MODELLING OF THE PRODUCTION OF CHLORINATED POLYETHYLENE

Size: px
Start display at page:

Download "MODELLING OF THE PRODUCTION OF CHLORINATED POLYETHYLENE"

Transcription

1 MODLLIG OF TH PODUCTIO OF CHLOITD POLYTHYL Gabriella Kun 1, Ferenc Szeifert 1, Tibor Chován 1, ndrás Tóth 2, ttila Czeller 2 1 University of Veszprém, Department of Process ngineering 2 BorsodChem Ltd., Kazincbarcika ITODUCTIO The demand for process engineering software packages allowing the quick solution of special problems is getting higher and higher. This initiated the elaboration of so called problem-oriented packages. Usually these packages are suitable only for analysing specific processes or their parts. The main strength of these packages comes from the fact that the problem is well-defined and therefore they rely on parameters which can be determined very precisely. Their user interfaces are usually transparent and easy to use without extensive numerical background and they help significantly the work of operating personnel who do not necessarily have an engineering degree. Commercial simulation packages such as SP, CHMCD, BTCHCD, SYFLOW are feasible for the analysis of operating industrial systems, however it is often required to use in-house developed programs which are suited for special problems and purposes. In our department such problem-oriented simulator package has been developed for studying batch chemical reactor systems. This framework consists of three parts: BS Batch reactor simulator module describes the operation of a batch chemical reactor with a heating/cooling system and can be applied for determining operational conditions and analysing measured process data. KS eaction kinetic simulator module supports the development of reaction kinetic models. eaction systems with a number of reactions in several thermodynamic phases can be studied. KI eaction kinetic identification module supports the identification of reaction kinetic parameters from measured concentration profiles. Kinetic parameters such as rate coefficient, energy of activation, heat of reaction and partial order of component can be determined from experimental data. Chlorinated polyethylene (CP) is one of the oldest impact modifiers of PVC, but nowadays is used as cross-linked elastomer as well. Favourable market situation raises of the necessity of the extension of the capacity of the CP plant. In order to support the decision of BorsodChem Ltd. about how its CP plant should be extended, we have developed a problem-oriented software package for the modelling and analysis of CP production, where the objectives of the simulation studies are the following: understanding the most important processes of the technology detecting the most important processes influencing the product quality revealing the bottleneck units of the technology estimation of production capacity of the subsystems supporting the design an up-to-date control system In the paper we present the concept of the modelling of the CP production process and the development of the KS module of our framework for the analysis of the reactors and the washing-system.

2 MODLLIG OF TH POCSS Process description The polyethylene chlorination process (see Fig. 1) starts with making an aqueous suspension of the hydrophobic polyethylene-powder in the presence of wetting additives. This mixture is filled into an autoclave. fter reaching the requested initial temperature begins the feed of chlorine into the gas phase at an accurately controlled rate. The rate of the reaction is temperature-dependent. Hence, it would be advantageous to lead the process above the melting point of polyethylene. However, this cannot be done because of the agglomerization of the polyethylene. Therefore, the temperature is increased in two steps. The first reaction stage is carried out under the melting temperature, where only the amorphous part of the polyethylene reacts with the chlorine. The second stage of the reaction takes place upper the melting point of the polymer, hence the crystal phase of the raw material also reacts. fter feeding the calculated amount of chlorine, the reaction step is finished, the mixture is cooled down, and the CP is separated using centrifugal extractor. fter this procedure the CP is washed[1] to remove the by-products (HCl, residual chlorine, HOCl). The water content of CP is removed in a fluid bed dryer. DIOIZD WT DDITIVS HTIG-COOLIG UTLIZIG GT DYIG I P POWD Cl2 (L) P P T O Y P SUSP -SIO Cl2 (G) C T O CP DDITIVS W S H I G UIT CP D Y CP P C K G UIT PO- DUCT Fig. 1 The block diagram of the process. Model of CP reactor The software packages used in chemical engineering science are heavily relying on mathematical modelling. The starting point of the derivation of these models, including kinetic models which are used in this study, is a conception of the detailed reaction mechanism. Hence, the following tasks were taken into consideration: definition of the thermodynamical phases which influences the adequate description of the relevant processes definition of active chemical components involved in the processes for every thermodynamical phases definition of the chemical reactions in the phases by the reaction-rate equations and the reaction heat. In case of multi-phase processes, this requires the definition of formal chemical reactions between the phases (e.g. the component transport)

3 CP polymer is produced from high density polyethylene by a polymer-analogous substitutional chlorination. The technology is realized in aqueous suspension, therefore the reaction is a heterogeneous one [2]: C H + bc l C H C l + bh C l b b (1) where b indicates the degree of polymerization. The reaction mixture can be divided into three phases, such as gas (G), liquid and solid phase. The raw polyethylene is inherently a two-phase system of crystalline and amorphous parts [3]. s the solid phase contains liquid components, we had to distinguish two liquid phases. The first F1 indicates the bulb liquid phase, while the second F2 indicates the liquid phase closed as clusters in the solid phase. Component concentrations are different in each liquid phase. These considerations lead to the structure of the model of the reactor depicted on the Fig. 2. This scheme takes into account the heat transfer between the jacket of the reactor used for heating and cooling, the reactor and the wall. CTO CTO WLL ISID TH CTO ISID TH JCKT F1, LIQUID PHS GS PHS SOLID PHS H2O H2O POLYM PHS F2, LIQUID PHS HCl HCl MOPHOUS H2O HOCl Cl2 Cl2 CYSTLLI CP HCl HOCl H3O + Cl2 OH - H3O + Cl - OH - Cl - ClO - Fig. 2 Decomposition of the system ClO - Based on this decomposition, the following processes can be taken into consideration: Component-transfer (H 2 O, HCl, HOCl, Cl 2 )between the liquid (F1) and the gas phase (G) Component-transfer(H 2 O, HCl, HOCl, Cl 2, H 3 O +, OH -, Cl -, ClO - ) between the liquid phases (F1 and F2) Ionic reactions in the liquid phases (F1 and F2) 2H O H O OH (2) Cl + 2H O H O + Cl + HOCl HOCl + H 2O H3O + ClO (4) HCl + H O H O + Cl (5) 2 3 (3)

4 Solid phase chlorination reaction ( ( )) + ( 2 ) + * ( 2) ( ( )) + ( 2 ) + * ( 2) C H P bcl F C H b HCl F B C H P K bcl F C H b HCl F B (6) (7) The model based on these kinetic equations includes the volume, component and enthalpy balances for the reaction mixture: d( m* xj ) dt I= 1 dm ( t) = dt I = 1 F I () t (8) ()*, ( ) * ()* µ * () = F t x t + M m t r t dq I I J J IJ I I = 1 ( t) dt I = 1 () ( I * I () = m t H r t (9) ) (10) where m represents the mass(phase), F L the mass flowrate of the phase, x J the mass fraction of the component j, M J the molecular weight of the component j, µ J the stoichiometric coefficient, r I reaction rate, and Η the heat of the reaction given a priori and assumed to be constant in time. Similarly to other cases in our engineering practice, we were forced to work in an information rare environment, e.g. the parameters of the complete kinetic model could not be identified or found in the literature. However, by introducing tendency-models which contain only the decisive components and processes, we were able to reduce the dimensionality of the modelling problem to obtain practically usable model. The following reduction principles were followed: selection of the key components selection of the relevant processes consideration of the analytical constraints when selecting reactions and components application of incomplete reaction equations SIMULTIO STUDIS This section demonstrates some results of our simulation of the reaction and the washing units of the CP production process. Fig. 3 shows the concentrations of the main components in the solid phase. The huge difference between the concentration trajectories in the two phases shows that most important variable influencing the product quality is the temperature program that could be used to control the final propeties of the CP (the molecule structure is determined by the ratio of the concentrations of the amorphous and the crystal polymer). The increase of the concentration of the by-products in the F2 liquid phase reveals the necessity of the removal of the hydrochloric acid components (see Fig. 4). This task is performed in the washing unit. Figure 5 and 6 show how among of several possible solutions this unit is operated.

5 phase 1. T<Tmelt transient phase phase 2. T>Tmelt P() P(K) CP 0.5 Concentration time(min) Fig. 3 Concentrations of the main components in the solid phase phase 1. T<Tmelt transient phase phase 2. T>Tmelt Concentration of the component HCl HCl(F2) Cl2(F2) HCl(F1) Cl2(F1) Concentration of the component Cl time(min) Fig. 4 Concentration of the major components of the liquid phases in the reactor Concentracions in the liquid phase(f2) F21 F22 F23 F24 F25 F Concentracions in the liquid phase(f1) washing time(min) Fig. 5 Concentration of the component Cl 2 in the washing unit

6 Concentracions in the liquid phase(f2) F21 F22 F23 F24 F25 F Concentracions in the liquid phase(f1) washing time(min) Fig. 6 Concentration of the component HCl in the washing unit During the analysed washing process the solid phase taken from several batches of the reactor are collected and washed together. Hence, the whole washing feed-batch procedure can be decomposed into several, in this case five batches. s Fig. 5. and 6. show, these sub-batches can be considered almost independent, as the rate of extraction is almost identical. COCLUSIOS This paper presented the development of an in-house problem specific software for the analyis of the clorination of high density polyethylene. The developed software is based on a tendency model obtained by the reduction of the detailed kinetic model of the process. Simulation results were shown to illustrate the applicability of the software and the utilized modelling methodology. The results illustrate that the developed KS unit can be effectively used for the analysis of the alternatives of the intensification of CP processes, e.g. for the development of different washing strategies. CKOWLDGMT The authors would like to acknowledge the support of the Cooperative esearch Center (VIKKK). FCS [1] Kálmán Marossy:Structure-properties relationship of CP, Fatra 97 Zlin [2] ndrás Tóth-ttila Czeller: Development of the production of chlorinated polyethylene, extension of the applicability. OKK.3. Balatonfüred, [3] Kálmán Marossy: The multiphase system of CP, Műanyag és Gumi, / 3.

Lecture 25: Manufacture of Maleic Anhydride and DDT

Lecture 25: Manufacture of Maleic Anhydride and DDT Lecture 25: Manufacture of Maleic Anhydride and DDT 25.1 Introduction - In this last lecture for the petrochemicals module, we demonstrate the process technology for Maleic anhydride and DDT. - Maleic

More information

Batch Control Analysis

Batch Control Analysis Presented at the World Batch Forum European Conference Mechelen, Belgium 14-16 October 2002 107 S. Southgate Drive Chandler, Arizona 85226-3222 480-893-8803 Fax 480-893-7775 E-mail: info@wbf.org www.wbf.org

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

DECISION TREE BASED QUALITATIVE ANALYSIS OF OPERATING REGIMES IN INDUSTRIAL PRODUCTION PROCESSES *

DECISION TREE BASED QUALITATIVE ANALYSIS OF OPERATING REGIMES IN INDUSTRIAL PRODUCTION PROCESSES * HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 35., pp. 95-99 (27) DECISION TREE BASED QUALITATIVE ANALYSIS OF OPERATING REGIMES IN INDUSTRIAL PRODUCTION PROCESSES * T. VARGA, F. SZEIFERT, J.

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

How Silica Aerogels Are Made

How Silica Aerogels Are Made Page 1 of 7 How Silica Aerogels Are Made Back to the Table of Contents The discussion below relies upon the following terms: Hydrolysis: The reaction of a metal alkoxide (M-OR) with water, forming a metal

More information

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination 2011 ProSim S.A. All rights reserved. Introduction This document presents the different steps to follow in order

More information

Learning Objectives and Fundamental Questions

Learning Objectives and Fundamental Questions Learning Objectives and Fundamental Questions What is thermodynamics and how are its concepts used in geochemistry? How can heat and mass flux be predicted or interpreted using thermodynamic models? How

More information

Simulation of Electrolyte Processes: Status and Challenges

Simulation of Electrolyte Processes: Status and Challenges Simulation of Electrolyte Processes: Status and Challenges Paul M Mathias and Chau-Chyun Chen Aspen Technology, Inc. 12 March 2002 AIChE Spring 2002 Meeting AIChE 2002 Spring Meeting. Summary Opportunities/needs

More information

A Novel Software Tool for Crystallization Process Development

A Novel Software Tool for Crystallization Process Development A Novel Software Tool for Crystallization Process Development Christianto Wibowo *, Ketan D. Samant, Joseph W. Schroer, and Lionel O Young ClearWaterBay Technology, Inc. 20311 Valley Blvd. Suite C, Walnut,

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

4NO(g) + 6H 2O(g) 2HNO 3(aq) + NO(g) In one production run, the gases formed in Reaction 1 occupied a total volume of 4.31 m 3 at 25 C and 100 kpa.

4NO(g) + 6H 2O(g) 2HNO 3(aq) + NO(g) In one production run, the gases formed in Reaction 1 occupied a total volume of 4.31 m 3 at 25 C and 100 kpa. Q1.Ammonia is used to make nitric acid (HNO 3) by the Ostwald Process. Three reactions occur in this process. Reaction 1 4NH 3(g) + 5O 2(g) Reaction 22NO(g) + O 2(g) Reaction 3 3NO 2(g) + H 2O(I) 4NO(g)

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 8, 2013 ISSN (online): 2321-0613 Development and theoretical analysis of mathematical expressions for change of entropy

More information

ICSE Board Class IX Chemistry Paper 3 Solution

ICSE Board Class IX Chemistry Paper 3 Solution ICSE Board Class IX Chemistry Paper 3 Solution SECTION I Answer 1 i. The number of electrons, that atom can lose, gain or share during a chemical reaction is called its valency. ii. Solute: A solute is

More information

Continuous Manufacturing: Process Intensification Strategies in Synthesis, Workup and Formulation with a special focus on solids

Continuous Manufacturing: Process Intensification Strategies in Synthesis, Workup and Formulation with a special focus on solids Continuous Manufacturing: Process Intensification Strategies in Synthesis, Workup and Formulation with a special focus on solids Dr. Dirk Kirschneck, Microinnova Engineering GmbH Content Microinnova Overview

More information

Allotropes (Diamond and Graphite) Revision Pack (C3)

Allotropes (Diamond and Graphite) Revision Pack (C3) Allotropes: Allotropes are different forms of the same element in the same physical state; the atoms are bonded differently. Carbon has allotropes: - Diamond - Graphite - Buckminsterfullerene Diamond Properties

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Thursday 9 January

More information

The student s results are shown in the table below. Time / minutes Time / minutes

The student s results are shown in the table below. Time / minutes Time / minutes Q1.(a) Anhydrous calcium chloride is not used as a commercial de-icer because it reacts with water. The reaction with water is exothermic and causes handling problems. A student weighed out 1.00 g of anhydrous

More information

Chp 13, 14, 15 SHOW ALL WORK AND CIRCLE FINAL ANSWERS. a) 1 only b) 2 only c) 3 only d) 1 and 2 only e) 1, 2, and H 2

Chp 13, 14, 15 SHOW ALL WORK AND CIRCLE FINAL ANSWERS. a) 1 only b) 2 only c) 3 only d) 1 and 2 only e) 1, 2, and H 2 Chp 13, 14, 15 Name: SHOW ALL WORK AND CIRCLE FINAL ANSWERS 1. Which of the following factors affect the initial rate of a reaction? 1) The nature of the reactants. 2) The concentration of the reactants.

More information

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms

Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Module 6 : Reaction Kinetics and Dynamics Lecture 28 : Elementary Reactions and Reaction Mechanisms Objectives In this Lecture you will learn to do the following Define what is an elementary reaction.

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

EQUILIBRIUM GENERAL CONCEPTS

EQUILIBRIUM GENERAL CONCEPTS 017-11-09 WHEN THE REACTION IS IN EQUILIBRIUM EQUILIBRIUM GENERAL CONCEPTS The concentrations of all species remain constant over time, but both the forward and reverse reaction never cease When a system

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

Chemistry Chapter 9. Unit 6 Stoichiometry

Chemistry Chapter 9. Unit 6 Stoichiometry Chemistry Chapter 9 Unit 6 Stoichiometry The arithmetic of equations Equations are recipes. They tell chemists what amounts of reactants to mix and what amounts of products to expect. What is Stoichiometry?

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1

Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1 Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Catalytic Pellet Based Heterocatalytic Reactor Bed Models Development Gy. Rádi *1, T. Varga 1, T. Chován 1 1 Department of Process Engineering,

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

(03) WMP/Jun10/CHEM4

(03) WMP/Jun10/CHEM4 Thermodynamics 3 Section A Answer all questions in the spaces provided. 1 A reaction mechanism is a series of steps by which an overall reaction may proceed. The reactions occurring in these steps may

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Ch 18 Thermodynamics and Equilibrium Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Internal Energy (U) Internal energy

More information

References. Continuous Manufacturing Process Development Plant Realizations. Microinnova Engineering GmbH. Europapark Allerheiligen bei Wildon

References. Continuous Manufacturing Process Development Plant Realizations. Microinnova Engineering GmbH. Europapark Allerheiligen bei Wildon References Continuous Manufacturing Process Development Plant Realizations Microinnova Engineering GmbH Europapark 1 8412 Allerheiligen bei Wildon T +43 (0) 3182 62626-0 office@microinnova.com www.microinnova.com

More information

Abstract. Introduction

Abstract. Introduction MODELING AND SIMULATION OF POLYMERIZATION OF LACTIDE TO POLYLACTIC ACID AND CO-POLYMERS OF POLYLACTIC ACID USING HIGH VISCOSITY KNEADER REACTORS Boyd T. Safrit, LIST USA, Inc., Charlotte, NC George E.

More information

D. Bond making is endothermic and releases energy. (Total 1 mark) Cu(s) + 2. D (Total 1 mark)

D. Bond making is endothermic and releases energy. (Total 1 mark) Cu(s) + 2. D (Total 1 mark) 1. Which statement about bonding is correct? A. Bond breaking is endothermic and requires energy. B. Bond breaking is endothermic and releases energy. C. Bond making is exothermic and requires energy.

More information

Modeling Industrial Crystallizers

Modeling Industrial Crystallizers Modeling Industrial Crystallizers Kumar Dhanasekharan, Ph.D. Fluent Inc., 10 Cavendish Court, Lebanon, NH 03766 Phone: (603) 643-2600 x323; Email: kd@fluent.com One of the main challenges in industrial

More information

DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS

DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 38(2). pp. 137-141 (2010) DEVELOPMENT OF CFD BASED MATHEMATICAL MODELS TO STUDY HETEROCATALYTIC SYSTEMS GY. RÁDI, T. VARGA, T. CHOVÁN Department

More information

Kinetics problems: 2. Why do we use initial rates to determine the order of the rate law? 2NO + O 2 2NO 2. rate dt [O 2 ] 0

Kinetics problems: 2. Why do we use initial rates to determine the order of the rate law? 2NO + O 2 2NO 2. rate dt [O 2 ] 0 Kinetics problems: 1. Suppose an adequately stirred neutralizing tank is receiving, through the drains from a research laboratory, a steady trickle (0.1 L min -1 ) of dilute hydrochloric acid (0.5M) and

More information

The Properties of Water

The Properties of Water The Water Molecule The Properties of Water Chapter 2.2 Polarity Chemical bonds have angles which produce certain molecular structures This makes water molecules have O on one end and H s on the other end

More information

Technical Resource Package 1

Technical Resource Package 1 Technical Resource Package 1 Green Chemistry Impacts in Batch Chemical Processing UNIDO IAMC Toolkit Images may not be copied, transmitted or manipulated 1/5 The following list provides an overview of

More information

General Chemistry Experiment 3Lecture

General Chemistry Experiment 3Lecture General Chemistry Experiment 3Lecture Part 1 Ionic Bonds Ionic Compounds Ions are positively and negatively charged atoms or groups of atoms that are each formed by the loss or gain of an electron.....

More information

Figure 1. Pore size distribution

Figure 1. Pore size distribution Product Information '2:(;Ã237,325(Ã/ÃDQGÃ9 Polymeric Adsorbents Dow has developed a new polymeric adsorbent type for the concentration of organics from air and water. Key features of these adsorbents are:

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

Scale-up problems are often perceived as difficult. Here the reaction calorimetry has proven to be

Scale-up problems are often perceived as difficult. Here the reaction calorimetry has proven to be APPLICATION OF REACTION CALORIMETRY FOR THE SOLUTION OF SCALE-UP PROBLEMS A paper from the RC User Forum Europe, Interlaken, 1995 Francis Stoessel, Ciba AG, Basel, Switzerland. Scale-up problems are often

More information

Industrial Applications of Microreactor Technology

Industrial Applications of Microreactor Technology Industrial Applications of Microreactor Technology Name / Lonza AG / xx Month 2010 Microreactors are at the heart of a dramatic shift in API production Microreactor (MR) technology enables continuous processes

More information

Aspen Polymers. Conceptual design and optimization of polymerization processes

Aspen Polymers. Conceptual design and optimization of polymerization processes Aspen Polymers Conceptual design and optimization of polymerization processes Aspen Polymers accelerates new product innovation and enables increased operational productivity for bulk and specialty polymer

More information

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat. E a 1 1 sat sat ln Py x P Py x P K H k Ae R E sat a Py x P 1 1 sat ln K1 R Py x P K H k Ae R 1 CO P H 1 1 abs ln K H H 1/ R Q C 1 1 CO P ln S K H K1 R 1 P H abs H P K1 R CP 1 K1 R 1/ R S Q P 1 E a E du

More information

2 Answer all the questions. 1 Born Haber cycles can be used to calculate enthalpy changes indirectly.

2 Answer all the questions. 1 Born Haber cycles can be used to calculate enthalpy changes indirectly. 2 Answer all the questions. 1 Born Haber cycles can be used to calculate enthalpy changes indirectly. (a) The table below shows enthalpy changes for a Born Haber cycle involving potassium sulfide, K 2

More information

Spray Drying Scale-up Approaches Fundamentals and Case Studies. April 29 th, 2014

Spray Drying Scale-up Approaches Fundamentals and Case Studies. April 29 th, 2014 Spray Drying Scale-up Approaches Fundamentals and Case Studies João Vicente APS Amorphous by Design April 29 th, 2014 Overview Spray Drying fundamentals Setting a stable lab scale process Scale-up methodology

More information

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g)

A. 2.5 B. 5.0 C. 10. D. 20 (Total 1 mark) 2. Consider the following reactions. N 2 (g) + O 2 (g) 2NO(g) 2NO 2 (g) 2NO(g) + O 2 (g) 1. When 100 cm 3 of 1.0 mol dm 3 HCl is mixed with 100 cm 3 of 1.0 mol dm 3 NaOH, the temperature of the resulting solution increases by 5.0 C. What will be the temperature change, in C, when 50 cm 3 of

More information

Student Achievement. Chemistry 12

Student Achievement. Chemistry 12 Student Achievement Chemistry 12 Key Elements: Reaction Kinetics Estimated Time: 14 16 hours By the end of this course, students will be able to explain the significance of reaction rates, demonstrate

More information

LECTURE 5: PHASE EQUILIBRIA

LECTURE 5: PHASE EQUILIBRIA LECTURE 5: PHASE EQUILIBRIA PHASE EQUILIBRIA Phase equilibrium describes the way phases (such as solid, liquid and/or gas) co-exist at some temperatures and pressure, but interchange at others. 1 ENERGETIC

More information

Thermal Safety Software (TSS) series

Thermal Safety Software (TSS) series Thermal Safety Software (TSS) series the analog-free methodology and software for reaction hazard assessment of Chemical Processes and Products. TSS is the integrated system which covers the entire spectrum

More information

CHLORINE THEORY & MEASUREMENT

CHLORINE THEORY & MEASUREMENT CHLORINE THEORY & MEASUREMENT Introduction Chlorine, dissolved in liquid, is one of the most effective and economical germ-killers for the treatment of water to make it potable or safe to drink. Chlorine's

More information

Chemical Reactions. A. Chemical Reactions And The Law Of Conservation Of Mass

Chemical Reactions. A. Chemical Reactions And The Law Of Conservation Of Mass Chemical Reactions A. Chemical Reactions And The Law Of Conservation Of Mass 1. A CHEMICAL REACTION is a change that produces new materials with different properties from the starting materials. Various

More information

Ch 9 Practice Problems

Ch 9 Practice Problems Ch 9 Practice Problems 1. One mole of an ideal gas is expanded from a volume of 1.50 L to a volume of 10.18 L against a constant external pressure of 1.03 atm. Calculate the work. (1 L atm = 101.3 J) A)

More information

(a) Bleach can be made by reacting chlorine with cold aqueous sodium hydroxide. A solution of bleach contains the chlorate compound NaClO. ...

(a) Bleach can be made by reacting chlorine with cold aqueous sodium hydroxide. A solution of bleach contains the chlorate compound NaClO. ... 1 The chlor-alkali industry is an important part of the UK chemical industry. The raw material is brine, a concentrated aqueous solution of sodium chloride, NaCl(aq). Two products that can be manufactured

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

Elizabethtown Area School District Chemistry II Name of Course

Elizabethtown Area School District Chemistry II Name of Course Chemistry II Name of Course Course Number: 325 Length of Course: 18 weeks Grade Level: 10-12 Elective Total Clock Hours: 120 Length of Period: 80 min Date Written: June 11, 2007 Periods per Week/Cycle:5

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

2 Answer all the questions. 1 Born Haber cycles can be used to determine lattice enthalpies of ionic compounds

2 Answer all the questions. 1 Born Haber cycles can be used to determine lattice enthalpies of ionic compounds 2 Answer all the questions. 1 Born Haber cycles can be used to determine lattice enthalpies of ionic compounds. (a) Define, in words, the term lattice enthalpy............. [2] (b) The Born Haber cycle

More information

Parameter estimation and model discrimination of batch solid-liquid reactors

Parameter estimation and model discrimination of batch solid-liquid reactors estimation and model discrimination of batch solid-liquid reactors Yajun Wang, Lorenz T. Biegler Carnegie Mellon University Mukund Patel, John Wassick The Dow Chemical Company Enterprise-wide Optimization

More information

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A. Answer all questions in the spaces provided.

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A. Answer all questions in the spaces provided. 2 Section A Answer all questions in the spaces provided. 1 This question is about bond dissociation enthalpies and their use in the calculation of enthalpy changes. 1 (a) Define bond dissociation enthalpy

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14 Thermal Methods We will examine three thermal analytical techniques: Thermogravimetric Analysis (TGA) CHEM*3440 Chemical Instrumentation Topic 14 Thermal Analysis Differential Thermal Analysis (DTA) Differential

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

Matter: Properties & Change

Matter: Properties & Change Matter: Properties & Change Essential Vocabulary 6.P.2.1 Recognize that all matter is made up of atoms and atoms of the same element are all alike, but are different from the atoms of other elements. 6.P.2.2

More information

Biological Science, 6e (Freeman/Quillin/Allison) Chapter 2 Water and Carbon: The Chemical Basis of Life

Biological Science, 6e (Freeman/Quillin/Allison) Chapter 2 Water and Carbon: The Chemical Basis of Life Biological Science, 6e (Freeman/Quillin/Allison) Chapter 2 Water and Carbon: The Chemical Basis of Life 1) About twenty-five of the 92 natural elements are known to be essential to life. Which 4 of these

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Edexcel GCE Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Thursday 23 May 2013 Morning Time: 1 hour 30 minutes

More information

Sulfonation Chemistry more sustainable approaches RSC Symposium, Basel, June 1-2, Dr. Jörg Schrickel Marketing Manager Intermediates CABB AG

Sulfonation Chemistry more sustainable approaches RSC Symposium, Basel, June 1-2, Dr. Jörg Schrickel Marketing Manager Intermediates CABB AG Sulfonation Chemistry more sustainable approaches RSC Symposium, Basel, June 1-2, 2016 Dr. Jörg Schrickel Marketing Manager Intermediates CABB AG Content Conventional sulfonation reactions Where they are

More information

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors Unit 19. Analysis of Batch Reactors Overview As noted in Unit 18, batch reactor processing often follows an operational protocol that involves sequential steps much like a cooking recipe. In general, each

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

CHM1045 Exam 3 Chapters 5, 8, & 9

CHM1045 Exam 3 Chapters 5, 8, & 9 1. Which of the following conditions will never result in a decrease in the internal energy of a system? CHM1045 Exam 3 Chapters 5, 8, & 9 a. System loses heat and does work on the surroundings. b. System

More information

1. Fill in the blanks with the following: kinetic, potential, chemical, thermal. One word will be used twice.

1. Fill in the blanks with the following: kinetic, potential, chemical, thermal. One word will be used twice. Thermo Worksheets Name Class Period Types of Energy and the Law of Conservation of Energy 1. Fill in the blanks with the following: kinetic, potential, chemical, thermal. One word will be used twice. Solar

More information

SIR MICHELANGELO REFALO

SIR MICHELANGELO REFALO SIR MICELANGELO REFALO SIXT FORM alf-yearly Exam 2014 Name: CEMISTRY ADV 1 ST 3 hrs ANSWER ANY 7 QUESTIONS. All questions carry equal marks. You are reminded of the importance of clear presentation in

More information

PROCESS ECONOMICS PROGRAM

PROCESS ECONOMICS PROGRAM PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California Abstract 94025 Process Economics POLVINYL Program Report No. 13E CHLORIDE (October 1991) This supplementary report reviews recent technical

More information

TRANS-NZOIA COUNTY KCSE REVISION MOCK EXAMS 2015

TRANS-NZOIA COUNTY KCSE REVISION MOCK EXAMS 2015 TRANS-NZOIA COUNTY KCSE REVISION MOCK EXAMS 2015 TIME: 2 HOURS233/2 CHEMISTRY PAPER 2 (THEORY) SCHOOLS NET KENYA Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai Tel: 0711 88 22

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

2. When determining the ΔH rxn from ΔH f o, which of the following is not necessary in the calculation.

2. When determining the ΔH rxn from ΔH f o, which of the following is not necessary in the calculation. Ch 6 and 7 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

All reversible reactions reach an dynamic equilibrium state.

All reversible reactions reach an dynamic equilibrium state. 11. Equilibrium II Many reactions are reversible + 3 2 All reversible reactions reach an dynamic equilibrium state. Dynamic equilibrium occurs when forward and backward reactions are occurring at equal

More information

Strategies for Numerical Integration of Discontinuous DAE Models

Strategies for Numerical Integration of Discontinuous DAE Models European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 25 Elsevier Science B.V. All rights reserved. Strategies for Numerical Integration of Discontinuous

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

AS Paper 1 and 2 Kc and Equilibria

AS Paper 1 and 2 Kc and Equilibria AS Paper 1 and 2 Kc and Equilibria Q1.When one mole of ammonia is heated to a given temperature, 50 per cent of the compound dissociates and the following equilibrium is established. NH 3(g) ½ N 2 (g)

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Friday 26 May

More information

Chemical Bonds And Equations

Chemical Bonds And Equations Chemical Bonds And Equations Intro to Chemical Bonds EQ: Why do atoms have a strong desire to form chemical bonds in nature? What are these called when different types of atoms bond to form a chemically

More information

"Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water"

Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water "Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water" by John P. O'Connell Department of Chemical Engineering University of Virginia Charlottesville, VA 22904-4741 A Set

More information

Moles of NaOH Mass of NaOH...

Moles of NaOH Mass of NaOH... Q1.A student calculated that a value for the enthalpy change of neutralisation is 51.2 kj mol 1. The design of a possible hand-warmer using hydrochloric acid and sodium hydroxide was discussed. It was

More information

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide.

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide. 1. (6 pts) Given the following data at 25 o C: 2 O 3 (g) > 3 O 2 (g) H o = 427 kj O 2 (g) > 2 O (g) H o = 495 kj NO (g) + O 3 (g) > NO 2 (g) + O 2 (g) H o = 199 kj Calculate H o for the following reaction

More information

CHEMICAL REACTION ENGINEERING

CHEMICAL REACTION ENGINEERING CHEMICL RECTION ENGINEERING Unit 5 nalysis of reactor DT Collection and analysis of rate data Batch reactor for homogenous and heterogeneous reactions measurement during the unsteady-state operation Differential

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

Review Sheet 6 Math and Chemistry

Review Sheet 6 Math and Chemistry Review Sheet 6 Math and Chemistry The following are some points of interest in Math and Chemistry. Use this sheet when answering these questions. Molecular Mass- to find the molecular mass, you must add

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. (i) [NF 3 and BF 3 ] [BF

More information

Name of Course: B.Tech. (Chemical Technology/Leather Technology)

Name of Course: B.Tech. (Chemical Technology/Leather Technology) Name of : B.Tech. (Chemical Technology/Leather Technology) Harcourt Butler Technological Institute, Kanpur Study and [Effective from the Session 201-1] B. Tech. (Chemical Technology/Leather Technology)

More information

OCR Chemistry A H432

OCR Chemistry A H432 All the energy changes we have considered so far have been in terms of enthalpy, and we have been able to predict whether a reaction is likely to occur on the basis of the enthalpy change associated with

More information

7. The coffee cup allows for pv work because it allows for a change in volume.

7. The coffee cup allows for pv work because it allows for a change in volume. 1. A black body radiator is a theoretically perfect body that absorbs all energy incident upon it (or produced within it) and then emits 100% of this energy as electromagnetic radiation. 2. First, it is

More information

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2

Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Chem 116 POGIL Worksheet - Week 6 Kinetics - Part 2 Why? A different form of the rate law for a reaction allows us to calculate amounts as a function of time. One variation on this gives us the concept

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 142 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. Volume of a 10'x10'x8' room 1) First, find the MOLES of gas using the ideal gas equation and the information given. 2) Convert

More information