Carbon Dioxide, Alkalinity and ph

Size: px
Start display at page:

Download "Carbon Dioxide, Alkalinity and ph"

Transcription

1 Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 15 March 2018 Reading: Libes, Chapter 15, pp (Remainder of chapter will be used with the classes Global Carbon Dioxide and Biogenic production, carbonate saturation and sediment distributions )

2 Student Learning Outcomes (SLOs) At the completion of today s section, students should be able to: 1. Identify the chemical species involved in the marine CO 2 /carbonate system 2. Explain CO 2 dissolution in seawater and subsequent reactions 3. Explain the concepts of ph, alkalinity, and dissolved inorganic carbon, and write the equations defining these quantities 4. Explain the relationship between carbonate dissolution/precipitation and pco 2.

3 Why is it important to understand the CO 2 system? CO 2 controls the fraction of inbound radiation that remains trapped in the atmosphere (greenhouse effect), which in turn strongly influences planetary climate CO 2 is the raw material used to build organic matter CO 2 controls the ph of the oceans Distribution of CO 2 species affects preservation of CaCO 3 deposited on the sea floor

4 Ocean Carbon Cycle in a Global Context Land sink Atmosphere [ ] Land-use change Fossil fuel and cement emissions [> ] 0.2 River fluxes 0.5 necton Coastal a+ decreased buffer capacity ocean b+ decreased solubility in warm ocean c+ enhanced recycling in warm ocean d- carbon overconsumption e? DOM recycling/export f+ increased denitrification g- increased nitrogen fixation h- reduced calcification i+ reduced particle ballast j+ increased stratification k? increased Southern Ocean winds l+ reduced deep water formation m- reduced upwelling 0.4 PIC 1.9 PIC n 2.0 CaCO 3 formation zooplankton [POC+ DOC] [3] (h)+ i+ 10 Export POC 0.1 <0.1 [25] e? 2 DOC [700] d, g Deep ocean g h NPP Respiration f+ c+ (c) Remineralization 70 DIC [ ] l+ m Transport/mixing j+, k? DIC 22.2 a)+ a+ [37, ] (b)+ b+ Mixed layer Interior ocean n- increased carbonate dissolution Sabine and Tanhua

5 CO 2 Speciation xco 2 pco 2 fco 2 Perturbations to one species leads to a redistribution of all the other species There are many forms of dissolved inorganic carbon in water k fco 2 K0 [CO 2 ]* { [CO 2 ] + H 2 O 1% 88% [H 2 CO 3 ] [HCO 3 - ] + H + K2 { K1 11% [CO 2-3 ] + H + Using the thermodynamic constants (Kx), any two measured parameters can be used to calculate the concentration of all the species Individual dissolved species can not be measured directly

6 CO 2 Speciation xco 2 pco 2 fco 2 k fco 2 K0 There are four measurable carbon parameters in water [CO 2 ]* { [CO 2 ] + H 2 O 1% [H 2 CO 3 ] { K1 88% 11% [HCO 3 - ] + H + K2 [CO 3 2- ] + H + Measurable parameter: CO 2 fugacity

7 Takahashi climatological annual mean air-sea CO 2 flux for reference year 2000 Based on ~3 million measurements since 1970 and NCEP/DOE/AMIP II reanalysis. Global flux is 1.4 ±0.7 Pg C/yr Takahashi et al., Deep Sea Res. II, 2009

8 The global mean air-sea CO 2 flux for the period from 1982 to 2009 gives an average contemporary net uptake of 1.47±.23 Pg C yr -1 Surface observations have large variability over a wide range of time and space scales making it very difficult to properly isolate the anthropogenic increases. Uptake of 2 Pg C yr -1 only requires a DpCO 2 of 8ppm.

9 GENERAL DEFINITION: The acid-buffering capacity of seawater Total Alkalinity (TA) represents ability of seawater to resist ph change upon addition of acid Remember the concept of a buffer (from basic chemistry): a substance that resists ph change upon addition of acid or base xco 2 pco 2 fco 2 k fco 2 K0 CO 2 Speciation There are four measurable carbon parameters in water [CO 2 ]* { [CO 2 ] + H 2 O 1% 88% 11% [H 2 CO 3 ] { K1 [HCO 3- ] + H + K2 [CO 3 2- ] + H + Measurable parameter: Total Alkalinity Carbonate Alkalinity CA 2[CO 3-2 ] + [HCO 3 - ] Typically, HCO 3 - and CO 3-2 are present at ~1000x conc of other proton acceptors Hence: CA nearly equals TA TA = [HCO 3- ] + 2*[CO 3 2- ] + [B(OH) 4- ] + [HPO 4 2- ] + 2*[PO 4 3- ] + [OH - ] - [H + ]

10 Surface TA/Talk/Alk/A T Distribution is Very Similar to Salinity

11 Shallow Indian Ocean Data (depth < 100 m)

12 Inorganic Carbon is stored in the ocean as Total CO 2 (a.k.a. DIC) DIC and TA are state variables, meaning they are not a function of temperature or pressure xco 2 pco 2 fco 2 k fco 2 K0 CO 2 Speciation There are four measurable carbon parameters in water [CO 2 ]* { [CO 2] + H 2 O 1% 88% 11% [H 2 CO 3 ] { K1 [HCO 3- ] + H + K2 [CO 3 2- ] + H + Measurable parameter: Total CO 2 TCO 2 = [CO 2 ]* + [H 2 CO 3 ] + [HCO 3- ] + [CO 3 2- ]

13 TCO 2 /DIC/C T : Surface Distribution is Similar to Nutrient Distributions

14 Shallow Indian Ocean Data (depth < 100 m)

15 CO 2 Speciation xco 2 pco 2 There are four measurable carbon parameters in water {H + } = Hydrogen ion activity There are 5 different ph scales. The most common are ph sws and ph T ph of seawater is slightly basic; acidification is a process, not a state fco 2 k fco 2 K0 [CO 2 ]* { [CO 2 ] + H 2 O 1% 88% 11% [H 2 CO 3 ] { K1 [HCO 3 - ] + H + K2 [CO 3 2- ] + H + {H + } sws = {H + } f + [HSO 4 - ] + [HF] {H + } T = {H + } f + [HSO 4 - ] Measurable parameter: ph ph = -log 10 {H + }

16 Surface ph distribution reflects combined patterns of alkalinity and TCO 2 ph Light gray = warm water corals Dark gray = cold water corals Feely, Doney and Cooley, Oceanography (2009)

17 Group Task How does seawater ph change when atmospheric CO 2 is added to the ocean? What are the reactions??

18 Group Task How does seawater ph change when atmospheric CO 2 is added to the ocean? What are the reactions?? Answer: The ph decreases because of the release of hydrogen ions: CO 2(g) CO 2(aq) CO 2(aq) + H 2 O HCO 3- + H + HCO 3- CO H + The limited amount of CO 3 2- available means that not all of the H + produced by the middle reaction can be consumed

19 Take home message: Each of the 4 measurable carbon parameters can tell us something different about the basic processes operating in the Ocean Gas Exchange pco 2 ph TCO 2 Ocean Physics TAlk Biology

20 Question: How will ocean carbon system respond to changes in ocean processes? Gas Exchange Rising CO 2 Levels Changing Climate pco 2 ph Changing Biology? TCO 2 Ocean Physics TAlk Biology

21 Equations for CO 2 Speciation The equilibrium of gaseous and aqueous CO 2 : CO 2(g) CO 2(aq) Subsequent hydration and dissociation reactions: CO 2(aq) + H 2 O H 2 CO 3 HCO 3- + H + K 1 * = { H + }[ HCO [ CO ] 2 3 ] HCO 3- CO H + K + 2 { H }[ CO3 2* = [ HCO3 ] ] Hint: When you add a CO 2 species to the system, follow the H +. Thus, the following is a reasonable approximation when ph is between 7.5 and 8.5: Asterisk (*) indicates a stoichiometric constant CO 2(aq) + CO H 2 O 2HCO 3 -

22 Distribution of CO 2 Species at CO 2(aq) Different ph Values CO 2(g) CO 2(aq) CO 2(aq) + H 2 O HCO 3- + H + HCO 3- CO H + Seawater values shown ---freshwater curves are shifted left aob.oxfordjournals.org

23 Effects of Pressure on Carbonate Speciation 1 atm 1000 atm K 1 * K 2 * CO 2(g) CO 2(aq) CO 2(aq) + H 2 O HCO 3- + H + HCO 3- CO H + As you raise a sample from depth: - Ks decrease - Reactions shift to left - ph increases K K 1 { H * = + }[ HCO [ CO ] + 2 { H }[ CO3 2* = [ HCO3 ] 2 3 ] ]

24 Group Task Why is raising a sample of seawater from depth to the surface like opening a can of soda??? What exactly is happening? How does the ph change? Hint: What happens to the dissolved CO 2?

25 Group Task Why is raising a sample of seawater from depth to the surface like opening a can of soda??? Answer: In both cases there is: 1) An aqueous solution containing a large amount of dissolved CO 2 2) Pressure is released, causing the CO 2 /carbonate reactions to shift to the left (due to decreased Ks) 3) CO 2 gas is released and ph increases HCO 3- CO H + CO 2(aq) + H 2 O HCO 3- + H + CO 2(g) CO 2(aq)

26 CaCO 3 Precipitation/Dissolution A tricky subject when discussing CO 2 (or, more properly, pco 2 ) Ca 2+ + CO 3 2- CaCO 3 (consumption of CO 3 2- ) Does this reduce the CO 2 (pco 2 ) level of the seawater? No! Lost CO 3 2- will be replaced: HCO 3- CO H + But this H + release causes: HCO 3- + H + CO 2 + H 2 O CO 2(g) CO 2(aq) CO 2(aq) + H 2 O HCO 3- + H + HCO 3- CO H + Hint: when ph is between 7.5 and 8.5: CO 2(a q) + CO H 2 O 2HCO - 3 Thus, CaCO 3 precipitation causes a decrease in DIC and TA, but an increase in pco 2

27 Chemical Reactions of Carbonate Species in Seawater [Ca 2+ ] is one of the 6 major ions in seawater CO 2 Atmosphere To a first order it is considered conservative with salinity (~10.3 mmol/kg at salinity of 35) Therefore, [CO 3 2- ] primarily controls the saturation state of the waters with respect to aragonite, calcite, magnesian calcite CO 2 aq (CO 2 + H 2 O) K 1 K 2 HCO 3 + H + CO H + CaCO 3 Ca 2+ calcification K sp = solubility product of a solid K sp = apparent solubility product Solubility of CaCO 3 increases with decreasing temperature and increasing pressure. Increasing Solubility from left to right: dolomite < calcite < aragonite < high-magnesian calcite Ω a = [Ca 2+ ][CO 3 2- ] Ksp Ω a > 1 ~ Supersaturated CaCO 3 + CO 2 + H 2 O dissolution Ca HCO 3 -

28 Student Learning Outcomes (SLOs) At the completion of today s section, students should be able to: 1. Identify the chemical species involved in the marine CO 2 /carbonate system 2. Explain CO 2 dissolution in seawater and subsequent reactions 3. Explain the concepts of ph, alkalinity, and dissolved inorganic carbon, and write the equations defining these quantities 4. Explain the relationship between carbonate dissolution/precipitation and pco 2.

CO2 in atmosphere is influenced by pco2 of surface water (partial pressure of water is the CO2 (gas) that would be in equilibrium with water).

CO2 in atmosphere is influenced by pco2 of surface water (partial pressure of water is the CO2 (gas) that would be in equilibrium with water). EART 254, Lecture on April 6 & 11, 2011 Introduction (skipped most of this) Will look at C and N (maybe) cycles with respect to how they influence CO2 levels in the atmosphere. Ocean chemistry controls

More information

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) Ocean 421 Your Name Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) 1. Due to the water molecule's (H 2 O) great abundance in

More information

MAR 510 Chemical Oceanography

MAR 510 Chemical Oceanography Carbonate Equilibrium -Key Concepts- Major buffer system influencing ph (master variable) Linked to geological, biological and climatological cycles Complex chemistry involving gaseous, dissolved, and

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Overview of global C cycle 2. Global C reservoirs Outline 3. The contemporary global C cycle 4. Fluxes and residence

More information

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes OCN 401-10 Nov. 16, 2010 KCR Global Carbon Cycle - I Systematics: Reservoirs and Fluxes The Global carbon cycle Reservoirs: biomass on land in the oceans, atmosphere, soil and rocks, waters Processes:

More information

Figure 65: Reservoir in a steady state condition where the input flux is equal to the output flux and the reservoir size remains constant.

Figure 65: Reservoir in a steady state condition where the input flux is equal to the output flux and the reservoir size remains constant. 7. The carbon cycle 7.1. Box model of the carbon cycle Without the greenhouse effect, our planet would experience a permanent ice age and life as we know it would not be possible. The main contributors

More information

Ocean Sediments. Key Concepts

Ocean Sediments. Key Concepts Ocean Sediments Key Concepts 1. What are the processes that control what types of sediments are deposited in which places? 2. Conversely, how can we use the sedimentary record to figure out tectonic and

More information

: 1.9 ppm y -1

: 1.9 ppm y -1 Atmospheric CO 2 Concentration Year 2006 Atmospheric CO 2 concentration: 381 ppm 35% above pre-industrial Atmoapheric [CO2] (ppmv) 4001850 1870 1890 1910 1930 1950 1970 1990 2010 380 360 340 320 300 280

More information

Ocean Sediments OCN Nov 2016

Ocean Sediments OCN Nov 2016 Ocean Sediments OCN 401 10 Nov 2016 Outline Significance & terms Origin & distribution of major types of marine sediments Delivery - dissolution destruction mid-ocean ridges Significance of ocean sediments

More information

Mid-Term #1 (125 points total)

Mid-Term #1 (125 points total) Ocean 520 Name: Chemical Oceanography 20 October 2009 Fall 2009 Points are in parentheses (show all your work) (use back if necessary) MidTerm #1 (125 points total) 1. Doney et al (2008) Ocean Acidification

More information

INTRODUCTION TO CO2 CHEMISTRY

INTRODUCTION TO CO2 CHEMISTRY INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps

More information

INTRODUCTION TO CO2 CHEMISTRY

INTRODUCTION TO CO2 CHEMISTRY INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego 410 Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps

More information

Ocean Acidification the other CO2 problem..

Ocean Acidification the other CO2 problem.. Ocean Acidification the other CO2 problem.. Recall: Atm CO 2 already above recent planetary history CO 2 Today: What does this do to ocean water? Main Outline: 1. Chemistry. How does ocean absorb CO 2,

More information

Biogeochemistry of the Earth System QMS Lecture 5 Dr Zanna Chase 16 June 2015

Biogeochemistry of the Earth System QMS Lecture 5 Dr Zanna Chase 16 June 2015 Biogeochemistry of the Earth System QMS512 2015 Lecture 5 Dr Zanna Chase 16 June 2015 Lecture 5: Inorganic carbon chemistry Outline Inorganic carbon speciation in seawater- conceptual overview Inorganic

More information

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions OCN 623 Chemical Oceanography Reading: Libes, Chapters 15 and 16 Outline I. Deep sea sedimentation Detrital sediments

More information

Ocean Acidifica+on: past analogies, present concerns, future predic+ons. Sco8 Wieman

Ocean Acidifica+on: past analogies, present concerns, future predic+ons. Sco8 Wieman Ocean Acidifica+on: past analogies, present concerns, future predic+ons Sco8 Wieman Effects Planktonic calcifica+on Carbon and nutrient assimila+on Primary produc+on Acid-base balance Larval stages of

More information

Continent-Ocean Interaction: Role of Weathering

Continent-Ocean Interaction: Role of Weathering Institute of Astrophysics and Geophysics (Build. B5c) Room 0/13 email: Guy.Munhoven@ulg.ac.be Phone: 04-3669771 28th February 2018 Organisation of the Lecture 1 Carbon cycle processes time scales modelling:

More information

Chapter 12: Acids and Bases: Ocean Carbonate System James Murray 4/30/01 Univ. Washington

Chapter 12: Acids and Bases: Ocean Carbonate System James Murray 4/30/01 Univ. Washington Chapter 12: Acids and Bases: Ocean Carbonate System James Murray 4/30/01 Univ. Washington Last lecture was concerned with gas exchange and one example we looked at was the solubility of CO 2. Next we have

More information

Chemical Oceanography 14 March 2012 Points are in parentheses (show all your work) Final Exam

Chemical Oceanography 14 March 2012 Points are in parentheses (show all your work) Final Exam Ocean 400 Name: Chemical Oceanography 14 March 2012 Winter 2012 Points are in parentheses (show all your work) (give as much detail as you can) (use back if necessary) Final Exam 1. Sarmiento and Gruber

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I Reservoirs and Fluxes OCN 401 - Biogeochemical Systems 13 November 2012 Reading: Schlesinger, Chapter 11 Outline 1. Overview of global C cycle 2. Global C reservoirs 3. The contemporary

More information

XI. the natural carbon cycle. with materials from J. Kasting (Penn State)

XI. the natural carbon cycle. with materials from J. Kasting (Penn State) XI. the natural carbon cycle with materials from J. Kasting (Penn State) outline properties of carbon the terrestrial biological cycle of carbon the ocean cycle of carbon carbon in the rock cycle overview

More information

Satellite tools and approaches

Satellite tools and approaches Satellite tools and approaches for OA research William M. Balch Bigelow Laboratory for Ocean Sciences E. Boothbay, ME 04544 With help from: J. Salisbury, D. Vandemark, B. Jönsson, S. Chakraborty,S Lohrenz,

More information

OCEAN ACIDIFICATION. Effects of an increasing atmospheric CO2 concentration on the ph of the Baltic Sea. Ville Berg Malmborg and Marcus Sjöstedt

OCEAN ACIDIFICATION. Effects of an increasing atmospheric CO2 concentration on the ph of the Baltic Sea. Ville Berg Malmborg and Marcus Sjöstedt OCEAN ACIDIFICATION Effects of an increasing atmospheric CO2 concentration on the ph of the Baltic Sea Ville Berg Malmborg and Marcus Sjöstedt Department of Physics, Lund University Department of Physical

More information

Overview of CO 2 -induced Changes in Seawater Chemistry

Overview of CO 2 -induced Changes in Seawater Chemistry Overview of CO 2 -induced Changes in Seawater Chemistry Joan Kleypas & Chris Langdon I. Background II. Facts vs Hypotheses III. Future directions 10-Oct-00 9th Int Coral Reef Symp. 1 Effects of CO 2 on

More information

Hydrological Cycle Rain and rivers OUTLINE

Hydrological Cycle Rain and rivers OUTLINE Hydrological Cycle Rain and rivers The Hydrosphere Rain and rivers OUTLINE 1 Generalizations (non-political conservatism) Conservative (not affected) and Non-Conservative (affected) Ions Distinction: whether

More information

ph and Acid-Base reactions

ph and Acid-Base reactions ph and Acid-Base reactions http://eps.mcgill.ca/~courses/c220/ Interaction of water with H + (H 3 O + ) Although it is a minor component of most aqueous solutions, the proton, hydrogen ion or H + concentration

More information

Wednesday week 12. These ions move through the soil to streams and eventually to the ocean. In the ocean; CaCO 3 + H 2 O + CO 2 H 2 O + H 2 O

Wednesday week 12. These ions move through the soil to streams and eventually to the ocean. In the ocean; CaCO 3 + H 2 O + CO 2 H 2 O + H 2 O Wednesday week 12 I. Control of CO 2 content of atmosphere by the ocean H 4 SiO 4 A. Consider a hypothetical planet with a crust made of single mineral (Wallastonite) CaSiO3. We could use the composition

More information

The Chemistry of Seawater. Unit 3

The Chemistry of Seawater. Unit 3 The Chemistry of Seawater Unit 3 Water occurs naturally on earth in 3 phases: solid, liquid, or gas (liquid is most abundant) Water Phases Basic Chemistry Review What is an atom? Smallest particles of

More information

Solution chemistry of carbon dioxide in sea water

Solution chemistry of carbon dioxide in sea water Page 1 of 15 Solution chemistry of carbon dioxide in sea water 1. Introduction This chapter outlines the chemistry of carbon dioxide in sea water so as to provide a coherent background for the rest of

More information

CO 2 and the carbonate system. 1/45

CO 2 and the carbonate system.  1/45 CO 2 and the carbonate system http://eps.mcgill.ca/~courses/c542/ 1/45 The Atmospheric CO 2 -Climate Connection From: http://www.google.ca/imgres?imgurl=http:/ /www.tallbergfoundation.org/ From: Ruddiman,

More information

Dissolution of olivine (potential, side effects) in simulated CO 2 removal experiments

Dissolution of olivine (potential, side effects) in simulated CO 2 removal experiments Peter Köhler 1 October 2015 Dissolution of olivine (potential, side effects) in simulated CO 2 removal experiments enhanced weathering, ocean alkalinization, ocean fertilization Peter Köhler, Judith Hauck

More information

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold.

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change The Archean is thought to have been warmer,

More information

Interactive comment on Ocean Biogeochemistry in the warm climate of the Late Paleocene by M. Heinze and T. Ilyina

Interactive comment on Ocean Biogeochemistry in the warm climate of the Late Paleocene by M. Heinze and T. Ilyina Clim. Past Discuss., www.clim-past-discuss.net/10/c1158/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Climate of the Past Discussions Open Access comment

More information

Chapter 3: Acid Base Equilibria. HCl + KOH KCl + H 2 O acid + base salt + water

Chapter 3: Acid Base Equilibria. HCl + KOH KCl + H 2 O acid + base salt + water Chapter 3: Acid Base Equilibria HCl + KOH KCl + H 2 O acid + base salt + water What is an acid? The Arrhenius concept proposed that acids are substances that produce hydrogen ions (H + ) in aqueous solutions.

More information

[ ] Sparkling Water and the Carbon Cycle

[ ] Sparkling Water and the Carbon Cycle Materials: Seltzer maker (SodaStream or similar) Some tasty cheese Tap water Glasses or cups for drinking ph paper Many people enjoy carbonated beverages, especially with food. The tiny bubbles and natural

More information

Lecture 16 - Stable isotopes

Lecture 16 - Stable isotopes Lecture 16 - Stable isotopes 1. The fractionation of different isotopes of oxygen and their measurement in sediment cores has shown scientists that: (a) ice ages are common and lasted for hundreds of millions

More information

THE OCEAN CARBON CYCLE

THE OCEAN CARBON CYCLE THE OCEAN CARBON CYCLE 21st February 2018 1 Box-model of the global ocean phosphorus, alkalinity, carbon 2 Pre-industrial model 3 Evolution during the industrial period 4 13 C isotopic evolution BOX-MODEL

More information

Evolution of Earth Environments Bio-Geo-Chemical Cycling

Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of the Earliest Atmospheres of Mars and Earth Volcanic Outgassing Evolving to Equilibrium Atmosphere To Atmosphere Lost to space (Abundant)

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. The Faint Young

More information

The Global Carbon Cycle Recording the Evolution of Earth, from the origin of life to the industrialization of the planet

The Global Carbon Cycle Recording the Evolution of Earth, from the origin of life to the industrialization of the planet The Global Carbon Cycle Recording the Evolution of Earth, from the origin of life to the industrialization of the planet Celebrating 5 years of world-leading collaborative and multidisciplinary research

More information

Ocean carbon cycle feedbacks in the tropics from CMIP5 models

Ocean carbon cycle feedbacks in the tropics from CMIP5 models WWW.BJERKNES.UIB.NO Ocean carbon cycle feedbacks in the tropics from CMIP5 models Jerry Tjiputra 1, K. Lindsay 2, J. Orr 3, J. Segschneider 4, I. Totterdell 5, and C. Heinze 1 1 Bjerknes Centre for Climate

More information

EPSS 15 Introduction to Oceanography Spring The Physical and Chemical Properties of Seawater

EPSS 15 Introduction to Oceanography Spring The Physical and Chemical Properties of Seawater EPSS 15 Introduction to Oceanography Spring 2017 The Physical and Chemical Properties of Seawater The focus of the Lab this week is seawater--its composition, physical and chemical properties. Seawater

More information

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3.

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3. 12.742 - Marine Chemistry Fall 2004 Lecture 6 - Determinants of Seawater Composition Prof. Scott Doney What is seawater? Water Dissolved inorganic salts (major ions) Trace species, organics, colloids,

More information

Physics of Aquatic Systems II

Physics of Aquatic Systems II Physics of Aquatic Systems II 10. C-Dating Werner Aeschbach-Hertig Institute of Environmental Physics University of Heidelberg 1 Contents of Session 10 General principles of C dating Conventional C age,

More information

What Goes Around Comes Around: Humankind, the Environmental Crisis, and the Future of Life on Earth

What Goes Around Comes Around: Humankind, the Environmental Crisis, and the Future of Life on Earth What Goes Around Comes Around: Humankind, the Environmental Crisis, and the Future of Life on Earth Again Earth As A Closed System Reminder: Earth Sciences 088F Final Exam Saturday, December 9, 2006 7:00

More information

Problem Set #4 ANSWER KEY Fall 2009 Due: 9:30, Monday, Nov 30

Problem Set #4 ANSWER KEY Fall 2009 Due: 9:30, Monday, Nov 30 OCN 520 Problem Set #4 ANSWER KEY Fall 2009 Due: 9:30, Monday, Nov 30 1. Two-Box Ocean Model The B Flux Using a 2 box model like the one you have worked on in problem set #4 (question 1) assume the following

More information

Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models

Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models Nicolas Gruber Institute of Geophysics and Planetary Physics & Department of Atmospheric Sciences, University

More information

Biochemistry Water and the Fitness of the Environment Concept: Acidic and Basic condi9ons affect living organisms

Biochemistry Water and the Fitness of the Environment Concept: Acidic and Basic condi9ons affect living organisms Biochemistry Water and the Fitness of the Environment Concept: Acidic and Basic condi9ons affect living organisms Objec&ves: SWBAT calculate the ph of a substance and explain how it would change with the

More information

Modeling Low-Oxygen Regions

Modeling Low-Oxygen Regions Modeling Low-Oxygen Regions Andreas Schmittner College of Oceanic and Atmospheric Sciences Oregon State University 1.How well can global models simulate low- oxygen regions? 2.Long-term projections 3.Variability

More information

(10) 2. Given the following hypothetical equilibrium reaction between three ions in water

(10) 2. Given the following hypothetical equilibrium reaction between three ions in water (10) 1. List and explain five (5) reasons for studying trace metal speciation or the speciation of any element or chemical constituent found in the ocean. (10) 2. Given the following hypothetical equilibrium

More information

Part 2. Oceanic Carbon and Nutrient Cycling. Lecture Outline. 1. Net Primary Production (NPP) a) Global Patterns b) Fate of NPP

Part 2. Oceanic Carbon and Nutrient Cycling. Lecture Outline. 1. Net Primary Production (NPP) a) Global Patterns b) Fate of NPP OCN 401 Biogeochemical Systems (10.25.16) (Schlesinger: Chapter 9) Part 2. Oceanic Carbon and Nutrient Cycling Lecture Outline 1. Net Primary Production (NPP) a) Global Patterns b) Fate of NPP 2. Sediment

More information

Global phosphorus cycle

Global phosphorus cycle Global phosphorus cycle OCN 623 Chemical Oceanography 11 April 2013 2013 Arisa Okazaki and Kathleen Ruttenberg Outline 1. Introduction on global phosphorus (P) cycle 2. Terrestrial environment 3. Atmospheric

More information

1. Introduction 2. Ocean circulation a) Temperature, salinity, density b) Thermohaline circulation c) Wind-driven surface currents d) Circulation and

1. Introduction 2. Ocean circulation a) Temperature, salinity, density b) Thermohaline circulation c) Wind-driven surface currents d) Circulation and 1. Introduction 2. Ocean circulation a) Temperature, salinity, density b) Thermohaline circulation c) Wind-driven surface currents d) Circulation and climate change e) Oceanic water residence times 3.

More information

Chapter 17: Solubility Equilibria

Chapter 17: Solubility Equilibria Previous Chapter Table of Contents Next Chapter Chapter 17: Solubility Equilibria Sections 17.1-17.2: Solubility Equilibria and the K sp Table In this chapter, we consider the equilibrium associated with

More information

Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry

Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 17, NO. 4, 1093, doi:10.1029/2002gb002001, 2003 Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry S.-N. Chung, 1 K. Lee,

More information

1 Carbon - Motivation

1 Carbon - Motivation 1 Carbon - Motivation Figure 1: Atmospheric pco 2 over the past 400 thousand years as recorded in the ice core from Vostok, Antarctica (Petit et al., 1999). Figure 2: Air-sea flux of CO 2 (mol m 2 yr 1

More information

Coastal ocean CO 2 carbonic acid carbonate sediment system of the Anthropocene

Coastal ocean CO 2 carbonic acid carbonate sediment system of the Anthropocene GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 20,, doi:10.1029/2005gb002506, 2006 Coastal ocean CO 2 carbonic acid carbonate sediment system of the Anthropocene Andreas J. Andersson, 1 Fred T. Mackenzie, 1 and Abraham

More information

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption Nutrients; Aerobic Carbon Production and Consumption OCN 623 Chemical Oceanography Reading: Libes, Chapters 8 and 9 Formation and respiration of organic matter DINutrients POM Primary Producers Autotrophs

More information

Phytoplankton. The Biological Pump. Nutrient Cycling and the Marine Biological Pump. Phytoplankton and Zooplankton. CSU ATS Sco9 Denning 1

Phytoplankton. The Biological Pump. Nutrient Cycling and the Marine Biological Pump. Phytoplankton and Zooplankton. CSU ATS Sco9 Denning 1 Nutrient Cycling and the Marine Biological Pump Readings: SelecGons from Williams & Follows (2011) Sabine et al (2004): Ocean Sink for Anthropogenic CO 2 Phytoplankton Diameter: < 1 mm to over 100 mm ConcentraGon:

More information

This Week: Biogeochemical Cycles. Hydrologic Cycle Carbon Cycle

This Week: Biogeochemical Cycles. Hydrologic Cycle Carbon Cycle This Week: Biogeochemical Cycles Hydrologic Cycle Carbon Cycle Announcements Reading: Chapters 4 (p. 74 81) and 8 Another Problem Set (Due next Tuesday) Exam 2: Friday Feb 29 My office hours today and

More information

Lungs of the Planet with Dr. Michael Heithaus

Lungs of the Planet with Dr. Michael Heithaus Lungs of the Planet with Dr. Michael Heithaus Problem Why do people call rain forests the lungs of the planet? Usually it is because people think that the rain forests produce most of the oxygen we breathe.

More information

The Biogeochemical Carbon Cycle: CO 2,the greenhouse effect, & climate feedbacks. Assigned Reading: Kump et al. (1999) The Earth System, Chap. 7.

The Biogeochemical Carbon Cycle: CO 2,the greenhouse effect, & climate feedbacks. Assigned Reading: Kump et al. (1999) The Earth System, Chap. 7. The Biogeochemical Carbon Cycle: CO 2,the greenhouse effect, & climate feedbacks Assigned Reading: Kump et al. (1999) The Earth System, Chap. 7. Overhead Transparencies Faint Faint Young Sun Paradox Young

More information

Hypothesis: What do you think will happen to the egg after it s left in Vinegar for 24 hours? Why?

Hypothesis: What do you think will happen to the egg after it s left in Vinegar for 24 hours? Why? Ocean Acidification Lab The Naked Egg Name: Date: Prelab Questions: 1. What is vinegar s ph? 2. Is it acidic or basic? 3. Compounds make up vinegar? 4. What is the main component in egg shells? 5. Name

More information

Ocean acidification in NZ offshore waters

Ocean acidification in NZ offshore waters Ocean acidification in NZ offshore waters Cliff Law NIWA Review susceptible groups in NZ offshore waters Examples from international research of responses Identify potential impacts in the NZ EEZ Plankton

More information

Water percolating through hot lava dissolves soluble minerals containing chlorine, bromine and sulphur compounds

Water percolating through hot lava dissolves soluble minerals containing chlorine, bromine and sulphur compounds Figure 5 The sources of dissolved ions in sea water. Water falls as rain Compounds containing mainly calcium, magnesium, carbonate and silicate ions are leached from the soil Rivers carry ions in solution

More information

key to long-term sustainability is recycling..

key to long-term sustainability is recycling.. .. to support life over ~ 4 billion years, Earth must be sustainable system.. key to long-term sustainability is recycling.. Earth System how are key elements needed for life (C, N, P) recycled on the

More information

Supplementary Figure 1. Observed Aragonite saturation variability and its drivers.

Supplementary Figure 1. Observed Aragonite saturation variability and its drivers. Supplementary Figure 1. Observed Aragonite saturation variability and its drivers. Mean shift in aragonite saturation state from open ocean values, ΔΩ ocean-reef (left), due to freshwater fluxes, ΔΩ fresh

More information

Time-series observations in the Northern Indian Ocean V.V.S.S. Sarma National Institute of Oceanography Visakhapatnam, India

Time-series observations in the Northern Indian Ocean V.V.S.S. Sarma National Institute of Oceanography Visakhapatnam, India The Second GEOSS Asia-Pacific Symposium, Tokyo, 14-16 th April 28 Time-series observations in the Northern Indian Ocean V.V.S.S. Sarma National Institute of Oceanography Visakhapatnam, India Seasonal variations

More information

Lecture 16 Guest Lecturer this week. Prof. Greg Ravizza

Lecture 16 Guest Lecturer this week. Prof. Greg Ravizza Lecture 16 Guest Lecturer this week. Prof. Greg Ravizza General Concepts for Natural Controls on Fresh Water Composition 1. Generalizations about freshwater compositions 2. Conservative/nonconservative

More information

IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis. Nandini Ramesh

IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis. Nandini Ramesh IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis Nandini Ramesh Seminar in Atmospheric Science 21 st February, 2014 1. Introduc,on The ocean exchanges heat, freshwater, and C with the atmosphere.

More information

Potential Impact of climate change and variability on the Intra-Americas Sea (IAS)

Potential Impact of climate change and variability on the Intra-Americas Sea (IAS) Potential Impact of climate change and variability on the Intra-Americas Sea (IAS) Sang-Ki Lee 1, Yanyun Liu 1 and Barbara Muhling 2 1 CIMAS-University of Miami and AOML-NOAA 2 Princeton University and

More information

Experimental approaches of carbonate chemistry manipulation. in CO 2 pertubation studies. K. G. Schulz, U. Riebesell

Experimental approaches of carbonate chemistry manipulation. in CO 2 pertubation studies. K. G. Schulz, U. Riebesell Experimental approaches of carbonate chemistry manipulation in CO 2 pertubation studies K. G. Schulz, U. Riebesell Monaco, 06.-09.10.2008 Atmospheric CO 2 variability and marine life increase to about

More information

CLIMATE CHANGE EFFECTS ON SEAGRASSES, MACROALGAE AND THEIR ECOSYSTEMS: ELEVATED DIC, TEMPERATURE, OA AND THEIR INTERACTIONS

CLIMATE CHANGE EFFECTS ON SEAGRASSES, MACROALGAE AND THEIR ECOSYSTEMS: ELEVATED DIC, TEMPERATURE, OA AND THEIR INTERACTIONS CLIMATE CHANGE EFFECTS ON SEAGRASSES, MACROALGAE AND THEIR ECOSYSTEMS: ELEVATED DIC, TEMPERATURE, OA AND THEIR INTERACTIONS Marguerite S. Koch, George E. Bowes, Cliff Ross, XingHai Zhang Josh Filina, Kate

More information

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption Nutrients; Aerobic Carbon Production and Consumption OCN 623 Chemical Oceanography Reading: Libes, Chapters 8 and 9 Why is organic matter such a good electron donor? Every (other) breath you take is a

More information

Part 1. Ocean Composition & Circulation

Part 1. Ocean Composition & Circulation OCN 401 Biogeochemical Systems (10.19.17) (Schlesinger: Chapter 9) Part 1. Ocean Composition & Circulation 1. Introduction Lecture Outline 2. Ocean Circulation a) Global Patterns in T, S, ρ b) Thermohaline

More information

Carbon Cycling Internal

Carbon Cycling Internal Carbon Cycling Internal The 4 subcycles Atmosphere The Earth s Atmosphere The Earth has a radius of some 6400 km. Ninety-nine percent of the earth's atmosphere is contained within a layer approximately

More information

Productivity in a Changing Southern Ocean. Kevin R. Arrigo Stanford University

Productivity in a Changing Southern Ocean. Kevin R. Arrigo Stanford University Productivity in a Changing Southern Ocean Kevin R. Arrigo Stanford University 1 Productivity in a Changing Southern Ocean A Paleo-perspective Satellite view of the Southern Ocean Role of ice and iron Controls

More information

Distributions of dissolved inorganic carbon and total alkalinity in the Western Arctic Ocean

Distributions of dissolved inorganic carbon and total alkalinity in the Western Arctic Ocean Article Advances in Polar Science doi:10.3724/sp.j.1085.2011.00246 December 2011 Vol.22 No.4 246 252 Distributions of dissolved inorganic carbon and total alkalinity in the Western Arctic Ocean SUN Heng

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CALCITE CaCO 3(s) Ca + (aq)+ CO 3 - (aq) K K sp [Ca + ][CO 3 - ].8 x 10-9 K sp solubility product

More information

Lungs of the Planet. 1. Based on the equations above, describe how the processes of photosynthesis and cellular respiration relate to each other.

Lungs of the Planet. 1. Based on the equations above, describe how the processes of photosynthesis and cellular respiration relate to each other. Lungs of the Planet Name: Date: Why do people call rain forests the lungs of the planet? Usually it is because people think that the rain forests produce most of the oxygen we breathe. But do they? To

More information

Environmental Chemistry Spring 2005 Chapter 3

Environmental Chemistry Spring 2005 Chapter 3 Environmental Chemistry Spring 2005 Chapter 3 Ji Yang, Ph.D. Associate Professor School of Environmental Science and Engineering Shanghai Jiao Tong University Aqueous Chemistry The complexity of the chemistry

More information

Destabilization of Carbon Dioxide Hydrates in the Ocean. Resherle Verna Department of Earth Science, University of Southern California

Destabilization of Carbon Dioxide Hydrates in the Ocean. Resherle Verna Department of Earth Science, University of Southern California Verna 1 Destabilization of Carbon Dioxide Hydrates in the Ocean Resherle Verna Department of Earth Science, University of Southern California I. ABSTRACT This paper features the investigation of the change

More information

Table S1. Concentrations of dissolved inorganic nitrogen (DIN) and phosphate (DIP)

Table S1. Concentrations of dissolved inorganic nitrogen (DIN) and phosphate (DIP) Table S1. Concentrations of dissolved inorganic nitrogen (DIN) and phosphate (DIP) before and at the end of incubations at different nutrient conditions, and particulate organic nitrogen (PON) concentration

More information

Solubility and Complex Ion Equilibria

Solubility and Complex Ion Equilibria CALCITE Solubility and Complex Ion Equilibria a mineral formed by marine organisms through biological precipitation CaCO (s) Ca + (aq)+ CO (aq) K K sp [Ca + ][CO ].8 x 10-9 K sp solubility product constant

More information

FOSSIL FUELS, ENERGY, AND THE PERTURBED CARBON CYCLE

FOSSIL FUELS, ENERGY, AND THE PERTURBED CARBON CYCLE FOSSIL FUELS, ENERGY, AND THE PERTURBED CARBON CYCLE 1. Introduction 2. Why are they called fossil fuels? 3. Burning buried sunshine 4. Perturbing the carbon cycle 5. Welcome to the Anthropocene A LOGICAL

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Responses to future climate change: biogeochemistry

Responses to future climate change: biogeochemistry Responses to future climate change: biogeochemistry Jean-Pierre Gattuso Laboratoire d Océanographie de Villefranche (LOV) CNRS - Université Pierre et Marie Curie - Paris 6 Villefranche-sur-mer, France

More information

Terrestrial Plants 900 GT C Terrestrial Primary Production 75 GT C/yr. River flux 0.5 GT C/yr. Carbonates 60,000,000 GT C

Terrestrial Plants 900 GT C Terrestrial Primary Production 75 GT C/yr. River flux 0.5 GT C/yr. Carbonates 60,000,000 GT C Most of the organic carbon on earth is stored in long term deposits (shales, coals, sedimentary rocks) that represent a leak from the contemporary C cycle Terrestrial Plants 900 GT C Terrestrial Primary

More information

SCOPE 35 Scales and Global Change (1988)

SCOPE 35 Scales and Global Change (1988) 1. Types and origins of marine sediments 2. Distribution of sediments: controls and patterns 3. Sedimentary diagenesis: (a) Sedimentary and organic matter burial (b) Aerobic and anaerobic decomposition

More information

Carbon cycling in a changing climate. How will the oceans respond to the rapid changes in atmospheric carbon dioxide that are ahead of us?

Carbon cycling in a changing climate. How will the oceans respond to the rapid changes in atmospheric carbon dioxide that are ahead of us? Carbon cycling in a changing climate. How will the oceans respond to the rapid changes in atmospheric carbon dioxide that are ahead of us? pco 2(atm) pco 2(aq) CO 2(aq) + H 2 O H 2 CO 3 H2CO3 H + +HCO

More information

The World Ocean. Pacific Ocean 181 x 10 6 km 2. Indian Ocean 74 x 10 6 km 2. Atlantic Ocean 106 x 10 6 km 2

The World Ocean. Pacific Ocean 181 x 10 6 km 2. Indian Ocean 74 x 10 6 km 2. Atlantic Ocean 106 x 10 6 km 2 The World Ocean The ocean and adjacent seas cover 70.8% of the surface of Earth, an area of 361,254,000 km 2 Pacific Ocean 181 x 10 6 km 2 Indian Ocean 74 x 10 6 km 2 Atlantic Ocean 106 x 10 6 km 2 Oceanic

More information

Nutrients; Aerobic Carbon Production and Consumption

Nutrients; Aerobic Carbon Production and Consumption Nutrients; Aerobic Carbon Production and Consumption OCN 623 Chemical Oceanography Reading: Libes, Chapters 8 and 9 Formation and respiration of organic matter DINutrients POM Primary Producers Autotrophs

More information

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean. Earth s Oceans & Ocean Floor Date: Feelin Blue What are Earth s five main oceans? Almost of Earth is covered by water. On a map, the continents appear as huge islands surrounded by a vast global ocean.

More information

Liverpool NEMO Shelf Arctic Ocean modelling

Liverpool NEMO Shelf Arctic Ocean modelling St. Andrews 22 July 2013 ROAM @ Liverpool NEMO Shelf Arctic Ocean modelling Maria Luneva, Jason Holt, Sarah Wakelin NEMO shelf Arctic Ocean model About 50% of the Arctic is shelf sea (

More information

Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on

Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on Possible contribu.ons from the Solubility Data Project for arsenic and carbon dioxide environmental impacts mi.ga.on M. Clara F. Magalhães a and Jus2n Salminen b a Department of Chemistry and CICECO, University

More information

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years Lecture 3 - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years METR 113/ENVS 113 Spring Semester 2011 March 1, 2011 Suggested Reading

More information

Climate Variability Studies in the Ocean

Climate Variability Studies in the Ocean Climate Variability Studies in the Ocean Topic 1. Long-term variations of vertical profiles of nutrients in the western North Pacific Topic 2. Biogeochemical processes related to ocean carbon cycling:

More information

Carbon Exchanges between the Continental Margins and the Open Ocean

Carbon Exchanges between the Continental Margins and the Open Ocean Carbon Exchanges between the Continental Margins and the Open Ocean Outline: 1. Introduction to problem 2. Example of how circulation can export carbon to open ocean 3. Example of how particle transport

More information

Acid Rain These notes are from 2010

Acid Rain These notes are from 2010 Acid Rain These notes are from 2010 Cap and Trade Working Already December 15, 2009 10:14 AM - Roger Greenway, ENN The US already has years of experience with Cap and Trade. A sulfur dioxide (SO 2 ) Cap

More information