CHAPTER 19: CARBONYL COMPOUNDS III

Size: px
Start display at page:

Download "CHAPTER 19: CARBONYL COMPOUNDS III"

Transcription

1 CHAPTER 19: CARBONYL COMPOUNDS III A hydrogen bonded to a carbon adjacent to a carbonyl carbon is sufficiently acidic to be removed by a strong base. The carbon adjacent to a carbonyl carbon is called an α-carbon. A hydrogen bonded to an α- carbon is therefore called an α-hydrogen The Acidity of an α-hydrogen A compound that contains a relatively acidic hydrogen bonded to an sp 3 carbon is called a carbon acid. The α-hydrogen of a ketone or an aldehyde is more acidic than the α-hydrogen of an ester. An α-hydrogen is more acidic because the base formed when a proton is removed from an α- carbon is relatively stable. The electrons left behind when a proton is removed from the α-carbon of an ester are not as readily delocalized onto the carbonyl oxygen as they would be in an aldehyde or a ketone. This is because the oxygen of the OR group of the ester also has a lone pair that can be delocalized onto the carbonyl oxygen. Thus, the 2 pairs of electrons compete for delocalization onto the same oxygen. If the α-carbon is between 2 carbonyl groups, the acidity of an α-hydrogen is even greater. Β-keto ester an ester with a second carbonyl group at the β-position. Β-diketone a ketone with a second carbonyl group at the β-position.

2 The acidity of α-hydrogens bonded to carbons flanked by 2 carbonyl groups increases because the electrons left behind when the protons is removed can be delocalized onto 2 oxygen atoms Keto Enol Tautomers Tautomers are isomers that are in rapid equilibrium. Keto-enol tautomers differ in the location of a double bon and a hydrogen. For most ketones, the enol tautomer is much less stable than the keto tautomer Keto Enol Interconversion The interconversion of the keto and enol tautomers is called keto-enol interconversion, keto-enol tautomerization, or enolization. The interconversion can be catalyzed by either a base or an acid.

3 19.4 How Enolate Ions and Enols React The resonance contributors of the enolate ion show that it has 2 electron-rich sites: the α- carbon and the oxygen. The resonance contributor with negatively charged oxygen makes the greater contribution to the hybrid. The enolate ion is an example of an ambident nucleophile. An ambident nucleophile is a nucleophile with 2 nucleophilic sites ( two teeth ). Which nucleophilic site (C or O) reacts with an electrophile depends on the electrophile and on the reaction conditions. Protonation occurs preferentially on oxygen (the kinetic product), because of the greater concentration of negative charge on the more electronegative oxygen atom. When the electrophile is something other than a proton, carbon is more likely to be the nucleophile because carbon is a better nucleophile than oxygen. The mechanism for the formation of an enolate ion and its subsequent reaction with an electrophile is shown below.

4 The overall reaction is an α-substitution reaction; one electrophile (E + ) is substituted for another (H + ) at the α-carbon. The resonance contributors of the enol show that it too has 2 electron-rich sites: the α-carbon and the oxygen. The mechanism for the formation of an enol and its subsequent reaction with an electrophile is shown below. In summary, a carbonyl compound with an α-hydrogen can undergo a substitution reaction at the α-carbon. The substitution reaction can be catalyzed by a base (forming an enolate ion) or by an acid (forming an enol) Halogenation of the α-carbon of Aldehydes and Ketones When Br 2, Cl 2, or I 2 is added to a solution of an aldehyde or a ketone, a halogen replaces one or more of the α-hydrogens of the carbonyl compound. Acid-Catalyzed Halogenation In the acid-catalyzed reaction, the halogen replaces one of the α-hydrogens:

5 Base-Promoted Halogenation When excess Br 2, Cl 2, or I 2 is added to a basic solution of an aldehyde or a ketone, the halogen replaces all the α-hydrogens.

6 These 2 steps are repeated until all the α-hydrogens are replaced by the halogen. The Haloform Reaction In the presence of excess base and excess halogen, a methyl ketone is converted into a carboxylate ion. The conversion of a methyl ketone to a carboxylate ion is called a Haloform reaction because one of the products is Haloform either CHCl 3 (chloroform), CHBr 3 (bromoform), or CHI 3 (iodoform) Halogenation of the α-carbon of Carboxylic Acids: The Hell-Volhard-Zelinski Reaction Hell-Volhard-Zelinski reaction (HVZ reaction) heating a carboxylic acid with Br 2 + P in order to convert it into an α-bromocarboxylic acid.

7 19.7 α-halogenated Carbonyl Compounds are Useful in Synthesis Removing a proton from an α-carbon makes the α-carbon a nucleophile. When the α-position is halogenated, the α-carbon becomes electrophilic it reacts with nucleophiles. Substituting a bromine for a hydrogen bonded to an α-carbon makes the α-carbon an electrophile Using LDA to Form an Enolate Ion When LDA (lithium diisopropylamide) is used to removed the α-hydrogen, essentially all the carbonyl compound is converted to the enolate ion because LDA is a much stronger base than the base being formed. Therefore, LDA is the base of choice for those reactions that require the carbonyl compound to be completely converted to an enolate ion before it reacts with an electrophile.

8 19.9 Alkylating the α-carbon of Carbonyl Compounds Putting an alkyl group on the α-carbon of a carbonyl compound is an important reaction because it gives us another way to form a carbon-carbon bond. Alkylation is carried out by first removing a proton from the α-carbon with a strong base such as LDA and then adding the appropriate alkyl halide. Because the alkylation is an S N 2 reaction, it works best with methyl halides and primary alkyl halides. Enolate ions can be alkylated on the α-carbon Alkylation and Acylation of the α-carbon Using an Enamine Intermediate Enamines react with electrophiles in the same way that enolate ions do.

9 Because the alkylation step is an S N 2 reaction, only primary alkyl halides or methyl halides should be used. One advantage to using an enamine intermediate to alkylate an aldehyde or a ketone is that only the monoalkylated product is formed. In addition to using enamine intermediates to alkylate aldehydes and ketones, they can also be used to acylate these compounds Alkylation of the β-carbon: The Michael Reaction Michael reaction the addition of an α-carbanion to the β-carbon of an α, β-unsaturated carbonyl compound. The enolate ions that work best in Michael reactions are those formed from carbon acids that are flanked by 2 electron-withdrawing groups: enolate ions of β-diketones, β-diesters, β-keto esters, and β-keto nitriles. Because these enolate ions are relatively weak bases, conjugate addition occurs that is, addition at the β-carbon of α, β-unsaturated aldehydes and ketones. These enolate ions also add to the β-carbon of α, β-unsaturated esters and amides because of the low reactivity of the carbonyl group. Notice that Michael reactions form 1, 5-dicarbonyl compounds; that is, if a carbonyl carbon of the enolate ion is given the 1-position, the carbonyl carbon of the other reactant is at the 5-position.

10 Enamines can be used in place of enolate ions in Michael reactions. When an enamine is used as a nucleophile in a Michael reaction, the reaction is called a Stork enamine reaction.

11 19.12 An Aldol Addition Forms β-hydroxyaldehydes or β-hydroxyketones An aldol addition is a reaction in which both of these activities are observed: one molecule of a carbonyl compound after a proton is removed from an α-carbon reacts as a nucleophile and adds to the electrophilic carbonyl carbon of a second molecule of the carbonyl compound. Thus, and aldol addition is a reaction between 2 molecules of an aldehyde or 2 molecules of a ketone.

12 Because an aldol addition reaction occurs between 2 molecules of the same carbonyl compound, the product has twice as many carbons as the reacting aldehyde or ketone Dehydration of Aldol Addition Products Forms α, β-unsaturated Aldehydes and Ketones If the product of an aldol addition undergoes dehydration, the overall reaction is called an aldol condensation. A condensation reaction is a reaction that combines 2 molecules by forming a new C C bond while removing a small molecule (usually water or an alcohol). An aldol addition product loses water to form an aldol condensation product. An aldol condensation forms an α, β-unsaturated aldehyde or an α, β-unsaturated ketone. E1cB (elimination unimolecular conjugate base) reaction a two step elimination reaction that forms a carbanion intermediate. E1cB reactions occur only if the carbanion can be stabilized by electron delocalization The Crossed Aldol Addition

13 Crossed aldol addition or mixed aldol addition an aldol addition in which 2 different carbonyl compounds are used. If 2 different carbonyl compounds are used in an aldol addition, 4 products can be formed because each enolate ion can react with either of the 2 carbonyl compounds A Claisen Condensation Forms a β-keto Ester Claisen Condensation When 2 molecules of an ester undergo a condensation reaction, the reaction is called a Claisen condensation. The product of a Claisen condensation is a β-keto ester. In a Claisen condensation, as in an aldol addition, one molecule of carbonyl compound is the nucleophile and a second molecule is the electrophile. The new C C bind connects the α- carbon of one molecule and the carbon that was formerly the carbonyl carbon of the other molecule.

14 After nucleophilic addition, the Claisen condensation and the aldol addition differ. In the Claisen condensation, the negatively charged oxygen re-forms the carbon-oxygen π bond and eliminates the OR group. In the aldol addition, the negatively charged oxygen obtains a proton from the solvent. A Crossed Claisen Condensation A crossed Claisen condensation is a condensation reaction between 2 different esters. Like a crossed aldol addition, a crossed Claisen condensation is a useful reaction only if it is carried out under conditions that foster the formation of primarily one product. Primary one product will be formed from crossed Claisen condensation if one of the esters has no α-hydrogens (and therefore cannot form an enolate ion) and the ester with α- hydrogens is added slowly to a solution of the ester without α-hydrogens and the alkoxide ion Intramolecular Condensation and Addition Reactions A compound with 2 ester groups would undergo an Intramolecular Claisen condensation, and a compound with 2 aldehyde or ketone groups would undergo an Intramolecular aldol addition.

15 Intramolecular Claisen Condensations Dieckmann condensation an Intramolecular Claisen condensation. Intramolecular Aldol Additions Because a 1, 4-diketone has 2 different sets of α-hydrogens, 2 different Intramolecular addition products can potentially form, one with a 5-membered ring, the other with a 3- membered ring. The greater stability of 5-and-6-membered rings caused them to be formed preferentially. In fact, the 5-membered ring product is the only product formed from the Intramolecular aldol addition of a 1, 4-diketone. The Intramolecular aldol addition of a 1, 6-diketone can potentially lead to either a 7- or a 5- membered ring product. Again, the more stable product the one with the 5-membered ring is the only product of the reaction.

16 1, 5-Diketones and 1, 7-diketones undergo Intramolecular aldol additions to form 6- membered ring products The Robinson Annulation Robinson Annulation a Michael reaction followed by an intramolecular aldol condensation. An annulation reaction is a ring-forming reaction. Robinson annulation results in a product that has a 2-cyclohexenone ring.

17 19.19 Carboxylic Acids with a Carbonyl Group at the 3-Position can be Decarboxylated Decarboxylation loss of CO 2 molecule 3-Oxocarboxylic acids decarboxylate when heated. Carboxylic acids with a carbonyl group at the 3-position lose CO 2 when they are heated The Malonic Ester Synthesis: A Way to Synthesize a Carboxylic Acid Malonic ester synthesis the synthesis of a carboxylic acid, using diethyl malonate as the starting material.

18 19.21 The Acetoacetic Ester Synthesis: A Way to Synthesize a Methyl Ketone The only difference between the Acetoacetic ester synthesis and the Malonic ester synthesis is the use of Acetoacetic ester rather than Malonic ester as the starting material. An acetoacetic ester synthesis forms a methyl ketone with 2 more carbons than the alkyl halide. The steps in the acetoacetic ester synthesis are the same as those in the Malonic ester synthesis.

19

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon Chapter 19. Carbonyl Compounds III Reaction at the α-carbon There is a basic hydrogen (α hydrogen) on α carbon, which can be removed by a strong base. 19.1 The Acidity of α-hydrogens A hydrogen bonded

More information

Chapter 19. Organic Chemistry. Carbonyl Compounds III. Reactions at the a-carbon. 4 th Edition Paula Yurkanis Bruice

Chapter 19. Organic Chemistry. Carbonyl Compounds III. Reactions at the a-carbon. 4 th Edition Paula Yurkanis Bruice Organic Chemistry 4 th Edition Paula Yurkanis Bruice Chapter 19 Carbonyl Compounds III Reactions at the a-carbon Disampaikan oleh: Dr. Sri Handayani 2013 Irene Lee Case Western Reserve University Cleveland,

More information

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution Alpha Substitution and ondensations of Enols and Enolate Ions hap 23 W: 27, 28, 30, 31, 37, 39, 42-44, 47, 51, 54-56 Alpha Substitution Replacement of a hydrogen on the carbon adjacent to the carbonyl,

More information

Ch 22 Carbonyl Alpha ( ) Substitution

Ch 22 Carbonyl Alpha ( ) Substitution Ch 22 Carbonyl Alpha () Substitution The overall reaction replaces an H with an E + The acid-catalyzed reaction has an enol intermediate The base-catalyzed reaction has an enolate intermediate Keto-Enol

More information

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl)

Enols and Enolates. A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) Enols and Enolates A type of reaction with carbonyl compounds is an α-substitution (an electrophile adds to the α carbon of a carbonyl) E+ E In the preceding chapters, we primarily studied nucleophiles

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation:

A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation: 1 Chapter 22: Reactions of Enols and Enolates I. Alpha Substitution verview: A. Review of Acidity and pk a Common way to examine acidity is to use the Bronsted-Lowry acid-base equation: Recall that the

More information

Reactions at α-position

Reactions at α-position Reactions at α-position In preceding chapters on carbonyl chemistry, a common reaction mechanism observed was a nucleophile reacting at the electrophilic carbonyl carbon site NUC NUC Another reaction that

More information

Aldol Reactions pka of a-h ~ 20

Aldol Reactions pka of a-h ~ 20 Enolate Anions Chapter 17 Hydrogen on a carbons a to a carbonyl is unusually acidic The resulting anion is stabilized by resonance to the carbonyl Aldehydes and Ketones II Aldol Reactions pka of a-h ~

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful?

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful? Chapter 19 Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions ß-dicarbonyl compounds Two carbonyl groups separated by a carbon Three common types ß-diketone ß-ketoester

More information

ORGANIC - BRUICE 8E CH CARBONYL COMPOUNDS III: REACTIONS AT THE ALPHA-CARBON

ORGANIC - BRUICE 8E CH CARBONYL COMPOUNDS III: REACTIONS AT THE ALPHA-CARBON !! www.clutchprep.com CNCEPT: ALPHA CARBNS AND TAUTMERIZATIN We have discussed the high reactivity of the carbonyl carbon. However, carbonyls contain another highly reactive component. What is the acidity

More information

CHEM Chapter 23. Carbonyl Condensation Reactions (quiz) W25

CHEM Chapter 23. Carbonyl Condensation Reactions (quiz) W25 CHEM 2425. Chapter 23. Carbonyl Condensation Reactions (quiz) W25 Student: 1. Which of the following statements about Aldol reactions with either aldehydes or ketones is true? Equilibrium favors the starting

More information

Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions

Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions I. Reaction of Enols & Enolates with ther Carbonyls Enols and enolates are electron rich nucleophiles that react with a number

More information

Module No and Title. PAPER No: 5 ; TITLE : Organic Chemistry-II MODULE No: 25 ; TITLE: S E 1 reactions

Module No and Title. PAPER No: 5 ; TITLE : Organic Chemistry-II MODULE No: 25 ; TITLE: S E 1 reactions Subject Chemistry Paper No and Title Module No and Title Module Tag 5; Organic Chemistry-II 25; S E 1 reactions CHE_P5_M25 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. S E 1 reactions 3.1

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

18: Reactions of Enolate Ions and Enols

18: Reactions of Enolate Ions and Enols 18: Reactions of Enolate Ions and Enols 18.1 Enolate Ions and Enols 18-3 Halogenation, Alkylation, and Condensation Reactions (18.1A) 18-3 Acidity of α-c-h's (18.1B) 18-4 Resonance Stabilization Enol Form

More information

Chapter 22 Enols and Enolates

Chapter 22 Enols and Enolates Chapter Enols and Enolates Acidity of the α hydrogen o The position next door to a carbonyl is called the α position o When an α proton is abstracted, the resulting carbanion is resonancestabilized. This

More information

Lecture 23. The Aldol Condensation. an Aldol! April 12, 2018 O H O H - Chemistry 328N

Lecture 23. The Aldol Condensation. an Aldol! April 12, 2018 O H O H - Chemistry 328N Lecture 23 The Aldol Condensation - b a an Aldol! April 12, 2018 Exam III - Wed April 18 WEL 2.122 7-9 PM Covers thru today omework ydrolysis Reactions Synthesis Get an A!!! Lithium diisopropylamide (LDA)

More information

Organic Chemistry, Third Edition. Chapter 24 Carbonyl condensations

Organic Chemistry, Third Edition. Chapter 24 Carbonyl condensations rganic Chemistry, Third Edition Chapter 24 Carbonyl condensations 1 Review: enolates LDA, -78 C TF kinetic RX R = Me, 1 alkyl R Na TF, RT RX R = Me, 1 alkyl thermodynamic R enolates = nucleophiles React

More information

Chapter 23. Alpha Substitution of Carbonyl Compounds.

Chapter 23. Alpha Substitution of Carbonyl Compounds. 1 Chapter 23. Alpha Substitution of Carbonyl Compounds. 1. Enolates. a) Carbonyl compounds are acidic at the α C, can be deprotonated by bases to give enolates. i) Ketones and aldehydes have pk a = 18

More information

Summary of π Bond Chemistry

Summary of π Bond Chemistry Chapter 10 Summary of π Bond Chemistry to π C=C 13.01 Chapter 11 at π C=C to π C=C Chapter 1 LG at π C=C Chapter 13 at α position C= activates position ow does C= activation α position? Via or. E base

More information

Chapter 21 Ester Enolates

Chapter 21 Ester Enolates hapter 21 Ester Enolates Introduction R R' H H The preparation and reactions of β-dicarbonyl compounds, especially β-keto esters, is the main focus of this chapter. A proton on the carbon flanked by the

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

Michael and Aldol CH391 December 4, 2002

Michael and Aldol CH391 December 4, 2002 Michael and Aldol H391 December 4, 2002 RH 2 H pk a = 16-20 + H RHH + Enolate anions... So.a basic solution contains comparable amounts of the aldehyde and its enolate. Which gives rise to..the Aldol ondensation

More information

What is in Common for the Following Reactions, and How Do They Work?

What is in Common for the Following Reactions, and How Do They Work? What is in Common for the Following Reactions, and ow Do They Work? You should eventually be able to draw the mechanism for these (and other) reactions 13 Key Intermediate 1 Br-Br Na Br 2 C 3 -I Me NaMe

More information

Score: Homework Problem Set 9 Iverson CH320N Due Monday, April 17. NAME (Print): Chemistry 320N Dr. Brent Iverson 9th Homework April 10, 2017

Score: Homework Problem Set 9 Iverson CH320N Due Monday, April 17. NAME (Print): Chemistry 320N Dr. Brent Iverson 9th Homework April 10, 2017 omework Problem Set 9 Iverson C0N Due Monday, April 7 NAME (Print): SIGNATURE: Chemistry 0N Dr. ent Iverson 9th omework April 0, 07 Please print the first three letters of your last name in the three boxes

More information

ORGANIC - CLUTCH CH CONDENSATION CHEMISTRY.

ORGANIC - CLUTCH CH CONDENSATION CHEMISTRY. !! www.clutchprep.com CNCEPT: CNDENSATIN REACTINS A condensation reaction spontaneously combines two or more molecules with the loss of a smaller molecule. Instead of just reacting with electophiles, enolates

More information

CHAPTER 23 HW: ENOLS + ENOLATES

CHAPTER 23 HW: ENOLS + ENOLATES CAPTER 23 W: ENLS + ENLATES KET-ENL TAUTMERSM 1. Draw the curved arrow mechanism to show the interconversion of the keto and enol form in either trace acid or base. trace - 2 trace 3 + 2 + E1 2 c. trace

More information

Chem 263 Nov 19, Cl 2

Chem 263 Nov 19, Cl 2 Chem 263 Nov 19, 2013 eactions of Enolates: X X alogenation X C 2 Alkylation C Aldol eaction X C Acylation Example: halogenation LDA 2 Chloroacetone is used in tear gas. chloroacetone In this reaction,

More information

Objective 14. Develop synthesis strategies for organic synthesis.

Objective 14. Develop synthesis strategies for organic synthesis. Objective 14. Develop synthesis strategies for organic synthesis. Skills: Draw structure ID structural features and reactive sites (alpha C, beta C, LG, etc.) ID Nu - and E + use curved arrows to show

More information

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion:

When we deprotonate we generate enolates or enols. Mechanism for deprotonation: Resonance form of the anion: Lecture 5 Carbonyl Chemistry III September 26, 2013 Ketone substrates form tertiary alcohol products, and aldehyde substrates form secondary alcohol products. The second step (treatment with aqueous acid)

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

20.3 Alkylation of Enolate Anions

20.3 Alkylation of Enolate Anions 864 APTER 20 ELATE AD TER ARB ULEPILES which precipitates as a yellow solid, provides a positive test for the presence of a methyl ketone The reaction can also be used in synthesis to convert a methyl

More information

Enolates, Enols, and Enamines Part 3

Enolates, Enols, and Enamines Part 3 Enolates, Enols, and Enamines Part 3 Guanine Tautomerize 2 2 Thymine C 3 Tautomerize C 3 Thursday March 21, 8:00-11:00 AM Final Exam Topics Part A: Carbonyl Fundamentals Carbonyl Survey Enolates, Enols,

More information

Objective 14. Develop synthesis strategies for organic synthesis.

Objective 14. Develop synthesis strategies for organic synthesis. Objective 14. Develop synthesis strategies for organic synthesis. Skills: Draw structure ID structural features and reactive sites (alpha C, beta C, LG, etc.) ID Nu - and E + use curved arrows to show

More information

Conjugate Addition Reactions 2:02 PM

Conjugate Addition Reactions 2:02 PM 1 Conjugate Addition vs Direct Addition What is Conjugate Addition? Conjugate addition refers to nucleophilic addition directed to the electrophilic carbon of the C=C (double bond) in a,bunsaturated systems.

More information

Chapter 22 The Chemistry of Enolate Ions, Enols, and

Chapter 22 The Chemistry of Enolate Ions, Enols, and Organic Chemistry, 5th ed. Marc Loudon Chapter 22 The Chemistry of Enolate Ions, Enols, and α,β Unsaturated Carbonyl Compounds Eric J. Kantorowski California Polytechnic State University San Luis Obispo,

More information

Practice Synthetic Problems: CHEM 235 Page 2

Practice Synthetic Problems: CHEM 235 Page 2 Practice Synthetic Problems: CM 235 Page 2 Syntheses based on diethyl malonate, ethyl acetoacetate, etc. Using diethyl malonate and any other necessary organic reagents, show a synthesis of: a) 2,2-dimethyl-1,3-propanediamine

More information

Lecture 24 Two Germans and an Englishman

Lecture 24 Two Germans and an Englishman Lecture 24 Two Germans and an Englishman Robert Robinson 1886-1975 Nobel Laureate 1947 April 17, 2018 tto Paul Hermann Diels 1876-1954 Nobel Laureates 1950 Kurt Alder 1902-1958 Exam III Tomorrow Wed April

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

C h a p t e r T w e n t y - o n e : Enols, Enolates, and Aldol-like Condensations

C h a p t e r T w e n t y - o n e : Enols, Enolates, and Aldol-like Condensations h a p t e r T w e n t y o n e : Enols, Enolates, and Aldollike ondensations Li LDA 1. R TF R 2. 3 R A directed aldol reaction, used in the synthesis of periplanone B, a cockroach attractant M 323: Summary

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information

CHAPTER 24 HW: CARBONYL CONDENSATIONS

CHAPTER 24 HW: CARBONYL CONDENSATIONS CAPTER 24 W: CARBNYL CNDENSATINS ALDL REACTIN 1. Draw the curved arrow mechanism for each aldol reaction. Na 2 product Na Et prod. 2. Give the curved arrow mechanism for this aldol reaction (and dehydration

More information

20.10 Conjugate Additions

20.10 Conjugate Additions 894 APTER 20 ELATE AD THER CARB UCLEPHILES 2010 Conjugate Additions The conjugate addition of nucleophiles to,-unsaturated carbonyl compounds at the -position was described in Section 1810 Enolate and

More information

Suggested solutions for Chapter 28

Suggested solutions for Chapter 28 s for Chapter 28 28 PBLEM 1 ow would you make these four compounds? Give your disconnections, explain why you chose them and then give reagents for the. 2 2 Me S Exercises in basic one- group C X disconnections.

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

Lecture 23. Amines. Chemistry 328N. April 12, 2016

Lecture 23. Amines. Chemistry 328N. April 12, 2016 Lecture 23 Amines April 12, 2016 Michael Reaction Michael reaction: conjugate addition of an enolate Arthur Michael anion to an, -unsaturated carbonyl compound!! Following are two examples in the first,

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Aldehydes, Ketones and Carboxylic acids

Aldehydes, Ketones and Carboxylic acids Teacher Orientation Aldehydes, Ketones and Carboxylic Acids contains following topics: Nomenclature Preparation Properties Student Orientation Preparation and Properties Of Aldehydes, Ketones and Carboxylic

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Carbonyl Condensation Reactions

Carbonyl Condensation Reactions 24 arbonyl ondensation eactions 24.1 The aldol reaction 24.2 rossed aldol reactions 24.3 Directed aldol reactions 24.4 Intramolecular aldol reactions 24.5 The laisen reaction 24.6 The crossed laisen and

More information

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction P. Wipf - Chem 2320 1 3/20/2006 II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction Boger Notes: p. 147-206 (Chapter VIII) Carey/Sundberg: B p. 57-95 (Chapter B 2.1) Problem of the Day: Wang,

More information

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02

Carbonyl Chemistry IV + C O C. Lecture 10. Chemistry /30/02 arbonyl hemistry IV Ō - + Lecture 10 Addition of Nitrogen Nucleophiles Primary Amines RN 2 Imines Secondary Amines R 2 N Enamines ydrazine derivatives RNN 2 ydrazones ydroxyl Amine N 2 ximes Imine Formation

More information

ENOLATES IN ORGANIC SYNTHESIS

ENOLATES IN ORGANIC SYNTHESIS ENLATES IN RGANIC SYNTHESIS 1 ENLATES IN RGANIC SYNTHESIS Recall Enolate alkylation, Aldol addition and condensation can provide access to a wide variety of multi-functional compounds, which can lend themselves

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

Important Concepts. Problems. Chapter Problems. Cuprate additions followed by enolate alkylations. 15. Michael Addition (Section 18-11)

Important Concepts. Problems. Chapter Problems. Cuprate additions followed by enolate alkylations. 15. Michael Addition (Section 18-11) Problems hapter 18 861 uprate additions followed by enolate alkylations P 1. R 2uLi, TF 2. RX A A R R N 15. Michael Addition (Section 18-11) D P D R P R A RR 16. Robinson Annulation (Section 18-11) Important

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: February 3, 2014 Date Approved by Curriculum and Programs:

More information

MITOCW watch?v=gboyppj9ok4

MITOCW watch?v=gboyppj9ok4 MITOCW watch?v=gboyppj9ok4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Another Equilibrium: Reaction At The α-position

Another Equilibrium: Reaction At The α-position Another Equilibrium: Reaction At The α-position D 3 + D 3 C CD 3 2 C 2 the keto form the enol form chanism: + C 2 C 2 C 2 D D 2 D 2 repeat 5 times D 3 C CD 3 alogenation At The α-position Br 2, 2 C 2 Br

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

CHEM 234: Organic Chemistry II Reaction Sheets

CHEM 234: Organic Chemistry II Reaction Sheets EM234:rganichemistry eactionsheets ucleophilic addition at carbonyl groups: Grignards and reducing agents u: u u u: u u = or = or l u u u ucleophilic addition at carbonyl groups: oxygen and nitrogen nucleophiles:

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Ch 20 Carboxylic Acids and Nitriles

Ch 20 Carboxylic Acids and Nitriles Ch 20 Carboxylic Acids and Nitriles Carboxylic Acids (RCO 2 H) are compounds with an OH attached to a carbonyl. Nitriles (RC N) are compounds a carbon-nitrogen triple bond. Naming Carboxylic Acids 1. Replace

More information

Carbonyl Chemistry V + C O C. Chemistry /30/02

Carbonyl Chemistry V + C O C. Chemistry /30/02 arbonyl hemistry V Ō - + Keto-enol enol Tautomerism H 3 H 3 Ketone H H R 2 H R' H H 3 H 2 H Enol H Acid atalyzed α Halogenation R 2 R' + X 2 H + R 2 R' + HX H X X 2 can be l 2, Br 2, or I 2. Substitution

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

State University of New York at Stony Brook Department of Chemistry. CHE 322, Organic Chemistry II Exam II March 17, 2004 Form 1

State University of New York at Stony Brook Department of Chemistry. CHE 322, Organic Chemistry II Exam II March 17, 2004 Form 1 State University of New York at Stony Brook Department of Chemistry CHE 22, rganic Chemistry II Exam II March 17, 2004 Form 1 Please answer all questions specifically, concisely, and readably in the spaces

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

CH 3 CHCH 3 CH 3 CHCH 3 Isopropyl cation. Oxomium ion intermediate. intermediate (an electrophile)

CH 3 CHCH 3 CH 3 CHCH 3 Isopropyl cation. Oxomium ion intermediate. intermediate (an electrophile) Understanding (as opposed to memorizing) mechanisms is critical to mastering organic chemistry. Although the mechanisms you encounter throughout the course may seem entirely different, they are actually

More information

(1) Recall the different types of intermolecular interactions. (2) Look at the structure and determine the correct answer.

(1) Recall the different types of intermolecular interactions. (2) Look at the structure and determine the correct answer. MCAT rganic Chemistry - Problem Drill 11: Carboxylic Acids Question No. 1 of 10 Question 1. What kinds of interactions are holding together the carboxylic acid dimer shown? Question #01 3 C C 3 (A) Van

More information

Lecture 19. Carboxylic Acids O C OH O R C O - + H + O - Chemistry 328N

Lecture 19. Carboxylic Acids O C OH O R C O - + H + O - Chemistry 328N Lecture 19 arboxylic Acids R R - + + R - March 29, 2018 Review: Selectivity in Reduction LiAl 4 reduces any and all carbonyl compounds to the corresponding alcohols NaB 4 only reduces aldehydes and ketone

More information

Organic Chemistry. Alkynes

Organic Chemistry. Alkynes For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkynes by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Chapter 11 Reaction of Alcohols

Chapter 11 Reaction of Alcohols Chapter 11 eaction of Alcohols xidation of alcohols Alcohols are at the same oxidation level as alkenes Therefore alkenes can be converted to alcohols with acidic water PDC or PCC 2 C C 2 3 + X 3 C 3 C

More information

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit Course unit title Organic Chemistry II Lecturer(s) Rimantas Vaitkus COURSE UNIT DESCRIPTION Department Dept. Organic Chemistry, Vilnius University Cycle First Type of the course unit Mode of delivery Period

More information

به نام خدا روشهای سنتز مواد آلی

به نام خدا روشهای سنتز مواد آلی به نام خدا روشهای سنتز مواد آلی 1 References: 1. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Reactions and Synthesis (Part B), 5th ed., Springer, 2007. 2. Carey, F. A.; Sundberg, R. J. Advanced

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

The Claisen Condensation

The Claisen Condensation Lecture 22 The Claisen Condensation CH 3 CCH 2 CH 3 CH 2 CCH 2 CH 3 April 10, 2018 Hydrolysis of Amides Hydrolysis of amides is irreversible. In acid solution the amine product is protonated to give an

More information

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY !! www.clutchprep.com CONCEPT: HYBRID ORBITAL THEORY The Aufbau Principle states that electrons fill orbitals in order of increasing energy. If carbon has only two unfilled orbitals, why does it like to

More information

Name. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry II Examination #3 - March 31, 2003

Name. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry II Examination #3 - March 31, 2003 INSTRUTINS Name Department of hemistry SUNY/neonta hem 322 - rganic hemistry II Examination #3 - March 31, 2003 This examination has two parts. Part I is in multiple choice format and the answers should

More information

Chem 22 Final Exam Practice

Chem 22 Final Exam Practice Chem 22 Final Exam Practice Questions taken from regular tests given during the previous semesters. Only one answer is correct unless the question says otherwise. The questions are somewhat scrambled with

More information

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H Carbonyl Chemistry IV: nolate Alkylations and Aldols Paul Bracher Chem 30 Section 9 Section Agenda 1) o office hours Thursday 2) The Great Joe Young is covering section next onday 3) andout: Carbonyl Chemistry

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

ORGANIC - BROWN 8E CH CARBOXYLIC ACIDS.

ORGANIC - BROWN 8E CH CARBOXYLIC ACIDS. RGANIC - BRWN 8E CH. 17 - CARBXYLIC ACIDS!! www.clutchprep.com RGANIC - BRWN 8E CH. 17 - CARBXYLIC ACIDS CNCEPT: CARBXYLIC ACID NMENCLATURE IUPAC: Replace alkane -e with Substituents are located using

More information

2 - ALDEHYDES, KETONES AND DERIVATIVES

2 - ALDEHYDES, KETONES AND DERIVATIVES 2 - ALDEYDES, KETNES AND DEIVATIVES Carbonyl chemistry is one of the most important areas of organic chemistry. You have been introduced to the chemistry of carboxylic acids in CEM*2700, and in this course

More information

Chemistry of Carbonyl Compounds

Chemistry of Carbonyl Compounds Chemistry of Carbonyl Compounds ucleophilic addition (1,2-add) / substitution Conjugate addition (1,4 add) obinson annulation (McM 23.12) Alkylation of enolate anions namines as enolate equivs. (McM 23.11)

More information

Lecture 13A 05/11/12. Amines. [Sn2; Hofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis]

Lecture 13A 05/11/12. Amines. [Sn2; Hofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis] Lecture 13A 05/11/12 Amines [Sn2; ofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis] Curtius and ofmann rearrangements Both of these, in principle,

More information

CHEM 330. Topics Discussed on Oct 5. Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on Oct 2

CHEM 330. Topics Discussed on Oct 5. Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on Oct 2 CEM 330 Topics Discussed on ct 5 Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on ct 2 Kinetic control in an irreversible reaction: the product that is obtained

More information

Polar Reactions. Indian Institute of Technology Madras CH 3 OH 2 -H 2 O CH 2. HCl. H 3 C CH 3 neopentyl alcohol CH 3 CH 3. 1,2-shift -H + H 3 C

Polar Reactions. Indian Institute of Technology Madras CH 3 OH 2 -H 2 O CH 2. HCl. H 3 C CH 3 neopentyl alcohol CH 3 CH 3. 1,2-shift -H + H 3 C Polar Reactions Important points to be discussed in this module: 1. Chemistry of Carbocations with respect to: a. 1,2-shifts of carbocations b. Pinacol-pinacolone rearrangement c. Semipinacolone rearrangement

More information

Carbonyl Compounds. Introduction

Carbonyl Compounds. Introduction Carbonyl Compounds Introduction 1 Introduction Two broad classes of compounds contain the carbonyl group: [1] Compounds that have only carbon and hydrogen atoms bonded to the carbonyl [2] Compounds that

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

O O O CH 2 O 7. 2 = C=O hydration H B. 6 = reverse aldol H O. 9b = acetal formation add alcohol (step 2)

O O O CH 2 O 7. 2 = C=O hydration H B. 6 = reverse aldol H O. 9b = acetal formation add alcohol (step 2) 1 equences For Practice 1. 1 2 3 7 2 6 5 4 8 9 Possible Key 3 = AD + oxidation 1 2 3 4 5 3 2 1 AD + 7 1 = AD + oxidation 7 = aldol AD 2 = = hydration 2 6 6 = aldol AD + AD 5 5 = β-keto decarboxylation

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information