M. Sweeting 1998 Reduction is defined in chemistry as loss of oxygen, gain of hydrogen or gain of electrons; the gain of electrons enables you to calculate an oxidation state. Hydride

More information

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction P. Wipf - Chem 2320 1 3/20/2006 II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction Boger Notes: p. 147-206 (Chapter VIII) Carey/Sundberg: B p. 57-95 (Chapter B 2.1) Problem of the Day: Wang,

More information

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Examination #4 Carbonyl Compounds and Amines. Thursday, November 15, 2012, 8:25 9:15 am Name: Question 1. Aldehydes

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

Chapter 18: Ketones and Aldehydes. I. Introduction

Chapter 18: Ketones and Aldehydes. I. Introduction 1 Chapter 18: Ketones and Aldehydes I. Introduction We have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The three-dimensional

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Glyoxylic acid derivatives in asymmetric synthesis*

Glyoxylic acid derivatives in asymmetric synthesis* Pure Appl. Chem., Vol. 72, No. 9, pp. 1589 1596, 2000. 2000 IUPAC Glyoxylic acid derivatives in asymmetric synthesis* Janusz Jurczak 1,2 and Tomasz Bauer 1 1 Department of Chemistry, University of Warsaw,

More information

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts Larry Wolf SED Group Meeting 04-10-07 Outline Brief historical account and Utility Mechanism Different methods for asymmetric

More information

Asymmetric Catalysis by Chiral Hydrogen-Bond Donors

Asymmetric Catalysis by Chiral Hydrogen-Bond Donors Asymmetric Catalysis by Chiral Hydrogen-Bond Donors Angew. Chem. Int. Ed., 2006, 45, 1520~1543 Mark S. Taylor and Eric N. Jacobsen* Current Literature Presentation Zhenglai Fang Wipf s Group at Pitt Zhenglai

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Alcohols. Alcohol any organic compound containing a hydroxyl (R-OH) group. Alcohols are an extremely important organic source

Alcohols. Alcohol any organic compound containing a hydroxyl (R-OH) group. Alcohols are an extremely important organic source Alcohols Alcohol any organic compound containing a hydroxyl (R-OH) group Uses: synthetic intermediate, cleanser, cosmetics, fuel, alcoholic beverages, etc. Alcohols are an extremely important organic source

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Practice Edition Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Question

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Joseph Salamoun Current Literature 11/21/15 Wipf Group

Joseph Salamoun Current Literature 11/21/15 Wipf Group Joseph Salamoun Current Literature 11/21/15 Wipf Group Joe Salamoun @ Wipf Group Page 1 of 16 12/29/2015 The mechanism of the oxidative addition-transmetallation-reductive elimination process is very complex

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

C H Activated Trifluoromethylation

C H Activated Trifluoromethylation Literature report C H Activated Trifluoromethylation Reporter:Yan Fang Superior:Prof. Yong Huang Jun. 17 th 2013 Contents Background Trifluoromethylation of sp-hybridized C-H Bonds Trifluoromethylation

More information

LECTURE #22 Thurs., Nov.15, 2007

LECTURE #22 Thurs., Nov.15, 2007 Provide a rxn sequence to make these as the major products Answers: 1. i Pr-Cl, AlCl 3 2. conc. fuming? H 2 S 4 3. Cl 2, FeCl 3 or AlCl 3 4. dilute H 2 S 4 note: normally aqueous workup after step 1, but

More information

CEM 852 Exam-1 February 20, 2016

CEM 852 Exam-1 February 20, 2016 EM 852 Exam-1 February 20, 2016 This exam consists of 5 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 100. In answering your questions,

More information

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009 Nucleophilic Heterocyclic Carbene Catalysis Nathan Werner Denmark Group Meeting September 22 th, 2009 Thiamine Thiamine Vitamin B 1 The first water-soluble vitamin described Is naturally synthesized by

More information

Chem 263 Nov 19, Cl 2

Chem 263 Nov 19, Cl 2 Chem 263 Nov 19, 2013 eactions of Enolates: X X alogenation X C 2 Alkylation C Aldol eaction X C Acylation Example: halogenation LDA 2 Chloroacetone is used in tear gas. chloroacetone In this reaction,

More information

به نام خدا. Organic Synthesis 1 سنتز مواد آلی. Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran

به نام خدا. Organic Synthesis 1 سنتز مواد آلی. Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran به نام خدا Organic Synthesis 1 سنتز مواد آلی Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir References: 1. Carey, F. A.; Sundberg, R. J. Advanced Organic

More information

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H Carbonyl Chemistry IV: nolate Alkylations and Aldols Paul Bracher Chem 30 Section 9 Section Agenda 1) o office hours Thursday 2) The Great Joe Young is covering section next onday 3) andout: Carbonyl Chemistry

More information

Use of the non-aldol aldol process in the synthesis of the C1 C11 fragment of the tedanolides: use of lactol ethers in place of tetrahydrofurans

Use of the non-aldol aldol process in the synthesis of the C1 C11 fragment of the tedanolides: use of lactol ethers in place of tetrahydrofurans Pergamon Tetrahedron Letters 41 (2000) 9719 9723 TETRAHEDRON LETTERS Use of the non-aldol aldol process in the synthesis of the C1 C11 fragment of the tedanolides: use of lactol ethers in place of tetrahydrofurans

More information

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview

CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS Oxidation Reduction Reactions of Organic Compounds: An Overview CHAPTER 20: MORE ABOUT OXIDATION REDUCTION REACTIONS In an oxidation-reduction reaction (redox reaction), one species loses electrons and one gains electrons. The species that loses electrons is oxidized,

More information

Synthesis of Amines Amine Alkylation by SN2 reaction II. Reductive Amination

Synthesis of Amines Amine Alkylation by SN2 reaction II. Reductive Amination Synthesis of Amines I. Amine Alkylation by SN2 reaction Amines can be alkylated in SN2 fashion by alkyl halides; primary halides are best for this purpose. This is not a practical reaction for formation

More information

روشهای 1 سنتز مواد آلی

روشهای 1 سنتز مواد آلی به نام خدا Advanced Organic Chemistry روشهای 1 سنتز مواد آلی Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir References: 1. Carey, F. A.; Sundberg,

More information