Amineboranes for Hydrogen Storage

Size: px
Start display at page:

Download "Amineboranes for Hydrogen Storage"

Transcription

1 Amineboranes for ydrogen Storage Michael einekey University of Washington UW Karen Goldberg Melanie C. Denney Vincent Pons Travis ebden Denise Mery Brandon Dietrich UNC Maurice Brookhart Inigo Göttker-Schnetmann Barcelona Augusti Lledos, Jose Lluch PNNL Tom Autrey, John Linehan Crystallography: Antonio DiPasquale, Arnie Rheingold (UCSD) Tom Koetzle, Paula Piccoli, Art Schultz (Argonne). 1

2 M M M dihydrogen elongated dihydrogen dihydride 2

3 What do we mean by Structure? A set of bond distances and bond angles Generally, a static concept For stable molecules, structure is usually independent of temperature 3

4 Does structure depend upon mass? pm D D pm 4

5 5

6 M M M dihydrogen elongated dihydrogen dihydride 6

7 Characterization of 2 Complexes by 1 NMR ydride resonances at high field Deuterium: nuclear spin I = 1 observation of a 1:1:1 triplet in the 1 spectrum 25 z < J D < 35 z (D gas: J D = 43 z) L n M D d- = J D 7

8 D. M. einekey, V. Pons et. al. J. Am. Chem. Soc. 2004, 126,,

9 + N N Os O C=O 3 C N N Ph 2 P Ru PPh P P Os Cl P P + Ph Br 2 PR 3 Re PR 3 Br NO Cl 2 PiPr 3 Os PiPr 3 Cl N C Ph Ph N SiMe 3 N Me 3 P Mo N PMe 3 2 SiMe 3 Cl 2 PiPr 3 Os N Nb SiMe 3 PMe 2 Ph 2 + Me 2 P 2 2+ PiPr 3 PMe 2 SiMe 3 Chem. Soc. Rev. 2004, 33,

10 W. T. Klooster,, T. F. Koetzle,, G. Jia,, T. P. Fong, R.. Morris and A. Albinati, J. Am. Chem. Soc. 1994, 116,

11 11

12 12

13 J D (z) T (K) J. K. Law,. Mellows and D. M. einekey J. Am. Chem. Soc. 2001, 123,,

14 Theory Lledos et. al. J. Am. Chem. Soc. 1997, 119,

15 1 NMR spectrum (hydride region) of a sample partially labeled with D and T 15

16 16

17 r X (Å) T (K) X distances derived from J D, J T and J DT Law, J. K.; Mellows,.; einekey,, D. M. J. Am. Chem. Soc. 2002, 124,,

18 (pincer)()2 complexes are active alkane dehydrogenation catalysts.* PR 2 PR 2 Structure? In Silico: d- = 1.66 Å Niu and all, J.Am. Chem. Soc. 1999, 121, *e.g. Jensen et al. Chem. Comm.1999, 2443; Goldman et al. J. Am. Chem. Soc. 2002, 124, 11404; Brookhart et al. J. Am. Chem. Soc. 2004, 126, 1804; Jensen et al. Inorg. Chim. Acta. 2004, 357,

19 Most active catalyst for alkane dehydrogenation: (POCOP)() 2 19

20 + D D + + D 2 D + D 20

21 D J D = 7.5 z(pentane); T dependent J D = zero! (C 2 Cl 2 ) sol D D 21

22 President's ydrogen Fuel Initiative The ydrogen Fuel Initiative aims to reverse America's growing dependence on foreign oil by developing the technology needed for commercially viable hydrogen-powered fuel cells. With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free.. President Bush, State of the Union Address, January 28, 2003 One obstacle is hydrogen storage what is needed? Appropriate thermodynamics, igh storage capacity (igh gravimetric and volumetric densities), Fast kinetics, Long lifetime, Effective heat transfer, igh mechanical strength and durability,safe 22

23 Ammonia Borane as a 2 Storage Material DOE Storage Targets Target wt% usable Vol. density (kg 2.m -3 ) Storage Potential of Ammonia Borane 2 Released 1 2 Wt% Vol. density Product [ 2 NB 2 ] n [NB] n [NB] n Appropriate Thermodynamics Gas phase calculations predict ammonia borane dehydrogenation is near thermoneutral.* Important for reversibility. *Dixon, D. A.; Gutowski, M. J. Phys. Chem. A 2005, 109,

24 Dehydrogenation of Ammonia Borane Thermal 3 NB 3 2 N 2 B B B 2N N 2 N B B N N B 2 B N2 B 2 borazine Wang, J. S.; Geanangel, R. A. Inorg. Chim. Acta 1988, 148, 185. Catalyzed 3 NB 3 [Rh] N B B N N B mol% catalyst hours at 45 ºC Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126,

25 A Better Catalyst Choice? [catalyst] n N 3 B 3 [N 2 B 2 ] n + n 2 TF, rt Amineboranes are isoelectronic with alkanes. (pincer)() 2 complexes are active alkane dehydrogenation catalysts.* (POCOP)() 2 *e.g. Jensen et al. Chem. Comm.1999, 2443; Goldman et al. J. Am. Chem. Soc. 2002, 124, 11404; Brookhart et al. J. Am. Chem. Soc. 2004, 126, 1804; Jensen et al. Inorg. Chim. Acta. 2004, 357,

26 Quantification of ydrogen [] n N 3 B 3 [N 2 B 2 ] n + n 2 TF, rt Equivalents of [] = 0.25 mol% 0.5 mol% 1.0 mol% Time (min) 26

27 Demonstration of 2 Release 27

28 Characterization of Solid Product n N 3 B 3 [N 2 B 2 ] n + n 2 [catalyst] TF, rt solid Solid state 11 B NMR. Infrared spectroscopy. Powder X-ray diffraction. Non-volatile product should not poison fuel cell. 2 B 2 N 2 N B 2 N 2 B 2 n = 5 2 N B 2 N 2 B 2 Böddeker, K. W.; et al. J. Am. Chem. Soc. 1966, 88,

29 Solid State 11 B NMR of [B 2 N 2 ] 5 29

30 IR of [B 2 N 2 ] Wavenumber cm Transmittance [%]

31 XRD of [ 2 NB 2 ] 5 31 d = 7.96 d = 4.33 d = 3.74 d = 3.00 d = 2.85 d = 2.17 d = 1.89 d = 1.66 d = 1.53 d = 1.43 d = 1.25

32 Comparison with Previous Best Catalyst [Rh(1,5-COD)(µ-Cl)] 2 * Catalyst Loading Temperature (ºC) 2 evolved (equiv.) Products Time 0.6 mol% 45 2 Borazine hr 0.5 mol% 25 1 [ 2 NB 2 ] n < 15 min At least 200 fold increase in reaction rate over previous best. *Manners et al. J. Am. Chem. Soc. 2003, 125,

33 Formation of Catalytically Dormant Species (POCOP) NB 3 [ 2 NB 2 ] TF, rt 1 NMR: ydride region O P t Bu 2 Ratio of 3 new signals: 1:1:1 5 min 1 hr + 4 nights + 3 NB hrs 33

34 Identification of Dormant Species Same compound is formed via B 3.TF TF Bond Length (Å) (1)-B(1) (1)-P(1) (1)-P(2) (1)-C(1) 2.185(9) (14) (14) 2.032(4) 34

35 Neutron Structure Bond Lengths (Å) 1-B1 2.37(3) 1-P1 1-P2 1-C (2) 2.31(2) 1.99(2) 1.61(4) 1.74(4) (POCOP)(B 3 )() 2 or (POCOP)(B 4 )() O P O t Bu 2 P t Bu 2 B 2 O P O t Bu 2 P t Bu 2 B 1-ctr 2.02(1) B1-1a 1.18(8) B1-1b 1.22(5) B1-1c 1.45(5) B *ctr is the center of the B1 1C bond IR: B- stretches at 2466(s), 2441(s), 2285(s) and 2219 cm -1 (m) and - at 1930 cm -1 (m) 35

36 NMR of (BD 4 )D Analogue B t Bu B B (B 4 )() 298 K (B 4 )() 240 K (BD 4 )(D) 298 K (BD 4 )(D) 200 K

37 O P O t Bu 2 P t Bu 2 B +B O P t Bu B 3-2 O P t Bu 2 O P O t Bu 2 P t Bu 2 DORMANT ACTIVE ACTIVE 31 P NMR Active form of catalyst can be regenerated with hydrogen! [](B 3 ) 2 [] 2 [] 4 start 5 atm 2 ; 2 hr Soln degassed 37

38 Dehydrogenation of Ammonia Borane (POCOP)() 2 5 N 3 B 3 [N 2 B 2 ] TF, rt Efficient catalyst discovered. Reaction proceeds under mild conditions. Non-volatile [N 2 B 2 ] 5 formed. Regeneration of active catalyst using hydrogen. 38

39 Reversibility? New (last week) solution calorimetry data from PNNL: N 3 B 3 1/5 (N 2 B 2 ) = -28 kj/mol 39

40 Acknowledgements DOE Center of Excellence For Chemical ydrogen Storage 40

Hydrogen Storage for Mobile Applications. Jeff Van Humbeck MacMillan Group Meeting April 14 th, 2010

Hydrogen Storage for Mobile Applications. Jeff Van Humbeck MacMillan Group Meeting April 14 th, 2010 ydrogen Storage for Mobile Applications Jeff Van umbeck MacMillan Group Meeting April 14 th, 2010 The Stone Age did not end for lack of stone, and the Oil Age will end long before the world runs out of

More information

Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Zehua Yang Apr.23, 2011

Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Zehua Yang Apr.23, 2011 Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes Zehua Yang Apr.23, 2011 Contents Introduction Dehydrogenation of Alkanes Dehydrogenation Involving Heteroatom-Hydrogen Bonds

More information

NEUTRON DIFFRACTION STUDIES OF METAL-HYDRIDES: INVESTIGATIONS OF OXIDATIVE ADDITION OF DIHYRDOGEN TO A METAL CENTER AND HYDRIDES IN METAL CLUSTERS

NEUTRON DIFFRACTION STUDIES OF METAL-HYDRIDES: INVESTIGATIONS OF OXIDATIVE ADDITION OF DIHYRDOGEN TO A METAL CENTER AND HYDRIDES IN METAL CLUSTERS NEUTRON DIFFRACTION STUDIES OF METAL-HYDRIDES: INVESTIGATIONS OF OXIDATIVE ADDITION OF DIHYRDOGEN TO A METAL CENTER AND HYDRIDES IN METAL CLUSTERS Muhammed Yousufuddin Center for Nanostructured Materials,

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Iridium-Catalyzed Dehydrocoupling of Primary Amine-Borane Adducts: A Route to High Molecular Weight Polyaminoboranes, Boron-Nitrogen Analogues

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9 ydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry Lecture 9 Inorganic Chemistry Chapter 1: Figure 10.1 2009 W.. Freeman Synthesis of Organometallic Complex ydrides Reaction of MCO

More information

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis

Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Hydrides and Dihydrogen as Ligands: Hydrogenation Catalysis Synthesis of Organometallic Complex Hydrides Reaction of MCO with OH -, H -, or CH 2 CHR 2 M(CO) n + OH - = M(CO) n-1 (COOH) - = HM(CO) n-1 -

More information

Coupling of Functional Hydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems Observed by Solid State NMR

Coupling of Functional Hydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems Observed by Solid State NMR Supporting Information for Coupling of Functional ydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems bserved by Solid State NMR Shasad Sharif, David Schagen, Michael D. Toney, and ans-einrich

More information

Mechanistic Studies of Hydrogen Formation from Amine-borane (NH 3 BH 3 ) Complexes.

Mechanistic Studies of Hydrogen Formation from Amine-borane (NH 3 BH 3 ) Complexes. R. Scott Smith, Bruce D. Kay, Liyu Li, Nancy Hess, Maciej Gutowski, Benjamin Schmid & Tom Autrey Mechanistic Studies of Hydrogen Formation from Amine-borane (NH 3 ) Complexes. Ammonia Borane vs Ethane

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

High-pressure storage of hydrogen fuel: ammonia borane and its related

High-pressure storage of hydrogen fuel: ammonia borane and its related SLAC-PUB-1609 High-pressure storage of hydrogen fuel: ammonia borane and its related compounds Yu Lin 1,*, Wendy L Mao 1,2 1 Department of Geological and Environmental Sciences, Stanford University, Stanford,

More information

Raman studies on potential hydrogen storage materials

Raman studies on potential hydrogen storage materials Raman studies on potential hydrogen storage materials The Hydrogen & Fuel Cell Researcher Conference University of Birmingham 17 th December 2013 Daniel Reed, David Book School of Metallurgy and Materials

More information

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Skills: Draw structure IR: match bond type to IR peak NMR: ID number of non-equivalent H s, relate peak splitting to

More information

Regenerable hydrogen storage in lithium amidoborane

Regenerable hydrogen storage in lithium amidoborane Electronic for Chemical Communications Regenerable hydrogen storage in lithium amidoborane Ziwei Tang, Yingbin Tan, Xiaowei Chen and Xuebin Yu* Department of Materials Science, Fudan University, Shanghai

More information

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure

Hydrogen Storage and Delivery in a Liquid Carrier Infrastructure ydrogen Storage and Delivery in a Liquid Carrier Infrastructure Guido P. Pez, Alan C. Cooper, ansong Cheng, Bernard A. Toseland and Karen Campbell Corporate Science and Technology Center, Air Products

More information

Chem 105 Monday, 31 Oct 2011

Chem 105 Monday, 31 Oct 2011 Chem 105 Monday, 31 Oct 2011 Ch 7: Ion sizes; Ionization Potential Ch 8: Drawing Lewis Formulas Formal charge Resonance 10/31/2011 1 Sizes of Ions Cations (remember ca + ion) always SMALLER than corresponding

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

Daily Assignments Calendar

Daily Assignments Calendar Daily Assignments Calendar I. Why is the Climate Changing? Macroscopic, symbolic, and atomic-molecular view of chemistry Obtain course materials, available at Turtle Creek Bookstore. Bring all to class

More information

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY A STUDENT SHOULD BE ABLE TO: 1. Identify and explain the processes involved in proton ( 1 H) and carbon-13 ( 13 C) nuclear magnetic resonance

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and Supplementary Figure 1 Morpholigical properties of TiO 2-x s. The statistical particle size distribution (a) of the defective {1}-TiO 2-x s and their typical TEM images (b, c). Quantity Adsorbed (cm 3

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting 01-15-2008 Timothy Chang Outlines - Fundamental considerations, C-H versus C-C activation - Orbital interactions -

More information

Analysis of Nickel Pincer. Catalyst for Hydrogen. Production

Analysis of Nickel Pincer. Catalyst for Hydrogen. Production Analysis of Nickel Pincer Catalyst for Hydrogen Production Abstract: Fuel cells have great potential as an alternative fuel source; however the hydrogen to power the cells is rather costly to produce.

More information

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry CHEM 3.2 (AS91388) 3 credits Demonstrate understanding of spectroscopic data in chemistry Spectroscopic data is limited to mass, infrared (IR) and 13 C nuclear magnetic resonance (NMR) spectroscopy. Organic

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System Mater. Res. Soc. Symp. Proc. Vol. 837 2005 Materials Research Society N3.6.1 NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System R. C. Bowman, Jr. 1, S.-J. Hwang 2, C. C. Ahn

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Chapter 13. R.F.----µ-wave----I.R. (Heat)------Visible------U.V X-Ray------γ-Ray SPECTROSCOPY. Definition: Types to Be Covered:

Chapter 13. R.F.----µ-wave----I.R. (Heat)------Visible------U.V X-Ray------γ-Ray SPECTROSCOPY. Definition: Types to Be Covered: hamras Glendale ommunity ollege rganic hemistry 105 Exam 4 Materials hapter 13 SPETRSPY Definition: Types to Be overed: A) Infrared Spectroscopy (IR) B) Nuclear Magnetic Resonance Spectroscopy (NMR) )

More information

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction CHAPTER 17 REVIEW Reaction Kinetics SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Refer to the energy diagram below to answer the following questions. D Energy C d c d

More information

Stereochemistry of Molecules in Crystals (part 1, 2)

Stereochemistry of Molecules in Crystals (part 1, 2) Stereochemistry of Molecules in Crystals (part 1, 2) umio Toda kayama University of Science, kayama, Japan key word: solid state, -guest complex part 1: statistic aspect part 2: dynamic aspect : X a: X

More information

Sp 3 C-H Bond Activation Catalyzed by Transition Metal. Reporter: Wan Xiaobing Supervisor: Prof. Shi Zhangjie

Sp 3 C-H Bond Activation Catalyzed by Transition Metal. Reporter: Wan Xiaobing Supervisor: Prof. Shi Zhangjie Sp 3 C- Bond Activation Catalyzed by Transition Metal Reporter: Wan Xiaobing Supervisor: Prof. Shi Zhangjie Academic: high bond energy Practical: abundant, cheap, clean 2 hv C n 2n+2 Cl 2 C n 2n+2-m Cl

More information

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles

IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles IV.D.2 Hydrogen Storage Materials for Fuel Cell-Powered Vehicles Andrew Goudy Delaware State University 2 N. Dupont Highway Dover, DE 99 Phone: (32) 857-6534 Email: agoudy@desu.edu DOE Managers Ned Stetson

More information

Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions

Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions Abstract Within the last decades the transition metal-catalyzed cross-coupling of non-activated alkyl halides has significantly

More information

Ammonia-Borane Dehydrogenation Promoted by an Osmium Dihydride Complex: Kinetics and Mechanism

Ammonia-Borane Dehydrogenation Promoted by an Osmium Dihydride Complex: Kinetics and Mechanism Ammonia-Borane Dehydrogenation romoted by an mium Dihydride Complex: Kinetics and Mechanism Miguel A. Esteruelas,* Ana M. López, Malka Mora, and Enrique Oñate Departamento de Química Inorgánica, Instituto

More information

Spin Transition and Structural Transformation in a

Spin Transition and Structural Transformation in a Supporting Information for Spin Transition and Structural Transformation in a Mononuclear Cobalt(II) Complex Ying Guo, Xiu-Long Yang, Rong-Jia Wei, Lan-Sun Zheng, and Jun Tao* State Key Laboratory of Physical

More information

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials Michael Hirscher Max Planck Institute for Intelligent Systems Stuttgart, Germany MH2018 November 1, 2018 Outline IEA Hydrogen

More information

Ab initio investigation of ammonia-borane complexes for hydrogen storage

Ab initio investigation of ammonia-borane complexes for hydrogen storage THE JOURNAL OF CHEMICAL PHYSICS 126, 184703 2007 Ab initio investigation of ammonia-borane complexes for hydrogen storage Caetano R. Miranda and Gerbrand Ceder Department of Materials Sciences and Engineering,

More information

(g) 2NH 3. (g) ΔH = 92 kj mol 1

(g) 2NH 3. (g) ΔH = 92 kj mol 1 1 The uses of catalysts have great economic and environmental importance For example, catalysts are used in ammonia production and in catalytic converters (a) Nitrogen and hydrogen react together in the

More information

Nano-nickel catalytic dehydrogenation of ammonia borane

Nano-nickel catalytic dehydrogenation of ammonia borane Mater Renew Sustain Energy (2014) 3:23 DOI 10.1007/s40243-014-0023-8 ORIGINAL PAPER Nano-nickel catalytic dehydrogenation of ammonia borane Dileep Kumar H. A. Mangalvedekar S. K. Mahajan Received: 21 June

More information

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat 9 Energy, Enthalpy and Thermochemistry Energy: The capacity to do work or to produce heat The law of conservation of energy Energy can be converted but the total is a constant Two types of energy: Kinetic

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

Hour Examination # 4

Hour Examination # 4 CHEM 346 Organic Chemistry I Fall 2014 Exam # 4 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I Fall 2014 Instructor: Paul Bracher Hour Examination # 4 Wednesday, December 3 rd, 2014 6:00 8:00

More information

by Iridium Silyl Complexes

by Iridium Silyl Complexes Facile Redistribution of Trialkyl Silanes Catalyzed by Iridium Silyl Complexes Sehoon Park, Bong Gon Kim, Inigo Göttker-Schnetmann, and Maurice Brookhart*, Department of Chemistry, University of North

More information

Chem 6 sample exam 1 (100 points total)

Chem 6 sample exam 1 (100 points total) Chem 6 sample exam 1 (100 points total) @ This is a closed book exam to which the Honor Principle applies. @ The last page contains several equations which may be useful; you can detach it for easy reference.

More information

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure for Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure Yuta Maenaka, Tomoyoshi Suenobu and Shunichi Fukuzumi* X-ray crystallographic studies Crystallographic

More information

CH 3. mirror plane. CH c d

CH 3. mirror plane. CH c d CAPTER 20 Practice Exercises 20.1 The index of hydrogen deficiency is two. The structural possibilities include two double bonds, a double do 20.3 (a) As this is an alkane, it contains only C and and has

More information

Pulling the Weight: Base Metal-Catalyzed Dehydrogenation of Amine-Borane Fuel Blends

Pulling the Weight: Base Metal-Catalyzed Dehydrogenation of Amine-Borane Fuel Blends 1 Pulling the Weight: Base Metal-Catalyzed Dehydrogenation of Amine-Borane Fuel Blends R. Tom Baker University of Ottawa Chemistry Department and Centre for Catalysis Research and Innovation UMass IGERT

More information

The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof

The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof Summary Catalysis plays a key role in the prosperity of our society, as catalysts are applied in the majority

More information

Aluminum Chloride as effective dopant in Amide-based systems

Aluminum Chloride as effective dopant in Amide-based systems Multifunctionality of metal hydrides for energy storage developments and perspectives 8 th -2 st September - Warsaw University of Technology - POLAND Aluminum Chloride as effective dopant in Amide-based

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

2. Examining the infrared spectrum of a compound allows us to:

2. Examining the infrared spectrum of a compound allows us to: CHEM 204 2010 Ass. 1 Problem 1. The amount of energy in infrared light corresponds to: a. the amount of energy needed to promote one electron from a bonding to an antibonding molecular orbital b. the amount

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I Department of Chemistry SUNY/Oneonta Chem 221 - Organic Chemistry I Examination #4 - ANSWERS - December 11, 2000 Answer to question #32 corrected 12/13/00, 8:30pm. INSTRUCTIONS This examination is in multiple

More information

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies

READING. Review of Intermolecular Forces & Liquids (Chapter 12) Ion-Ion Forces. Ion-Dipole Energies Review of Intermolecular Forces & Liquids (Chapter 12) CEM 102 T. ughbanks READIG We will very briefly review the underlying concepts from Chapters 12 on intermolecular forces since it is relevant to Chapter

More information

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results. Chapter 11: Measurement and data processing and analysis 11.1 Uncertainty and error in measurement and results All measurement has a limit of precision and accuracy, and this must be taken into account

More information

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer S 1 SUPPORTING INFORMATION Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst Miguel A. Esteruelas,*

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols ydrogen bonding promotes -atom transfer from C bonds for C-alkylation of alcohols Jenna L. Jeffrey, Jack A. Terrett, David W. C. MacMillan Science 2015, 349, 1532-1536 Raffaele Colombo 9/26/2015 Raffaele

More information

Chemical Hydrides: Amine Boranes

Chemical Hydrides: Amine Boranes Chemical Hydrides: Amine Boranes Acknowledgements Department of Energy, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy. International Symposium on Materials Issues in Hydrogen

More information

Chem 460 Laboratory Fall 2008 Experiment 3: Investigating Fumarase: ph Profile, Stereospecificity and Thermodynamics of Reaction

Chem 460 Laboratory Fall 2008 Experiment 3: Investigating Fumarase: ph Profile, Stereospecificity and Thermodynamics of Reaction 1 Chem 460 Laboratory Fall 2008 Experiment 3: Investigating Fumarase: ph Profile, Stereospecificity and Thermodynamics of Reaction Before Lab Week 1 -- ph Profile for Fumarase Read Box 11-1 (page 323)

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C SUPPORTING INFORMATION C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving C-C Bond Formation from Alcohols Suzanne Burling, Belinda

More information

Measurement and Data Processing. Ms.Peace

Measurement and Data Processing. Ms.Peace Measurement and Data Processing Ms.Peace Lesson 1 11.1 Uncertainties and Errors in Measurements and Results Qualitative vs. Quantitative Qualitative data includes all non-numerical information obtained

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Purpose: This is an exercise to introduce the use of nuclear magnetic resonance spectroscopy, in conjunction with infrared spectroscopy, to determine

More information

M10/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/EMI/SPM/ENG/TZ1/XX+ 22106110 EMISTRY standard level Paper 1 Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUTIONS TO ANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION Concordia University CHEM 205 Fall 2009, B LAST NAME: FIRST NAME: STUDENT ID: Chem 205 - GENERAL CHEMISTRY I MIDTERM EXAMINATION PLEASE READ THIS BOX WHILE WAITING TO START INSTRUCTIONS: Calculators are

More information

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands Iridium-Catalyzed Hydrogenation with Chiral P, Ligands 贾佳 utline Brief Introduction Hydrogenation of C=C Bonds Hydrogenation of C= Bonds Hydrogenation of C= Bonds Conclusion Brief Introduction First example

More information

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy Unit 11 Instrumentation Mass, Infrared and NMR Spectroscopy Spectroscopic identification of organic compounds Qualitative analysis: presence but not quantity (i.e. PEDs) Quantitative analysis: quantity

More information

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes. Supporting information A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes Tieqiao Chen, a,b Cancheng Guo, a Midori Goto, b and Li-Biao Han* a,b

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions.

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions. Announcements Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class. 15-20 multiple choice questions. Updated projects Aug 28: answer what lab chemistry needs to get done to

More information

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Catalytic Activity of IrO 2 (110) Surface: A DFT study Catalytic Activity of IrO 2 (110) Surface: A DFT study Jyh-Chiang Jiang Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST) NCTS-NCKU 9/7, 2010 Computational

More information

ULTRASONIC AND CONDUCTOMETRIC STUDIES OF NACL SOLUTIONS THROUGH ULTRASONIC PARAMETERS

ULTRASONIC AND CONDUCTOMETRIC STUDIES OF NACL SOLUTIONS THROUGH ULTRASONIC PARAMETERS International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 ULTRASONIC AND CONDUCTOMETRIC STUDIES OF NACL SOLUTIONS THROUGH

More information

Homologation of Methanol in Fe(CO) 5 -NMe 3 -MeOH Solution

Homologation of Methanol in Fe(CO) 5 -NMe 3 -MeOH Solution Homologation of Methanol in Fe(CO) 5 -NMe 3 -MeOH Solution Accidental discovery in the study of hydrogenation of CO _ with HFe(CO) 4 _ HFe(CO) 4 as a nucleophile Methylammonium ion as a methyl carrier

More information

Chemistry 213 Practical Spectroscopy

Chemistry 213 Practical Spectroscopy Chemistry 213 Practical Spectroscopy Dave Berg djberg@uvic.ca Elliott 314 A course in determining structure by spectroscopic methods Different types of spectroscopy afford different information about molecules

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented stable microporous metal-imidazolate framework Shui-Sheng Chen, a,c Min Chen, a Satoshi Takamizawa,

More information

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 14 Supporting Information lylated rganometals: A Family of Recyclable Homogeneous Catalysts Jian-Lin

More information

CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq

CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq LeChatlier s Principle A system at equilibrium responds to a stress in such a way that it relieves that stress.

More information

H Organometallic Catalysis in Industry

H Organometallic Catalysis in Industry H Organometallic Catalysis in Industry Some terminology: Catalytic cycles: a circular path meant to show productive reactions, in order, that lead from the catalytically active species and its reaction

More information

CSIR-UGC-NET/JRF GATE CHEMISTRY TEST : ORGANOMETALLIC COMPOUNDS

CSIR-UGC-NET/JRF GATE CHEMISTRY TEST : ORGANOMETALLIC COMPOUNDS 1 CSIR-UGC-NET/JRF GATE CHEMISTRY TEST : ORGANOMETALLIC MPOUNDS Time 00 : Hour Date : 1-10-2017 M.M. : 0 INSTRUCTION : 1. There are Two Parts. Part-A contains 10 objective type questions, each question

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Supplementary Fig. 1 Methanol-derived protons in methanediol in the formaldehyde production from methanol: The water formed in the oxidation is used to form

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Supplementary Material

Supplementary Material Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Material Spin crossover and reversible single-crystal to single-crystal

More information

Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalytic Design

Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalytic Design S1 Palladium-Catalyzed Benzene Arylation: Incorporation of Catalytic Pivalic Acid as a Proton Shuttle and a Key Element in Catalytic esign Marc Lafrance and Keith Fagnou* Center for Catalysis Research

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

H H N N H. cyclodiborazane HB NH HB NH HB NH HN HB

H H N N H. cyclodiborazane HB NH HB NH HB NH HN HB Recommended Reading: 5.1 5.7, 15.2-15.11 (3rd/4th edition) Ch 102 Problem Set 3 Due: Thursday, April 26 efore Class Problem 1 (2 points) A) On-board storage of hydrogen is a major obstacle for the use

More information

Catalytic Aromatization of Methane

Catalytic Aromatization of Methane Catalytic Aromatization of Methane N.I.FAYZULLAYEV* 1, S.M.TUROBJONOV 2 1 Department of Natural Sciences, Division of Chemistry, Samarkand State University, Samarkand, Uzbekistan 2 Tashkent chemistry-technology

More information

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2 Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term rate of reaction. 2. Mention the units of rate of reaction. 3. Express the rate of reaction in terms of Br (aq) as reactant

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Recent Publications (2010 present) 5. Synthesis and Mechanism of Formation of Metal Nanosponges and their Catalytic and

Recent Publications (2010 present) 5. Synthesis and Mechanism of Formation of Metal Nanosponges and their Catalytic and Recent Publications (2010 present) 1. Hydrogenation of CO 2, carbonyl and imine substrates catalyzed by [IrH 3 ( Ph PN H P)] complex- A. Ramaraj, M. Nethaji, B. R. Jagirdar, J. Organomet. Chem. 2019, 883,

More information

Model 1 Homolysis Reactions are Highly Endothermic

Model 1 Homolysis Reactions are Highly Endothermic Chem 201 Activity 24: Radical chain mechanisms (What do radicals do? What does a radical chain mechanism look like) Model 1 Homolysis Reactions are Highly Endothermic Heterolysis Homolysis Y Z Y + Z Y

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction Name Chem 163 Section: Team Number: ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction (Reference: 16.5 16.6 & 16.8 Silberberg 5 th edition) Why do reaction rates increase as

More information