Organometallic Chemistry. A structured introduc5on to a complex but fascina5ng field!

Size: px
Start display at page:

Download "Organometallic Chemistry. A structured introduc5on to a complex but fascina5ng field!"

Transcription

1 Organometallic Chemistry A structured introduc5on to a complex but fascina5ng field!

2 Late discovery 1956 A zillion concepts at once Why study it?

3 Checking the importance of a topic.. 1. List of Nobel Prizes in recent years. 2. Check with important journals. 3. See what research is funded. 4. How much of the economy is driven by this topic?

4 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

5 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

6 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

7 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

8 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

9 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

10 Nobel Prizes Heck, Negishi and Suzuki, 2010 Schrock, R. H. Grubbs, and Chauvin, 2005 Sharpless, Knowles and Noyori, 2001 Fukui and R. Hoffman 1981 Herbert Brown, G. WiZg 1979 W. Lipscomb 1976 Wilkinson and E. O. Fischer 1973 Zeigler and Na^a 1963

11 Assessing Importance of a subject? 1. List of Nobel Prizes in recent years? OK! 2. Check with important journals? 3. See what research is funded? 4. How much of the economy is driven by it?

12 TOP 20 ar5cles accessed from JACS As of 20 th Sept Review Ac)va)on of C H Bonds by Metal Complexes Abstract. Full Text HTML Hi- Res PDF[1214 KB] Ci5ng Ar5cles Alexander E. Shilov and Georgiy B. Shul'pin* N. N. Semenov Ins5tute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia Chem. Rev., 1997, 97 (8), pp DOI: /cr Publica5on Date (Web): December 18, 1997 Copyright 1997 American Chemical Society

13 Palladium- Catalyzed Ligand- Directed C H Func)onaliza)on Reac)ons Thomas W. Lyons and Melanie S. Sanford Chem. Rev., 2010, 110(2), pp DOI: / cr900184e

14 Total Synthesis of (+)- Complanadine A Using an Iridium- Catalyzed Pyridine C H Func)onaliza)on Daniel F. Fischer and Richmond Sarpong J. Am. Chem. Soc., 2010, 132(17), pp DOI: /ja101893b

15 NATURE Vol 463, 28 January doi: /nature08730 Cleaving carbon carbon bonds by inser5ng tungsten into unstrained aroma5c rings Aaron Sa^ler & Gerard Parkin

16 PNAS 2005, vol. 102 p Characteriza)on of an organometallic xenon complex using NMR and IR spectroscopy Graham E. Ball,Tamim A. Darwish, Spili Gerakis Michael W. George, Douglas J. Lawes Peter Por5us, Jonathan P. Rourke,

17 19 F NMR spectra of Re( i PrCp)(CO) 2 (PF 3 ) (1) in liquid Xe at 163 K obtained during prolonged photolysis and expansions of the highlighted region that corresponds to one of the resonances from 3. (1) NMR Using 129 Xe as solvent. (2) Using unlabeled Xe. A small splizng caused by 3 J XeF can be seen. (a) No splihng in the spectrum with unlabeled Xe. Ball G E et al. PNAS 2005;102: by National Academy of Sciences

18 Assessing Importance of a subject? 1. List of Nobel Prizes in recent years? 2. Check with important journals? 3. See what research is funded? 4. How much it is driving the industry..

19 Papers with the concept organometallics ~ 2300 in papers in papers in papers in key papers every year on the topic organometallics

20 Is the subject important? 1. List of Nobel Prizes in recent years OK 2. Check with important journals OK 3. See what research is funded OK 4. See what research is prackced in the industry

21 Industrial uses of organometallics Metal complexes used as addi5ves in polymers and fuels. (Sn and Mn compounds) Many million tons of silicones, and organolithium compounds are made. Metal complexes used as catalysts for making polymers Ace5c acid, acetaldehyde, and fine chemicals,

22 Is the subject important? 1. List of Nobel Prizes in recent years OK 2. Check with important journals OK 3. See what research is funded OK 4. See what research is prackced OK

23 Why is the subject important? Are we dealing with a special element?

24 C What is special about carbon? Forms bonds with other carbons (C- C) readily and they are strong (catena5on) Forms strong mul5ple bonds (C=C) Forms very strong bonds with another special element H!! Cyclic C=C- C fragments would be extra stable AROMATIC..

25 C and its Electronic configura5on! 1s 2 2s 2 2p 2 `Why is this special? To form a full shell, it would require 4 covalent bonds Gap between the 2s and 2p is 1s 2 2s 1 2p x 1 2p y 1 2p z 1 just right! When 4 equivalent covalent bonds are formed, no extra electrons / no vacant orbitals

26 Tm Transi5on metals are exactly the opposite!! Vacant orbitals Or extra electrons. Rarely do they keep a noble gas configura5on Consider [Co(H 2 O) 6 ] e 7 electrons + 12 electrons Ni 2+ aquo complex has 20 e. V 2+ complex has 15 e. Very few complexes would have exactly 18 electrons! Full shell / no extra electrons is rare.

27 What happens to Tm in Tm- organometallics The 18 electron rule prevails.. Most complexes with Tm- C bonds have a full shell. C seems to have forced its preferences on the metal! When C combines with a transi5on metal Both metal and carbon loose their iden5ty!

28 So what about carbon?

29

30

31 Why is the subject important? 1. List of Nobel Prizes in recent years 2. Check with important journals 3. See what research is funded 4. See what research is prackced We are dealing with a special combina5on of elements!!

32 Challenges for today Synthesis and understanding of new compounds and their reac5vity Ac5va5on of inert molecules like CH 4, CO 2, R 3 C- F Cataly5c efficiencies far exceeding approaching that of enzymes! Asymmetric induc5on in catalysis

33 Organiza5on of the course.. Modular, based on ligand systems How does one classify the ligand? Hap5city of the ligand is the key: η with superscript: η 3 number of carbons bonded to the metal is 3

34

35

36

37

38

39 Current approach Simple to complex: Avoid complex ligands un5l we discuss them towards the la^er part of the course. Integrate discussion on reac5ons with study of new structure types Deal with inser5on reac5ons (purely C1 chemistry) Only oxida5on state change at the metal! Oxida5on state change and C- C coupling!

40 Text books? Title Authors Publisher ISBN no. Organometallics: A Concise Introduc5on Organometallic Chemistry, Fundamentals of Organometallic Catalysis Christoph Elschenbroich Wiley- VCH 3rd Edi5on B. D. Gupta and Anil J. Elias Universi5es Press Dirk Steinborn Wiley- VCH ISBN:

41 Electron coun5ng the organometallic way.. Metal has all d electrons whatever be the oxdn. state Ligands can be ionic or neutral / adjust metals d- electron count Net charge is added (electrons are nega5ve and so the no. of electrons in the complex are reduced if the charge is +ve. If the charge is ve then one has to add to the electron count)

42 Electron coun5ng in two ways Let us try a few.. Cp 2 TiCl 2 complex is neutral Handout with homework

43 Stoichiometric reac5ons and Catalysis Reac5ons with increasing complexity.. Without oxida5on state change.. Subs5tu5on and inser5on reac5ons.. With oxida5on state change Reac5ons with oxida5on state change at metal.. Ox- ad and Red- el Catalysis and cataly5c cycles A series of stoichiometric reac5ons regenera5ng the catalyst when the product is formed.

44 Ligands Ionic Method A Method B H Cl, Br, I OH, OR CN CH 3, CR 3 NO (bent M- N- O) CO, PR 3 NH 3, H 2 O =CRR H 2 C=CH 2 (ethylene) CNR =O, =S 2 (H - ) 2 (X - ) 2 (OH -,OR - ) 2 (CN - ) 2 (CH 3-,CR 3- ) 2 (NO - ) (O 2-,S 2- )

45 Ligands Ionic Method A Method B NO (Linear M- N- O) η 3 - C 3 H 5 (π- allyl) CR (Carbyne) N Ethylenediamine (en) Bipyridine (Bipy) Butadiene η 5 - C 5 H 5 (cyclopentadienyl) η 6 - C 6 H 6 (benezene) η 7 - C 7 H 7 (cycloheptatrienyl) 2 (NO + ) 2 (C 3 H 5+ ) 3 6 (N 3- ) 4 (2 per nitrogen) 4 (2 per nitrogen) 4 6 (C 5 H 5- ) 6 6 (C 7 H 7+ )

46 Counting electrons Method A Determine formal oxidation state of metal Deduce number of d electrons Add d electrons + ligand electrons (A) Method B Ignore formal oxidation state of metal Count number of d electrons for M(0) Add d electrons + ligand electrons (B) The end result will be the same

47

48 Nitrosyls are very complicated few +ve charged donors exist NO M M & NO M NO & NO M NO ( ) Now NO + is like CO Alternatively if it is : M ( & NO ) N = O M N O Angle will be less than 180 Due to sp 2 hybridization Remember the odd electron is on a π

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

Basics of Catalysis and Kinetics

Basics of Catalysis and Kinetics Basics of Catalysis and Kinetics Nobel laureates in catalysis: Haber (1918) Ziegler and Natta (1963) Wilkinson, Fischer (1973) Knowles, Noyori, Sharpless (2001) Grubbs, Schrock, Chauvin (2006) Ertl (2007)

More information

- Overview of polymeriza1on catalysis

- Overview of polymeriza1on catalysis - verview of polymeriza1on catalysis Different coordina-on polymeriza-on mechanisms: RP, RMP, (meth)acrylate polymeriza6on, olefin polymeriza6on. Different catalysts: Metal- based catalysts, organic catalysts

More information

Chem Selected Aspects of Main Group Chemistry

Chem Selected Aspects of Main Group Chemistry Selected Aspects of Main Group Chemistry For the rest of the course, we will look at some aspects of the chemistry of main group compounds. The basic principles that you have learned concerning atoms,

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

MOLECULAR ORBITAL DIAGRAM KEY

MOLECULAR ORBITAL DIAGRAM KEY 365 MOLECULAR ORBITAL DIAGRAM KEY Draw molecular orbital diagrams for each of the following molecules or ions. Determine the bond order of each and use this to predict the stability of the bond. Determine

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-8 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. Organometallic hemistry yclopentadienyl, Alkyl and Alkene yclopentadienyl p The cyclopentadienyl ligand

More information

Loudon Chapter 17 Review: Allylic/Benzylic Reactivity

Loudon Chapter 17 Review: Allylic/Benzylic Reactivity Chapter 17 is all about reactions that happen at the position one away from an aromatic ring, or one away from a double bond. These are called the benzylic and allylic positions respectively. Benzyl and

More information

Lecture 01 Week - 01 History of Organometallic Compounds

Lecture 01 Week - 01 History of Organometallic Compounds Transition Metal Organometallic Chemistry: Principles to Applications Prof. Prasenjit Ghosh Department of Chemistry Indian Institute of Technology, Bombay Lecture 01 Week - 01 History of Organometallic

More information

Electronic structure / bonding in d-block complexes

Electronic structure / bonding in d-block complexes LN05-1 Electronic structure / bonding in d-block complexes Many, many properties of transition metal complexes (coordination number, structure, colour, magnetism, reactivity) are very sensitive to the

More information

Jahn-Teller Distortions

Jahn-Teller Distortions Selections from Chapters 9 & 16 The transition metals (IV) CHEM 62 Monday, November 22 T. Hughbanks Jahn-Teller Distortions Jahn-Teller Theorem: Nonlinear Molecules in orbitally degenerate states are inherently

More information

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

FINAL EXAMINATION 12/17/93.

FINAL EXAMINATION 12/17/93. INORGANIC CHEMISTRY 413/571 FINAL EXAMINATION 12/17/93. DR. J. SHERIDAN Write all answers in the answer book. WRITE NEATLY. This will help me to understand your answers and maybe get you a few more points!

More information

5.03 In-Class Exam 3

5.03 In-Class Exam 3 5.03 In-Class Exam 3 Christopher C. Cummins April 9, 2010 Instructions Clearly write your name at the top of this front page, but otherwise do not write on this front page as it will be used for scoring.

More information

π donor L L L π acceptor has empty π orbitals on ligand in to which d e- from M can be donated

π donor L L L π acceptor has empty π orbitals on ligand in to which d e- from M can be donated Name KEY D# Chemistry 350 Fall 2005 Exam #4, November 18, 2005 50 minutes CCM 100 points on 4 pages + a useful page 5 1. Consider the molecular orbital diagram shown for M N. (16 pts) a) Indicate the following:

More information

Alkenes. Structure, Nomenclature, and an introduc1on to Reac1vity Thermodynamics and Kine1cs

Alkenes. Structure, Nomenclature, and an introduc1on to Reac1vity Thermodynamics and Kine1cs Alkenes Structure, Nomenclature, and an introduc1on to Reac1vity Thermodynamics and Kine1cs 1 Alkene - Hydrocarbon With Carbon- Carbon Double Bond Also called an olefin but alkene is be>er Hydrocarbon

More information

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom.

LIGAND DESIGN CARBENES. Fischer carbenes (B) have a heteroatom substituent on the alpha carbon atom. There are two main classes of carbene ligands Alkylidene (or Schrock carbene) ligands (A) have one or two alkyl or aryl substituents on the alpha carbon atom. Fischer carbenes (B) have a heteroatom substituent

More information

Lewis Structures and Bonding

Lewis Structures and Bonding Lewis Structures and Bonding (If we did it after molecular shape- AKA VSEPR- it would be a prequel to What shape are your molecules in? ) World of Chemistry, Zumdahl Chpt 12 pp 358-381 (Lewis) 1 You ll

More information

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES Zachery Matesich 24 February 2015 Roadmap 2 Introduction Synthetic Methods History of NHCs Properties of NHCs Nature of the carbene Structural properties

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang Recent Advances of Alkyne Metathesis Group Meeting Timothy Chang 11-09-10 Fischer Carbyne and Schrock Alkylidyne Fischer Doublet LX type 4e Schrock Quartet X 3 type 6e -1-3 lone pair covalent p-back bonding

More information

Chemistry 311 (Inorganic Chemistry) Course Syllabus Fall 2016 First Draft

Chemistry 311 (Inorganic Chemistry) Course Syllabus Fall 2016 First Draft 1 Chemistry 311 (Inorganic Chemistry) Course Syllabus Fall 2016 First Draft 1. General Information Instructor: Andy Pacheco Office Hours: By e-mail appointment (Room 629) E-Mail: apacheco@uwm.edu Text:

More information

Introduction to Organometallic Compounds. Metal. R MgX. Wilkinson s catalyst is used for hydrogenation of alkene and alkyne. Wilkinson's catalyst

Introduction to Organometallic Compounds. Metal. R MgX. Wilkinson s catalyst is used for hydrogenation of alkene and alkyne. Wilkinson's catalyst Introduction to rganometallic mpounds 1 Chapter 1 Introduction to rganometallic mpounds Introduction : Edward Frankland was father of organometallic chemistry for a complex to be organometallic compound,

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES CONTENTS Introduction... 1 1. Organization of the text... 1 2. Frontiers of organometallic chemistry... 2 3. Situation of the book with respect to teaching... 2 4. Reference books and other selected references...

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

More information

More Chemical Bonding

More Chemical Bonding More Chemical Bonding Reading: Ch 10: section 1-8 Ch 9: section 4, 6, 10 Homework: Chapter 10:.31, 33, 35*, 39*, 43, 47, 49* Chapter 9: 43, 45, 55*, 57, 75*, 77, 79 * = important homework question Molecular

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

Chemical Bonds CH. 18: PG

Chemical Bonds CH. 18: PG Chemical Bonds CH. 18: PG. 552-571 Today s Learning Objectives How does a compound differ from the elements that make it up? What is a chemical bond? Know how to determine the number of valence electrons

More information

CHEM4. (JAN13CHEM401) WMP/Jan13/CHEM4. General Certificate of Education Advanced Level Examination January 2013

CHEM4. (JAN13CHEM401) WMP/Jan13/CHEM4. General Certificate of Education Advanced Level Examination January 2013 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination January 2013 Question 1 2 Mark

More information

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016 Chapter 18 covers leaving groups that are directly attached to double-bonded sp 2 carbons. These molecules don t do most of the regular alkyl halide chemistry from Ch. 9 (S N1/ S N2/E1), but they can do

More information

Chapter 21 Coordination chemistry: reactions of complexes

Chapter 21 Coordination chemistry: reactions of complexes CHEM 511 chapter 21 page 1 of 7 Chapter 21 Coordination chemistry: reactions of complexes Reactions of Complexes Typically measure ligand substitution reactions in solution (usually water) Lability and

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr.

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr. DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES 11-12 Dr Ali El-Agamey Organic Chemistry, 7 th Edition L. G. Wade, Jr. Amines 2010, Prentice Hall Reactions N,N-Disubstituted amides 2 o amine

More information

The 18 Electron Rule. References: Gray: chapter 5 OGN: chapter 18

The 18 Electron Rule. References: Gray: chapter 5 OGN: chapter 18 The 18 Electron Rule References: Gray: chapter 5 OGN: chapter 18 Element Groups Alkali metals nert or Noble gases Alkali earths alogens e Li Na Be Mg Transition metals B Al Si N P O S F l Ne Ar K Rb s

More information

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005 Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex CHM 5.33 Fall 2005 Introduction The experiment is based on research performed in the laboratory of Professor Cummins during the early 90 s.

More information

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8. Chemical Bonding I: Basic Concepts Chapter 8 Chemical Bonding I: Basic Concepts Topics Lewis Dot Symbols Ionic Bonding Covalent Bonding Electronegativity and Polarity Drawing Lewis Structures Lewis Structures and Formal Charge Resonance

More information

Reduc&on of Organic Compounds

Reduc&on of Organic Compounds Reduc&on of Organic Compounds METAL HYDRIDE REDUCING AGENTS Reduc&on of Aldehydes and Ketones to Alcohols Reduc&on of Acids, Esters to Alcohols Reduc&on of Esters, Amides, etc. to Aldehydes Reduc&on of

More information

TM compounds. TM magnetism

TM compounds. TM magnetism TM compounds TM compounds are often coloured. Colours originate from electronic transitions between different dorbitals of the same principle QN. Wait.aren t all d orbitals the same energy? We will learn

More information

p Bonds as Electrophiles

p Bonds as Electrophiles Chapter 7 p Bonds as Electrophiles REACTIONS OF CARBONYLS AND RELATED FUNCTIONAL GROUPS Copyright 2018 by Nelson Education Limited 1 7.2.1 Orbital structure of the carbonyl group Because oxygen is more

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles M Transition metal alkene complexes The report in 1825 by William

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals Table Of Contents: Foreword v Preface vii List of abbreviations ix Chapter 1 Introduction 1 (15) 1.1 What is

More information

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

Lectures Chemistry 1B Fall 2013 Lectures Chemistry 1B. Fall 2013

Lectures Chemistry 1B Fall 2013 Lectures Chemistry 1B. Fall 2013 Classical theories of bonding and molecular geometry (ch 13) Chemistry 1B Fall 2013 Lewis electron-dot structures Bond lengths, energies and ΔH (back to pp. 615-622, much of this in Chem 1C) Valence State

More information

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual. CHEM 3780 rganic Chemistry II Infrared Spectroscopy and Mass Spectrometry Review More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages 13-28 in your laboratory manual.

More information

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13)

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13) Chemistry 1B Fall 2012 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond energies and ΔH (back to pp. 606-610, much of this in Chem 1C) Valence State Electron-Pair

More information

Chemistry 1B Fall 2012

Chemistry 1B Fall 2012 Chemistry 1B Fall 2012 Lectures 10-11-12 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond energies and ΔH (back to pp. 606-610, much of this in Chem 1C)

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Problem 1 (2 points) Lone pair on N may donate to an empty p orbital of B on another molecule of aminoborane, leading to oligomers.

Problem 1 (2 points) Lone pair on N may donate to an empty p orbital of B on another molecule of aminoborane, leading to oligomers. Problem 1 (2 points) B N Lone pair on N may donate to an empty p orbital of B on another molecule of aminoborane, leading to oligomers. B N x 3 B N 3 3x 2 + (BN) x MW( 3 B N 3 ) = 30.87 g/mol MW( 2 ) =

More information

Explain below in one sentence each (a) how we deal with overall charges on the complex in the two methods and (b) how this can be rationalized.

Explain below in one sentence each (a) how we deal with overall charges on the complex in the two methods and (b) how this can be rationalized. An 18 Electron Guideline Worksheet Use what you learned in the primmer and the hints below to count electrons by both the losed Shell (S) and Neutral Ligand (NL) Methods. 1. First let s figure out how

More information

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS 1 CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS PERIODIC TRENDS: See pages 214-216, 221 Table 11.3, and 227 + 228 of text. Lewis Structures of Atoms: The Lewis Dot Diagram

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Lecture B1 Lewis Dot Structures and Covalent Bonding

Lecture B1 Lewis Dot Structures and Covalent Bonding Lecture B1 Lewis Dot Structures and Covalent Bonding G.N. Lewis & Linus Pauling Two American Chemists G. N. Lewis 1875-1946 Linus Pauling 1901-1994 The Covalent Bond 1. First proposed by G.N. Lewis in

More information

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11 Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11 Aims: To look at bonding and possible shapes of molecules We will mainly do this through Lewis structures To look at ionic and covalent

More information

Transition Metal Elements and Their Coordination Compounds

Transition Metal Elements and Their Coordination Compounds Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Transition Metal Elements and Their Coordination Compounds 2 Compounds. Naming and Geometry. 1 3 p.1046a 4 Fig.

More information

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to 62. 2. In 1869 Russian

More information

How to identify types of transition in experimental spectra

How to identify types of transition in experimental spectra 17 18 19 How to identify types of transition in experimental spectra 1. intensity 2. Band width 3. polarization Intensities are governed by how well the selection rules can be applied to the molecule under

More information

Chapter 19: Alkenes and Alkynes

Chapter 19: Alkenes and Alkynes Chapter 19: Alkenes and Alkynes The vast majority of chemical compounds that we know anything about and that we synthesize in the lab or the industrial plant are organic compounds. The simplest organic

More information

Chapter 1: Structure and Bonding

Chapter 1: Structure and Bonding 1. What is the ground-state electronic configuration of a carbon atom? A) 1s 2, 2s 2, 2p 5 B) 1s 2, 2s 2, 2p 2 C) 1s 2, 2s 2, 2p 6 D) 1s 2, 2s 2, 2p 4 2. What is the ground-state electronic configuration

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds Kinds of chemical bonds: 1. Ionic 2. Covalent 3. Metallic Useful guideline: Octet rule Atoms tend to gain, lose, or share e - to achieve

More information

Lecture 16 February 20 Transition metals, Pd and Pt

Lecture 16 February 20 Transition metals, Pd and Pt Lecture 16 February 20 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

CHEM 121 Introduction to Fundamental Chemistry. Summer Quarter 2008 SCCC. Lecture 5.

CHEM 121 Introduction to Fundamental Chemistry. Summer Quarter 2008 SCCC. Lecture 5. CHEM 121 Introduction to Fundamental Chemistry Summer Quarter 2008 SCCC Lecture 5 http://seattlecentral.edu/faculty/lcwest/che121 Forces Between Particles Noble Gas Configurations Ionic Bonding Ionic Compounds

More information

Assignment 30. STRUCTURE OF MOLECULES AND MULTI-ATOM IONS - Part II

Assignment 30. STRUCTURE OF MOLECULES AND MULTI-ATOM IONS - Part II Assignment 30 STRUCTURE OF MOLECULES AND MULTI-ATOM IONS - Part II In Assignment 10, you predicted the three-dimensional shapes of molecules and multi-atom ions based on electron dot diagrams, which explicitly

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Chemistry 1B Fall 2013

Chemistry 1B Fall 2013 Chemistry 1B Fall 2013 Lectures 10-11-12 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond lengths, energies and ΔH (back to pp. 615-622, much of this in

More information

The Periodic Table and Chemical Reactivity

The Periodic Table and Chemical Reactivity The and Chemical Reactivity Noble gases Less electronegative elements More electronegative elements Then what is electronegativity? The tendency of an atom to attract an electron (or electron density)

More information

Chapter 9. Ionic Compounds

Chapter 9. Ionic Compounds Chapter 9 Bonding Ionic Compounds Formed between metal and nonmetal Ionic solids: ions are arranged in a regular lattice Strong forces: attraction of ions for each other 1 Lattice Energy A measure of the

More information

Bonding - Ch. 7. Types of Bonding

Bonding - Ch. 7. Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

Honors Chemistry Unit 6 ( )

Honors Chemistry Unit 6 ( ) Honors Chemistry Unit 6 (2017-2018) Lewis Dot Structures VSEPR Structures 1 We are learning to: 1. Represent compounds with Lewis structures. 2. Apply the VSEPR theory to determine the molecular geometry

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds involve adjustments in the position of one or more valence electrons. PE is lower in bonded

More information

Ch 13: Covalent Bonding

Ch 13: Covalent Bonding Ch 13: Covalent Bonding Section 13: Valence-Shell Electron-Pair Repulsion 1. Recall the rules for drawing Lewis dot structures 2. Remember the special situations: - Resonance structures - ormal charges

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Personalised Learning Checklists AQA Chemistry Paper 1

Personalised Learning Checklists AQA Chemistry Paper 1 AQA Chemistry (8462) from 2016 Topics C4.1 Atomic structure and the periodic table State that everything is made of atoms and recall what they are Describe what elements and compounds are State that elements

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

18.1 Intro to Aromatic Compounds

18.1 Intro to Aromatic Compounds 18.1 Intro to Aromatic Compounds AROMATIC compounds or ARENES include benzene and benzene derivatives. Aromatic compounds are quite common. Many aromatic compounds were originally isolated from fragrant

More information

Metallocenes WILEY-VCH. Volume 2. Synthesis Reactivity Applications. Edited by Antonio Togni and Ronald L. Halterman

Metallocenes WILEY-VCH. Volume 2. Synthesis Reactivity Applications. Edited by Antonio Togni and Ronald L. Halterman Metallocenes Volume 2 Synthesis Reactivity Applications Edited by Antonio Togni and Ronald L. Halterman WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto / Preface V Volume 1 Synthesis

More information

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link

Announcements. 10pm Room assignments for Exam III and TA Exam Review Sessions are posted on website. Look under Exam Info link Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm) No calculators allowed 2. Activity 3: Making Models of Molecules lab write-up due tomorrow in discussion 3. Lon-capa HW

More information

A covalent bond is a shared pair of electrons between atoms of two non-metal elements.

A covalent bond is a shared pair of electrons between atoms of two non-metal elements. Bonding, Structure and properties Atoms can be held together by chemical bonds. When atoms form bonds, they can achieve a stable electron arrangement (full outer electron shell). To achieve a stable electron

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 13, October 31, 2016 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

How are molecular formulas different from empirical formulas? Can they ever be the same for a particular substance?

How are molecular formulas different from empirical formulas? Can they ever be the same for a particular substance? Chapter 3 Reading Guide Tro 4 th edition Suggested Problems: balancing equations is very time consuming in MC, so there are no assigned problems. Don't ignore this though, you need to practice. Use worksheet

More information

Bonding - Ch Types of Bonding

Bonding - Ch Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. Itispossiblethatinthenextseveraldecadeswemayhavetoshifttowardothercarbonsources for these

More information

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name Name Practice Exam: Paper 1 Topic 4: Bonding SL SL Score! /30 HL Score! /48 1. What is the correct Lewis structure for hypochlorous acid, a compound containing chlorine, hydrogen and oxygen? A. B. C. D.

More information

1.4 Estimating the effective nuclear charge: Slater Type Orbitals (STO)

1.4 Estimating the effective nuclear charge: Slater Type Orbitals (STO) 1.4 Estimating the effective nuclear charge: Slater Type Orbitals (STO) NOTE: This section does not appear in your textbook. For further understanding, consult Miessler and Tarr. PREMISE: We can calculate

More information

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles CHEMICAL BONDS Chemical Bonds: Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles Lewis Theory of Bonding: Electrons play a fundamental role

More information