Chiral phenyl-bis(oxazoline) as an efficient auxiliary for asymmetric catalysis*

Size: px
Start display at page:

Download "Chiral phenyl-bis(oxazoline) as an efficient auxiliary for asymmetric catalysis*"

Transcription

1 Pure Appl. Chem., Vol. 80, No. 4, pp , doi: /pac IUPAC Chiral phenyl-bis(oxazoline) as an efficient auxiliary for asymmetric catalysis* Hisao Nishiyama, Jun-ichi Ito, Takushi Shiomi, Toru Hashimoto, Takeshi Miyakawa, and Megumi Kitase Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya , Japan Abstract: A new class of phenyl-bis(oxazoline) auxiliaries was readily prepared from isophthaloyl chloride and appropriate β-amino alcohols, and the derived rhodium complexes underwent new cyclization reactions at the metal center and exhibited high catalytic efficiency for asymmetric conjugate reduction of α,β-unsaturated carbonyl compounds and reductive aldol reactions of aldehydes and ketones. Keywords: asymmetric catalysis; rhodium; oxazoline; reduction; C H bond activation. INTRODUCTION The synthesis of organic auxiliaries for transition-metal complexes is a very important subject in the field of organometallic chemistry and organic synthesis, including molecular catalysis and asymmetric synthesis, because the auxiliaries are able to provide appropriate stereochemical and electronic circumstances around active metal centers as indispensable partners. We have developed the heterocyclic oxazoline skeleton, 4,5-dihydro-1,3-oxazole, as a modular unit of multidentate auxiliaries, because of its efficient substituent diversity at 4- and 5-carbon atoms using a variety of β-amino alcohols. In 1989, we first reported pyridine-bis(oxazoline) (abbreviated as pybox) as a tridentate N,N,N-type oxazoline-based ligand for asymmetric catalysis (Fig. 1) [1,2]. Despite its tridentate nature, dissociation of pybox from metals was observed. Therefore, we designed a new ligand, phenyl-bis(oxazoline) (abbreviated as phebox), which has bis(oxazoline) and phenyl groups to make C 2 -symmetric and meridional configuration with a central covalent bond to metal atom [3,4]. Here, we introduce the chemistry of phebox and its rhodium complexes related to organometallic chemistry and asymmetric catalysis. Fig. 1 Phebox and pybox. *Paper based on a presentation at the 21st International Congress for Heterocyclic Chemistry (ICHC 21), July 2007, Sydney, Australia. Other presentations are published in this issue, pp Corresponding author 743

2 744 H. NISHIYAMA et al. SYNTHESIS OF PHEBOX AND ITS RHODIUM COMPLEXES A precursor for phebox is bis(oxazolinyl)benzene 1, which can be readily prepared with isophthaloyl chloride in two steps, amide formation with a chiral β-amino alcohol followed by oxazoline formation with methanesulfonyl chloride (Scheme 1). Then, the reaction with rhodium chloride in methanol or rhodium-cyclooctene complex in chloroform via C H bond activation provides Rh-phebox-aqua complex 2, which can be converted to the corresponding acetate complex 3 by treatment with silver acetate [5]. Scheme 1 Synthesis of phebox and its rhodium complex. When we used 4,5-dimethylbenzene derivative 4 prepared from 4,6-dimethylphthalic acid, we could improve the yield for complex formation by C H bond activation (Scheme 2) [6]. We assumed that undesirable C H bond activation at the 4- or 6-positions could be suppressed by blocking with the two methyl groups to increase the yield of the C H activation at the central carbon atom. Scheme 2 3,5-Dimethyl-phebox complex. REDUCTION, C H BOND ACTIVATION, AND NEW BOND FORMATION Treatment of the Rh-complex 6 with triethylamine in the presence of CH 2 Cl 2 and ClCH 2 CO 2 Me furnished the ClCH 2 -complex 7 and the MeOCOCH 2 -complex 8, respectively (Scheme 3) [7]. Triethylamine acted as a reducing agent to form a Rh(I) species, which was captured with organic halides to form the corresponding products 7 and 8 by oxidative addition reactions. When HNi-Pr 2 was used in place of Et 3 N, a new complex 9 with a five-membered rhodaazacyclopentene skeleton was isolated in 50 % yield, and its structure was determined by X-ray analysis. On the basis of experiments with CD 2 Cl 2, the carbon atom derived from dichloromethane was incorporated into the α-position to the rhodium atom. Therefore, we proposed the mechanism as follows: (1) reduction of the complex 6

3 An efficient auxiliary for asymmetric catalysis 745 Scheme 3 Reduction, oxidative addition, and formation of rhodaazacyclopentene. with HNi-Pr 2, (2) oxidative addition of CH 2 Cl 2, (3) formation of the intermediate imine-complex A, (4) tautomerization to the enamine-complex B, (5) intramolecular C C bond-forming cyclization. In terms of intramolecular cyclization on metals, we have already reported the N,O-hetero-carbene complex of Rh-phebox prepared from the corresponding isonitrile complex and related reactions [8]. When we adopted the acetate complex 10, we found that the corresponding phenyl-rhodium complex 11 was formed by a C H bond activation reaction with benzene (Scheme 4) [9]. The reactions with o- and m-xylene were also carried out at 140 C to furnish the corresponding xylyl complexes, respectively. We think that the acetate group on rhodium atom plays an important role as an internal base. The Scheme 4 C H bond activation.

4 746 H. NISHIYAMA et al. complex 10 also reacted with phenylacetylene at 60 C to give phenylacetylide complex 12 in 72 % [10]. In addition, the acetate complexes exhibited catalytic activity for cross-coupling of phenylacetylene and dimethyl acetylenedicarboxylate to form enyne derivatives [10]. ASYMMETRIC CONJUGATE REDUCTION We found that the Rh-phebox complex catalyzed hydrosilylation reactions of styrene derivatives with several hydrosilanes followed by oxidation to give optically active secondary alcohols in over 90 % ee [11]. We extended the hydrosilylation reaction to conjugate reduction with α,β-unsaturated esters and ketones (Scheme 5) [5,12]. Treatment of the unsaturated ester 13 with 1 mol % of Rh-phebox-acetate complex 3 and (EtO) 2 MeSiH at 60 C gave rise to conjugate reduction furnishing the saturated ester 14 in 96 % yield with 96 % ee. A variety of esters was subjected to the asymmetric conjugate reduction to give high enantioselectivity up to 98 %. In general, conjugate reduction of α,β-unsaturated ketones may suffer from 1,2-reduction to give secondary alcohols. However, the choice of hydrosilane can solve the problem to give the saturated ketones exclusively [5]. The ketone 15 was reduced in 96 % yield with 92 % ee with (EtO) 2 MeSiH. The isopropyl group at the β-position provided products with the highest enantioselectivity. Scheme 5 Asymmetric conjugate reduction of α,β-unsaturated esters and ketones. In the case of α,β-unsaturated aldehydes, cinnamaldehyde could be exclusively reduced to give the dihydrocinnamaldehyde under the same conditions as that for ketones. However, when we adopted β-methyl cinnamaldehyde for asymmetric reduction, we obtained the 1,4-reduction product in 50 % yield with 91 % ee accompanied with the 1,2-reduction product in 47 % yield [13].

5 An efficient auxiliary for asymmetric catalysis 747 ASYMMETRIC REDUCTIVE ALDOL REACTION The reductive aldol reaction is a very important method for preparation of β-hydroxylcarbonyl compounds with α,β-unsaturated carbonyl ones and carbonyl ones as acceptors catalyzed by transitionmetal catalysts [14]. As we have demonstrated, the conjugate reduction of α,β-unsaturated esters with chiral Rh-phebox catalysts in the presence of hydrosilanes, we expected the possibility to trap intermediate Rh-enolate species with aldehydes. The reaction of benzaldehyde (1 equiv) and tert-butyl acrylate (1.5 equiv) was carried out at 50 C using 1 mol % of Rh-phebox acetate complex 3 and (EtO) 2 MeSiH to form the corresponding aldol product 17 in 91 %. Unexpectedly, we found anti-diastereoselectivity (anti:syn = 95:5) and high enantioselectivity, 91 % ee for the anti-product (Scheme 6) [15]. When PhMe 2 SiH was used a hydride source, the highest ee of 95 % for anti-17 was obtained. Furthermore, the scope of these reactions was examined on other substrates, which also gave products with high ee. The acetate catalyst derived from 3,5-dimethyl complex 5 also furnished almost similar activity to give 98 % yield, 95:5 of anti:syn, and 95 % ee for anti-17 [6]. Scheme 6 Asymmetric reductive aldol reaction of acrylate and aldehydes. When trimethylsilyl acrylate was adopted as an enolate source, the corresponding carboxylic acid was directly obtained after acid hydrolysis [16]. The reaction of 1-naphthaldehyde gave high enantioselectivity, up to 97 %, for anti-18, even with 0.1 mol % of catalyst loading (Scheme 7). Scheme 7 Asymmetric reductive aldol reaction of trimethylsilyl acrylate. The utilization of ketones as acceptors in the aldol reaction, leading to β-tertiary alcohols, constitutes a challenge. Under the standard conditions outlined in Scheme 5, the reductive aldol reaction of acetone and ethyl cinnamate was carried out, and resulted in low chemical yields. After several trials, we found optimum conditions to achieve good to excellent yields of 83 % with 97 % ee with MePh 2 SiH (Scheme 8) [17]. The reactions with substituted cinnamates and several ketones were demonstrated to attain % ee.

6 748 H. NISHIYAMA et al. Scheme 8 Asymmetric reductive aldol reaction of ketones. Judging from the absolute configuration of 19, the si-face of the hypothetical Rh-enolate may attack the coordinated acetone moiety via a cyclic transition state (Scheme 9). Scheme 9 Hypothetical transition state. CONCLUSIONS We have demonstrated organometallic and asymmetric catalytic chemistry of the rhodium complexes with phebox auxiliaries, which have flourished as a credible partner for metal atoms to make stable complexes and has showed high efficiency of diastereoselectivity and enantioselectivity. ACKNOWLEDGMENTS This work was financially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and from the Japan Society for the Promotion of Science. H.N. is supported by the Mitsubishi Foundation and the Daiko Foundation. REFERENCES 1. (a) H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M. Kondo, K. Itoh. Organometallics 8, 846 (1989); (b) H. Nishiyama, M. Kondo, T. Nakamura, K. Itoh. Organometallics 10, 500 (1991); for asymmetric cyclopropanation, see: (c) H. Nishiyama, Y. Itoh, H. Matsumoto, S.-B. Park, K. Itoh. J. Am. Chem. Soc. 116, 2223 (1994); for review, see: (d) H. Nishiyama. Advances in Catalytic Processes, Vol. 2, M. P. Doyle (Ed.), pp , JAI Press, New York (1997).

7 An efficient auxiliary for asymmetric catalysis Reviews for oxazoline-based catalysts: (a) M. Gómez, G. Muller, M. Rocamora. Coord. Chem. Rev. 193, 769 (1991); (b) G. Desimoni, G. Faita, P. Quadreil. Chem. Rev. 103, 3119 (2003); (c) H. A. McManus, P. J. Guiry. Chem. Rev. 106, 3561 (2004). 3. (a) Y. Motoyama, N. Makihara, Y. Mikami, K. Aoki, H. Nishiyama. Chem. Lett. 951 (1997); (b) Y. Motoyama, M. Okano, H. Narusawa, N. Makihara, K. Aoki, H. Nishiyama. Organometallics 20, 1580 (2001). 4. H. Nishiyama. Chem. Soc. Rev. 36, 1025 (2007). 5. Y. Kanazawa, Y. Tsuchiya, K. Kobayashi, T. Shiomi, J. Ito, M. Kikuchi, Y. Yamamoto, H. Nishiyama. Eur. J. Chem. 12, 63 (2006). 6. J. Ito, T. Shiomi, H. Nishiyama. Adv. Synth. Catal. 348, 1235 (2006). 7. J. Ito, T. Miyakawa, H. Nishiyama. Organometallics 25, 5216 (2006). 8. Y. Motoyama, K. Shimozono, K. Aoki, H. Nishiyama. Organometallics 21, 1684 (2004). 9. J. Ito, H. Nishiyama. Eur. J. Inorg. Chem (2007). 10. J. Ito, M. Kitase, H. Nishiyama. Organometallics 26, 6412 (2007). 11. Y. Tsuchiya, H. Uchimura, K. Kobayashi, H. Nishiyama. Synlett 2099 (2004). 12. Y. Tsuchiya, Y. Kanazawa, T. Shiomi, K. Kobayashi, H. Nishiyama. Synlett 2493 (2004). 13. Y. Kanazawa, H. Nishiyama. Synlett 3343 (2006). 14. H. Nishiyama, T. Shiomi. Top. Curr. Chem., Metal Catalyzed Reductive C C Bond Formation, M. J. Krische (Ed.), Springer-Verlag, Berlin, 279, 105 (2007). 15. H. Nishiyama, T. Shiomi, Y. Tsuchiya, I. Matsuda. J. Am. Chem. Soc. 127, 6972 (2005). 16. T. Shiomi, J. Ito, Y. Yamamoto, H. Nishiyama. Eur. J. Org. Chem (2006). 17. T. Shiomi, H. Nishiyama. Org. Lett. 9, 1651 (2007).

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010 Enantioselective Borylations David Kornfilt Denmark Group Meeting Sept. 14 th 2010 30.000-foot View Enantioenriched Organoboranes What to do with them Crudden C. M. et. al., Eur. J. Org. Chem. 2003, 46

More information

Metal-catalyzed asymmetric hetero-diels-alder reactions of unactivated dienes with glyoxylates

Metal-catalyzed asymmetric hetero-diels-alder reactions of unactivated dienes with glyoxylates Pure & Appl. Chern., Vol. 70, No. 5, pp. 11 17-1 122, 1998. Printed in Great Britain. (0 1998 IUPAC Metal-catalyzed asymmetric hetero-diels-alder reactions of unactivated dienes with glyoxylates Mogens

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Angew. Chem. Int. Ed. 2017, 10.1002. 1 N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Reporter: En Li Supervisor: Prof. Yong

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

B X A X. In this case the star denotes a chiral center.

B X A X. In this case the star denotes a chiral center. Lecture 13 Chirality III October 29, 2013 We can also access chiral molecules through the use of something called chiral auxiliaries, which basically is a chiral attachment that you add to your molecule

More information

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Dual enantioselective control by heterocycles of (S)-indoline derivatives* Pure Appl. Chem., Vol. 77, No. 12, pp. 2053 2059, 2005. DOI: 10.1351/pac200577122053 2005 IUPAC Dual enantioselective control by heterocycles of (S)-indoline derivatives* Yong Hae Kim, Doo Young Jung,

More information

The Vinylogous Aldol Reaction

The Vinylogous Aldol Reaction The Vinylogous Aldol Reaction Reporter: Sixuan Meng Supervisor: Prof. Huang 2013-09-09 Zanardi, F. et al. Chem. Rev. 2000, 100, 1929 Zanardi, F. et al.. Chem. Rev. 2011, 111, 3076 Introduction 2 3 Regiochemical

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution Alpha Substitution and ondensations of Enols and Enolate Ions hap 23 W: 27, 28, 30, 31, 37, 39, 42-44, 47, 51, 54-56 Alpha Substitution Replacement of a hydrogen on the carbon adjacent to the carbonyl,

More information

Discussion Addendum for: Nickel-catalyzed Homoallylation of Aldehydes with 1,3-Dienes

Discussion Addendum for: Nickel-catalyzed Homoallylation of Aldehydes with 1,3-Dienes DI:10.15227/orgsyn.090.0105 Discussion Addendum for: Nickel-catalyzed Homoallylation of Aldehydes with 1,3-Dienes CH anti:syn = 30:1 CH cat. Et 2 Zn anti:syn = 30:1 Prepared by Masanari Kimura.* 1 riginal

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

-catalyzed reactions utilizing isocyanides as a C 1

-catalyzed reactions utilizing isocyanides as a C 1 Pure Appl. Chem., Vol. 78, No. 2, pp. 275 280, 2006. doi:10.1351/pac200678020275 2006 IUPAC GaCl 3 -catalyzed reactions utilizing isocyanides as a C 1 source* Mamoru Tobisu, Masayuki Oshita, Sachiko Yoshioka,

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Make-Up Carbonyl Compounds and Amines. Wednesday, November 30, 2011, 10 10:50 am Name: Answer Key Question

More information

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation:

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation: 1 Chapter 22: Reactions of Enols and Enolates I. Alpha Substitution verview: A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation: Recall that the

More information

Asymmetric Catalysis with Chiral Bis(oxazolinyl)phenyl Transition-metal Complexes. Hisao Nishiyama

Asymmetric Catalysis with Chiral Bis(oxazolinyl)phenyl Transition-metal Complexes. Hisao Nishiyama o.172 esearch Article Asymmetric Catalysis with Chiral Bis(oxazolinyl)phenyl Transition-metal Complexes isao ishiyama Graduate School of Engineering, agoya University Furo-cho, Chikusa, agoya 464-8603,

More information

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides* Pure Appl. Chem., Vol. 76, No. 3, pp. 651 656, 2004. 2004 IUPAC Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

Development of Small Organic Molecules as Catalysts for Asymmetric

Development of Small Organic Molecules as Catalysts for Asymmetric Development of Small Organic Molecules as Catalysts for Asymmetric Organic Transformations The development of new and efficient catalysts capable of catalyzing enantioselective transformation in a controlled

More information

Aromatic Hydrocarbons

Aromatic Hydrocarbons Aromatic Hydrocarbons Aromatic hydrocarbons contain six-membered rings of carbon atoms with alternating single and double carbon-carbon bonds. The ring is sometimes shown with a circle in the center instead

More information

Suggested solutions for Chapter 28

Suggested solutions for Chapter 28 s for Chapter 28 28 PBLEM 1 ow would you make these four compounds? Give your disconnections, explain why you chose them and then give reagents for the. 2 2 Me S Exercises in basic one- group C X disconnections.

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2012 Dr. Rainer Glaser Examination #4 Carbonyl Compounds and Amines. Thursday, November 15, 2012, 8:25 9:15 am Name: Question 1. Aldehydes

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

1. What is the major organic product obtained from the following sequence of reactions?

1. What is the major organic product obtained from the following sequence of reactions? CH320 N N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. Carefully record your answers on the Scantron

More information

Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions

Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions I. Reaction of Enols & Enolates with ther Carbonyls Enols and enolates are electron rich nucleophiles that react with a number

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

ELECTRONIC ENCYCLOPEDIA OF REAGENTS FOR ORGANIC SYNTHESIS

ELECTRONIC ENCYCLOPEDIA OF REAGENTS FOR ORGANIC SYNTHESIS 1 ELECTRIC ECYCLPEDIA F REAGETS FR RGAIC SYTHESIS Fandrick, Keith R.; Evans, David A. 2,6-BIS[(4R,5R)-4,5-DIHYDR-4,5-DIPHEYL- 2-XAZLYL]PYRIDIE, e-ers Encyclopedia of Reagents for rganic Synthesis, Article

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl compounds*

Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl compounds* Pure Appl. Chem., Vol. 78, No. 2, pp. 391 396, 2006. doi:10.1351/pac200678020391 2006 IUPAC Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl

More information

The problem is that your product still has a-protons, and can keep on forming enolates to get more methyl groups added:

The problem is that your product still has a-protons, and can keep on forming enolates to get more methyl groups added: Lecture 14 ovember 3, 2011 OK I want to continue briefly with the topic of proline catalysis that we discussed last time. In particular, the idea of using secondary amines to catalyze carbonyl chemistry

More information

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful?

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful? Chapter 19 Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions ß-dicarbonyl compounds Two carbonyl groups separated by a carbon Three common types ß-diketone ß-ketoester

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Practice Edition Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Question

More information

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44% VII Abstracts 2010 p1 2.4.12 Arene rganometallic Complexes of Chromium, Molybdenum, and Tungsten M. Uemura This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (h 6 -Arene)chromium

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis another. 1 One interesting aspect of chiral Brønsted acid catalysis is that the single s orbital of hydrogen Chiral Brønsted Acid Catalysis Reported by Matthew T. Burk December 3, 2007 INTRODUCTION The

More information

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence? N_HW1 N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. 1. What is the purpose of the H 2 O in this

More information

Borane-Catalyzed Ring-Opening and Ring-Closing Cascades of Furans Leading to Silicon-Functionalized Synthetic Intermediates

Borane-Catalyzed Ring-Opening and Ring-Closing Cascades of Furans Leading to Silicon-Functionalized Synthetic Intermediates A48 Borane-Catalyzed Ring-Opening and Ring-Closing Cascades of Furans Leading to Silicon-Functionalized Synthetic Intermediates Nat. Commun. 2016, 7, 13431 A number of transition-metal complexes are known

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Reporter: Cong Liu Checker: Hong-Qiang Shen Date: 2017/02/27

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser Examination #4 Enols and Aldol Reaction, Carboxylic Acids and Carboxylic Acid Derivatives. Thursday, November 14, 2013,

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Carbon-Carbon Bond Formation Driven by the Water-Gas Shift Reaction

Carbon-Carbon Bond Formation Driven by the Water-Gas Shift Reaction Carbon-Carbon Bond Formation Driven by the Water-Gas Shift Reaction Zachery Matesich 28 March 2017 2 Projects Allyl electrophile scope Asymmetric allylation Alternative approaches 3 Water-Gas Shift Reaction

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 6 Dr Ali El-Agamey 1 Oxidation States Easy for inorganic salts: CrO 4 2- reduced to Cr 2 O 3. KMnO 4 reduced to MnO 2. Oxidation: Gain of O,

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

ummary Manipulating Radicals

ummary Manipulating Radicals Manipulating Radicals ummary Modern catalysis research tries to address issues such as material scarcity, sustainability or process costs. One solution is to replace expensive and scarce noble metal catalysts

More information

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone DI:10.15227/orgsyn.089.0374 Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone C 3 Ph hcl(pph 3 ) 3 C 3 I C 3 Ph T C 3 Prepared

More information

Palladium-catalyzed cross-addition of triisopropylsilylacetylene to unactivated alkynes*

Palladium-catalyzed cross-addition of triisopropylsilylacetylene to unactivated alkynes* Pure Appl. Chem., Vol. 80, No. 5, pp. 1161 1166, 2008. doi:10.1351/pac200880051161 2008 IUPAC Palladium-catalyzed cross-addition of triisopropylsilylacetylene to unactivated alkynes* Naofumi Tsukada, Satoshi

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Tautomerism and Keto Enol Equilibrium

Tautomerism and Keto Enol Equilibrium Tautomerism and Keto Enol Equilibrium Enols & enolates are important nucleophiles in organic & biochemistry. Keto-Enol Equilibrium: Tautomerisation can be catalyzed by either acids or bases. Relative stability

More information

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion:

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion: Lecture 5 Carbonyl Chemistry III September 26, 2013 Ketone substrates form tertiary alcohol products, and aldehyde substrates form secondary alcohol products. The second step (treatment with aqueous acid)

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02 arbonyl hemistry IV Ō - + Lecture 10 Addition of Nitrogen Nucleophiles Primary Amines RN 2 Imines Secondary Amines R 2 N Enamines ydrazine derivatives RNN 2 ydrazones ydroxyl Amine N 2 ximes Imine Formation

More information

Luckily this intermediate has three saturated carbons between the carbonyls, which again points to a Michael reaction:

Luckily this intermediate has three saturated carbons between the carbonyls, which again points to a Michael reaction: Retrosynthesis Practice Problems Answer Key October 1, 2013 1. Draw a retrosynthesis for how to make the compound shown below from starting materials with eight or fewer carbon atoms. The first step is

More information

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

1 a) Name the following substances with the used common names or according to IUPAC (4p): b) Draw detailed structures of the substances below.

1 a) Name the following substances with the used common names or according to IUPAC (4p): b) Draw detailed structures of the substances below. EGLIS VERSI Exam rganic Chemistry 2 (KD1100) Wednesday May 21, 2008, 08.00-13.00 Allowed answering aid: molecular models Periodic system and tables of bond energies, pk a -values and MR-shifts are attached

More information

Copper-mediated asymmetric transformations*

Copper-mediated asymmetric transformations* Pure Appl. Chem., Vol. 74, No. 1, pp. 37 42, 2002. 2002 IUPAC Copper-mediated asymmetric transformations* Alexandre Alexakis Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet,

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

Organic Reactions catalyzed by rhenium carbonyl complexes

Organic Reactions catalyzed by rhenium carbonyl complexes Organic Reactions catalyzed by rhenium carbonyl complexes Fanyang Mo Dong group seminar Feb. 26, 2014 Ref: Kuninobu, Y.; Takai, K. Chem Rev. 2011, 111, 1938. 1 Accidentally found by Ogawa in 1908, and

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Answer Key Question 1.

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Ch 22 Carbonyl Alpha ( ) Substitution

Ch 22 Carbonyl Alpha ( ) Substitution Ch 22 Carbonyl Alpha () Substitution The overall reaction replaces an H with an E + The acid-catalyzed reaction has an enol intermediate The base-catalyzed reaction has an enolate intermediate Keto-Enol

More information

Chapter 19. Organic Chemistry. Carbonyl Compounds III. Reactions at the a-carbon. 4 th Edition Paula Yurkanis Bruice

Chapter 19. Organic Chemistry. Carbonyl Compounds III. Reactions at the a-carbon. 4 th Edition Paula Yurkanis Bruice Organic Chemistry 4 th Edition Paula Yurkanis Bruice Chapter 19 Carbonyl Compounds III Reactions at the a-carbon Disampaikan oleh: Dr. Sri Handayani 2013 Irene Lee Case Western Reserve University Cleveland,

More information

ORGANIC - BRUICE 8E CH CARBONYL COMPOUNDS III: REACTIONS AT THE ALPHA-CARBON

ORGANIC - BRUICE 8E CH CARBONYL COMPOUNDS III: REACTIONS AT THE ALPHA-CARBON !! www.clutchprep.com CNCEPT: ALPHA CARBNS AND TAUTMERIZATIN We have discussed the high reactivity of the carbonyl carbon. However, carbonyls contain another highly reactive component. What is the acidity

More information

Practice Synthetic Problems: CHEM 235 Page 2

Practice Synthetic Problems: CHEM 235 Page 2 Practice Synthetic Problems: CM 235 Page 2 Syntheses based on diethyl malonate, ethyl acetoacetate, etc. Using diethyl malonate and any other necessary organic reagents, show a synthesis of: a) 2,2-dimethyl-1,3-propanediamine

More information

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl)

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) Enols and Enolates A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) E+ E In the preceding chapters, we primarily studied nucleophiles

More information

CHAPTER 19: CARBONYL COMPOUNDS III

CHAPTER 19: CARBONYL COMPOUNDS III CHAPTER 19: CARBONYL COMPOUNDS III A hydrogen bonded to a carbon adjacent to a carbonyl carbon is sufficiently acidic to be removed by a strong base. The carbon adjacent to a carbonyl carbon is called

More information

Chem 22 Final Exam Practice

Chem 22 Final Exam Practice Chem 22 Final Exam Practice Questions taken from regular tests given during the previous semesters. Only one answer is correct unless the question says otherwise. The questions are somewhat scrambled with

More information

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione The purpose of this experiment was to synthesize 5-isopropyl-1,3-cyclohexanedione from commercially available compounds. To do this, acetone and

More information

Suggested solutions for Chapter 34

Suggested solutions for Chapter 34 s for Chapter 34 34 PRBLEM 1 Predict the structure of the product of this Diels- Alder reaction. C 2 +? 3 Si Can you deal with a moderately complicated Diels- Alder? The diene is electron- rich and will

More information

Metal-assisted amination with oxime derivatives*

Metal-assisted amination with oxime derivatives* Pure Appl. Chem., Vol. 74, No. 1, pp. 143 149, 2002. 2002 IUPAC Metal-assisted amination with oxime derivatives* Koichi Narasaka Department of Chemistry, Graduate School of Science, The University of Tokyo,

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr.

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. Rainer Glaser Announced Reading: Prins Cyclization Reactions 1 Question 1. Aldol-Prins

More information

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chem 253 Problem Set 7 Due: Friday, December 3, 2004 Chem 253 roblem Set 7 ue: Friday, ecember 3, 2004 Name TF. Starting with the provided starting material, provide a concise synthesis of. You may use any other reagents for your synthesis. It can be assumed

More information

CHEM Chapter 23. Carbonyl Condensation Reactions (quiz) W25

CHEM Chapter 23. Carbonyl Condensation Reactions (quiz) W25 CHEM 2425. Chapter 23. Carbonyl Condensation Reactions (quiz) W25 Student: 1. Which of the following statements about Aldol reactions with either aldehydes or ketones is true? Equilibrium favors the starting

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: Career-in-Review Yan Xu Dong Group Meeting Jan. 2, 2014 David W.C. MacMillan: A Brief Introduction Career 1968 Born in Bellshill, Scotland. 1987-1991 Undergraduate degree in chemistry

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

New cyclizations via catalytic ruthenium vinylidenes*

New cyclizations via catalytic ruthenium vinylidenes* Pure Appl. Chem., Vol. 80, No. 5, pp. 1167 1177, 2008. doi:10.1351/pac200880051167 2008 IUPAC New cyclizations via catalytic ruthenium vinylidenes* Jesús A. Varela, Carlos González-Rodríguez, Silvia G.

More information

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT.

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT. Exam 1 (Ch 17 and Review of CEM 331) Answer Key: 1. ne-step Questions: You need to know reagents for reagent arrows and to be able to draw products. I know a lot of them seem to look alike its your job

More information