Direct synthesis of ordered mesoporous polymer/carbon nanofilaments with controlled mesostructures

Size: px
Start display at page:

Download "Direct synthesis of ordered mesoporous polymer/carbon nanofilaments with controlled mesostructures"

Transcription

1 J Porous Mater (9) 16: DOI 10.7/s Direct synthesis of ordered mesoporous polymer/carbon nanofilaments with controlled mesostructures Rong Kou Æ Qingyuan Hu Æ Donghai Wang Æ Vijay T. John Æ Zhenzhong Yang Æ Yunfeng Lu Published online: 11 April 8 Ó Springer Science+Business Media, LLC 8 Abstract One-dimensional mesoporous polymer/carbon nanofilaments with controlled mesostructures have been prepared by an infiltration process of phenolic oligomers/ surfactant into anodized alumina membranes followed by carbonization. Transmission electron microscopy (TEM), nitrogen sorption and X-ray diffraction (XRD) investigations show that as-prepared polymer nanofilaments possess ordered mesoporous structure tunable from circular hexagonal to cubic and concentric lamellar mesostructures. After carbonization, carbon nanofilaments with corresponding circular hexagonal, cubic and concentric lamellar mesoporous structure are obtained. Keywords One-dimensional Mesoporous Polymer Carbon Nanofilaments 1 Introduction One-dimensional carbon nanostructures with high surface area may potentially enhance the device performance in energy storage and catalysis due to its low dimension and R. Kou Q. Hu D. Wang V. T. John Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA Z. Yang (&) State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 080, P.R. China yangzz@iccas.ac.cn Y. Lu (&) Department of Chemical & Biomolecular Engineering, UCLA, Los Angeles, CA 90095, USA luucla@ucla.edu high surface area [1, 2]. Templated synthesis using anodized alumina membranes (AAM) as templates is widely used to synthesize one-dimensional nanostructures due to its simplicity and wide applicability of a large variety of materials [3, 4], which has been used for fabrication of mesoporous carbon nanofilaments [5, 6]. Previous reports on fabrication of carbon nanofilaments are based on replication process from mesoporous silica nanofilaments which involves infiltration of carbon precursor, carbonization, and removal of silica template [5, 6]. Recently two groups reported a simple approach to synthesize one-dimensional carbon nanostructures by confined assembly of carbon precursor and structural directing agents within AAM [7, 8]. This approach avoids tedious replication processes and silica template removal steps [5, 6, 9, 10]. However, the reported synthesis approach has not shown flexibility to control mesostructure and therefore controlled mesostructure in mesoporous carbon filaments has not been reported. Here we report a direct synthesis of one-dimensional polymer/carbon nanofilaments containing tunable ordered mesoporous structure by a facile infiltration process of phenolic oligomer/surfactant gel solution into AAM followed by direct carbonization. The resultant mesostructure in polymer/carbon nanofilaments is dependent on that of the feeding gel used for infiltration. The mesostructure of polymer/carbon nanofilaments were tunable from concentric hexagonal to cubic and concentric lamellar mesostructures. 2 Experimental The experimental procedure used to synthesize the oligomers is similar to that reported previously [11, 12]. Briefly, 0.30 g phenol, 0.06 g 20% NaOH, and 0.53 g formalin (37%) were reacted at 70 C for 1 h. After neutralization to

2 316 J Porous Mater (9) 16: ph 7 using HCl solution, water in the solution was removed under vacuum. The obtained oligomers were mixed with designed amount of Pluronic surfactant in ethanol. Surfactant used included P (EO 20 PO 70 EO 20 ) and F127 (EO 107 PO 70 EO 107 ). Viscous oligomer/surfactant composite gels obtained after removing most of the ethanol were infiltrated into AAO membranes with an average pore diameter nm (Whatman International Ltd.) at 60 C. The infiltrated AAO membranes were then heated at C in air for 24 h to allow further polymerization. Surfactant was removed by heating the infiltrated AAO membranes at 350 C in nitrogen for 2.5 h with a heating rate of 1 C/min. The carbonization process was conducted by heating the infiltrated AAO membranes in nitrogen at 900 C for 5 h with a heating rate of 1 C/min. Products of nanofilaments were obtained after removal of the AAO membranes using 5 M sodium hydroxide solution. The structure of the nanofilaments was characterized using transmission electron microscope (TEM, JEOL 2011 FasTEM, kv), nitrogen sorption (Micromeritics ASAP 2010 at 77 K), and X-ray diffraction (XRD, Simens D500, Cu-Ka, 40 kv) techniques. N 2 sorption isotherms of polymer nanofilaments were measured by using polymer/alumina composite. The sample weight used in the calculation included alumina membrane which contributes more than 50% to the whole weight. Since the difficulty to accurately calculate the exact mass of the polymer nanofilaments, the nitrogen adsorption isotherms and the corresponding pore size distributions for the polymer nanofilaments should only be used to provide qualitative information. 3 Results and discussion As synthesized polymer nanofilaments show lengths up to tens of micrometers and an average diameter of nm (Fig. 1), which is consistent with the pore structure of the AAO membranes. Mesostructure of the polymer nanofilaments can be readily tuned by adjusting surfactant concentration or by using Pluronic surfactants with different EO-block lengths. Figure 2 shows XRD patterns of polymer nanofilaments before and after surfactant removal. Before surfactant removal, the polymer nanofilaments prepared from P, phenol, formaldehyde at a molar ratio of :1:2.05 show an intense reflection peak at the d-spacing of 9.1 nm accompanied by the second peak at 4.7 nm (Fig. 2a). After surfactant removal, XRD shows a reflection peak with a decreased d-spacing of 7.8 nm (Fig. 2b). A higher P concentration (P:phenol:formaldehyde = :1:2.05) results in polymer nanofilaments with similar XRD reflections at 9.2 and 5.4 nm (Fig. 2e). After surfactant removal, broad XRD peaks centered at 6.9 and 4.5 nm were obtained (Fig. 2f). The use of F127 (containing longer EO blocks than Intensity / a.u. f e d c b a Theta / degree Fig. 1 SEM image of polymer nanofilaments prepared using AAM with pore diameter of nm Fig. 2 XRD patterns of as-synthesized polymer nanofilaments using P surfactant at low (a) and high concentration (e) and using F127 (c) as the structural directing agent, and of mesoporous polymer nanofilaments (b, d, f) prepared by removing surfactant from (a), (c) and (e) samples, respectively

3 J Porous Mater (9) 16: P) at a molar ratio of F127:phenol:formaldehyde = :1:2.05 results in polymer nanofilaments with a broad peak at 14.4 nm (Fig. 2c). After surfactant removal, the d-spacing was slightly decreased to 13.1 nm (Fig. 2d). In order to understand the mesostructure of the polymer nanofilaments, we synthesized mesoporous polymer films on glass following a similar synthesis and casting procedure. XRD patterns of these mesoporous polymers (Fig. 3) indicate the formation of 2D hexagonal (p6m with a unit cell parameter 9.8 nm), lamellar (interlayer distance of 13 nm before surfactant removal), and body-centered cubic mesostructure (Im3m with a unit cell parameter of 13 nm), which is consistent with mesostructure reported previously [11, 12]. We believe that mesostructure of the polymer nanofilaments are similar to those of the films. The less defined XRD patterns observed for the polymer nanofilaments are due to their much smaller ordered domains that diffract much less X-ray. TEM investigations further confirm the 2D hexagonal, lamellar and the cubic mesostructure within polymer nanofibers. Figure 4 shows TEM images of the mesoporous polymer nanofilaments, revealing the formation of novel ordered mesostructure in compliance with geometric constraint of the cylindrical pore. Consistent with the XRD of the mesoporous polymer nanofilaments prepared using the low P concentration (Fig. 2b), TEM shows a unique circular hexagonal mesostructure (Fig. 4a). The hexagonally arranged mesopores are clearly observed at the edges of the nanofilaments. The formation of such a circular hexagonal mesostructure is due to the bending of hexagonal liquid crystalline tubes in adapting to the curvature of AAO pore surface, which has been observed previously when silicate and surfactant were assembled within AAO membranes [13, 14]. Consistent with the XRD studies (Fig. 2e, f), TEM of the mesoporous polymer nanofilaments prepared using the high d 300 c Intensity / a.u b 210 a Theta / degree Fig. 3 XRD pattern of bulk mesoporous polymer prepared by casting precursor sol on the substrate with (a) 2D hexagonal (p6m), (b) cubic (Im3m) and lamellar mesostructure before (c) and after (d) calcination Fig. 4 Representative TEM images of mesoporous polymer nanofilaments with (a) circular hexagonal, (b) concentric lamellar, and (c) cubic mesoporous structures. Inset of (b) showing concentric lamellar polymer nanofilaments with close ends. Inset of (c) showing a cubic mesoporous polymer nanofilament at high magnification. Scale bar in the inset is 50 nm

4 318 J Porous Mater (9) 16: Fig. 5 (a) Nitrogen adsorption/ desorption isotherms of mesoporous polymer nanofilaments with circular hexagonal, cubic and concentric lamellar mesostructure; (b) BJH pore size distribution of the polymer nanofilaments confined within alumina pore channels (a) Volume Adsorbed (cm3/g STP) Hexagonal structure Cubic structure Lamellar structure Relative Pressure (b) dv/dd (cm3/g-nm) Pore Size (nm) Hexagonal structure Cubic structure Lamellar structure P concentration show a concentric lamellar mesostructure with inter-layer distances ranging from 13 to 16 nm (Fig. 4b). The formation of such concentric lamellar mesostructure is due to compliance of a lamellar mesophase with cylindrical pores that eliminates energetically unfavorable edge effects [13, 14]. Distinct from thin films containing lamellar mesostructure that collapses upon removing surfactant, the concentric lamellar structure is preserved after surfactant removal, which is consistent with the XRD study (Fig. 2f). Note that most of the concentric lamellar nanofilaments contain open ends; however, polymer nanofilaments with closed ends were also observed occasionally (see the inset of Fig. 4b), which may be due to the templating effect from the closed-end cylindrical alumina pores. Figure 4c show TEM images of mesoporous polymer nanofilaments prepared using F127 surfactant, revealing a highly ordered cubic mesostructure. Ordered domains viewed along [111] and [] directions can be clearly observed at the edge and center, respectively. The cell parameter estimated from the TEM images is approximately 12.6 nm, which is consistent with the value (13 nm) determined from XRD data. Previous research indicated that Im3m cubic mesostructured silica thin films templated by F127 surfactant tend to align their () planes parallel to vapor/liquid or liquid/solid interface [15]. The geometric confinement imposed by the cylindrical pores directs the orientation of () plane preferentially parallel to the pore axis. The inset in Fig. 4c shows a high-magnification TEM image of a cubic mesoporous polymer nanofilament, further revealing the two distinctive mesostructure orientations. While it took a large effort to synthesize enough amount of polymer nanofilaments for nitrogen sorption studies, nitrogen adsorption desorption isotherms (Fig. 5a) of the mesoporous polymer nanofilaments before removing AAO membranes show type-iv isotherms with significant adsorption desorption hysteresis. The pore diameter of the hexagonal, lamellar, and cubic polymer nanofilaments is around 9, 5, and 11 nm, respectively, according to the BJH model (Fig. 5b). The lamellar polymer nanofilaments show a relatively low surface area and pore volume, which may be due to partial structure collapse upon the surfactant removal. Note the significant nitrogen uptake at a high relative pressure ([0.7) indicates the presence of large pores, which are the spaces between the polymer nanofilaments and the AAO pore walls created due to the shrinkage of the polymer nanofilaments. Fig. 6 TEM images mesoporous carbon nanofilaments with (a) circular hexagonal, (b) cubic, and (c) concentric lamellar mesostructure

5 J Porous Mater (9) 16: Carbonization of the polymer nanofilaments converts them into mesoporous carbon nanofilaments. Figure 6 shows TEM images of mesostructured carbon nanofilaments with (a) circular hexagonal, (b) cubic and (c) concentric lamellar mesostructure, indicating that the mesostructure can be preserved through carbonization process. The average length of the mesostructured carbon nanofilaments is around several hundred nanometers, which is shorter than those of polymer nanofilaments attributable to its fragile mechanical property. The mesostructures shown in Fig. 6 are similar to those shown in Fig. 4. The cell parameter estimated from the TEM image for circular hexagonal and cubic carbon nanofilaments are slightly decreased compared with those of the polymer nanofilaments due to framework shrinkage upon carbonization. The carbon nanofilaments show less ordered concentric lamellar structure probably due to a higher degree of structural collapse upon carbonization process. 4 Conclusion In summary, we have demonstrated synthesis of onedimensional mesoporous polymer and carbon nanofilaments with controlled mesostructure via infiltration of phenolic oligomer/surfactant gel solution into cylindrical pores of AAMs. The mesostructure of polymer and carbon nanofilaments is consistent with that of feeding gels (e.g. hexagonal, cubic and lamellar) correspondingly. After carbonization, the mesoporous structure within the novel carbon nanofilaments are maintained and tunable from circular hexagonal to cubic and concentric lamellar mesostructures. Acknowledgements The work was partially funded by NASA (Grant No. NAG and NCC-3-946), Office of Naval Research, Louisiana Board of Regents (Grant No. LEQSF(1-04)- RD-B-09), National Science Foundation (Grant No. NSF-DMR and CAREER Award), and National Science Foundation of China (Grant No and ). References 1. M. Terrones, Annu. Rev. Mater. Res. 33, 419 (3) 2. A. Soffer, J. Electroanal. Chem. 38, 25 (1972) 3. C.R. Martin, Science (Washington, D.C.) 266, 1961 (1994) 4. Z. Yang, Z. Niu, X. Cao, Z. Yang, Y. Lu, Z. Hu, C.C. Han, Angew. Chem. Int. Ed. 42, 4201 (3) 5. W.S. Chae, M.J. An, S.W. Lee, M.S. Son, K.H. Yoo, Y.R. Kim, J. Phys. Chem. B, 6447 (6) 6. D.J. Cott, N. Petkov, M.A. Morris, B. Platschek, T. Bein, J.D. Holmes, J. Am. Chem. Soc. 128, 3920 (6) 7. M.B. Zheng, J.M. Cao, X.F. Ke, G.B. Ji, Y.P. Chen, K. Shen, J. Tao, Carbon 45, 1111 (7) 8. K. Wang, W. Zhang, R. Phelan, M.A. Morris, J.D. Holmes, J. Am. Chem. Soc. 129, (7) 9. D.H. Wang, H.M. Luo, R. Kou, M.P. Gil, S.G. Xiao, V.O. Golub, Z.Z. Yang, C.J. Brinker, Y.F. Lu, Angew. Chem. Int. Ed. 43, 6169 (4) 10. D.H. Wang, W.L. Zhou, B.F. McCaughy, J.E. Hampsey, X.L. Ji, Y.B. Jiang, H.F. Xu, J.K. Tang, R.H. Schmehl, C. O Connor, C.J. Brinker, Y.F. Lu, Adv. Mater. 15, 130 (3) 11. S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Chem. Commun (5) 12. Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang, Z. Li, C.Z. Yu, B. Tu, D.Y. Zhao, Angew. Chem. Int. Ed. 44, 7053 (5) 13. D. Wang, R. Kou, Z. Yang, J. He, Z. Yang, Y. Lu, Chem. Commun. (Cambridge, United Kingdom) 166 (5) 14. Y. Wu, G. Cheng, K. Katsov, S.W. Sides, J. Wang, J. Tang, G.H. Fredrickson, M. Moskovits, G.D. Stucky, Nat. Mater. 3, 816 (4) 15. D.Y. Zhao, P.D. Yang, N. Melosh, Y.L. Feng, B.F. Chmelka, G. Stucky, Adv. Mater. (Weinheim, Germany) 10, 1380 (1998)

Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts

Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2011, 8(1), 196-200 Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts

More information

Supporting Information

Supporting Information Supporting Information Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes Hongwei Zhang, Owen Noonan, Xiaodan Huang, Yannan Yang, Chun Xu, Liang Zhou, and Chengzhong

More information

Cooperative Template-Directed Assembly of Mesoporous Metal-Organic Frameworks

Cooperative Template-Directed Assembly of Mesoporous Metal-Organic Frameworks Supporting Information Cooperative Template-Directed Assembly of Mesoporous Metal-Organic Frameworks Lin-Bing Sun, Jian-Rong Li, Jinhee Park, and Hong-Cai Zhou* Department of Chemistry, Texas A&M University,

More information

Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their. application in supercapacitor

Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their. application in supercapacitor Electronic Electronic Supplementary Information Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor Bo You, Jun Yang,* Yingqiang Sun and Qingde

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Mesoporous C-coated SnO x nanosheets

More information

A New Redox Strategy for Low-Temperature Formation of Strong Basicity on Mesoporous Silica

A New Redox Strategy for Low-Temperature Formation of Strong Basicity on Mesoporous Silica Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information A New Redox Strategy for Low-Temperature Formation

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Synthesis of Nanostructured Materials by Using Metal-Cyanide Coordination Polymers and Their Lithium Storage

More information

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals Zhenkun Sun,, Yong Liu, Bin Li, Jing Wei, Minghong Wang, Qin Yue, Yonghui Deng,

More information

Sodium silicate as source of silica for synthesis of mesoporous SBA-15

Sodium silicate as source of silica for synthesis of mesoporous SBA-15 IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Sodium silicate as source of silica for synthesis of mesoporous SBA-15 To cite this article: Norhasyimi Rahmat et al 2016 IOP

More information

Supporting Information for

Supporting Information for Supporting Information for Multilayer CuO@NiO Hollow Spheres: Microwave-Assisted Metal-Organic-Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage Wenxiang Guo, Weiwei

More information

Controlling the Interface-Areas of. Heterojunction Nanowires for High Performance Diodes

Controlling the Interface-Areas of. Heterojunction Nanowires for High Performance Diodes Supporting Information Controlling the Interface-Areas of Organic/Inorganic Semiconductors Heterojunction Nanowires for High Performance Diodes Zheng Xue,, Hui Yang, Juan Gao, Jiaofu Li, Yanhuan Chen,

More information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles Supporting Information Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles with Superior Electrochemical Performance for Supercapacitors Shude Liu a, Kalimuthu Vijaya Sankar

More information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage Supporting Information In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on Reduced Graphene Oxide for Reversible Lithium Storage Yingbin Tan, [a] Ming Liang, [b, c] Peili Lou, [a] Zhonghui Cui,

More information

Supplementary Information

Supplementary Information Supplementary Information Fabrication of Novel Rattle-Type Magnetic Mesoporous carbon Microspheres for Removal of Microcystins Xinghua Zhang and Long Jiang* Beijing National Laboratory for Molecular Science

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Supporting Information for Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Zhu-Yin Sui, Pei-Ying Zhang,, Meng-Ying Xu,

More information

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information Facile synthesis of accordion-like Ni-MOF superstructure

More information

Supporting Information. Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with. Controlled Mesoporosity and Size

Supporting Information. Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with. Controlled Mesoporosity and Size Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with Controlled

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012254 TITLE: Fabrication of Metal Nanostructures in Mesoporous Silicas DISTRIBUTION: Approved for public release, distribution

More information

Precious Metal-free Electrode Catalyst for Methanol Oxidations

Precious Metal-free Electrode Catalyst for Methanol Oxidations Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting information SnO 2 Nanocrystals Decorated-Mesoporous ZSM-5 Spheroidicity

More information

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES Digest Journal of Nanomaterials and Biostructures Vol. 11, No. 1, January - March 2016, p. 271-276 PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL

More information

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate An-Yuan Yin, Xiao-Yang Guo, Wei-Lin Dai*, Kang-Nian Fan Shanghai Key Laboratory of Molecular

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery Supporting information for Supplementary Material (ESI) for Journal of Materials Chemistry Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer

More information

enzymatic cascade system

enzymatic cascade system Electronic Supplementary Information Fe 3 O 4 -Au@mesoporous SiO 2 microsphere: an ideal artificial enzymatic cascade system Xiaolong He, a,c Longfei Tan, a Dong Chen,* b Xiaoli Wu, a,c Xiangling Ren,

More information

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage Supporting Information Tuning the Shell Number of Multi-Shelled Metal Oxide Hollow Fibers for Optimized Lithium Ion Storage Jin Sun, Chunxiao Lv, Fan Lv, ǁ Shuai Chen, Daohao Li, Ziqi Guo, Wei Han, Dongjiang

More information

Supporting Information

Supporting Information Supporting Information Fe 3 O 4 @Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes Huailin Fan, Ruiting Niu, & Jiaqi Duan, Wei Liu and Wenzhong Shen * State Key Laboratory of Coal Conversion,

More information

Synthesis of ordered microporous carbons via template technique

Synthesis of ordered microporous carbons via template technique Synthesis of ordered microporous carbons via template technique Zhou Ying, Yao Qimei, Qiu Jieshan *, Guo Hongchen, Sun Zongwei Carbon Research Laboratory, Center for Nano Materials and Science, School

More information

Supporting Information

Supporting Information Supporting Information Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes Nahyeon Kim, Hyejung Park, Naeun Yoon, and Jung Kyoo Lee * Department of Chemical Engineering,

More information

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries Supporting Information Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries Ding-Rong Deng, Fei Xue, Yue-Ju Jia, Jian-Chuan Ye, Cheng-Dong Bai,

More information

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries SUPPLEMENTARY INFORMATION Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries Qiang Sun, Bin He, Xiang-Qian Zhang, and An-Hui Lu* State Key Laboratory

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201604015 High Performance Graphene/Ni 2 P Hybrid Anodes for Lithium

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

Supplementary information

Supplementary information Supplementary information Electrochemical synthesis of metal and semimetal nanotube-nanowire heterojunctions and their electronic transport properties Dachi Yang, ab Guowen Meng,* a Shuyuan Zhang, c Yufeng

More information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China Electronic Supplementary Material A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various ph media

More information

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion Supporting Information A Scalable Synthesis of Few-layer MoS2 Incorporated into Hierarchical Porous Carbon Nanosheets for High-performance Li and Na Ion Battery Anodes Seung-Keun Park, a,b Jeongyeon Lee,

More information

Supporting information

Supporting information Supporting information Thermo-responsive coatings on hollow particles with mesoporous shells serve as stimuliresponsive gates to species encapsulation and release. Yang Su 1, Olakunle Francis Ojo 1, Igor

More information

Supporting Information. Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials

Supporting Information. Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Carbon nanofibers by pyrolysis of self-assembled

More information

Supporting Information

Supporting Information Supporting Information Hierarchical Porous N-doped Graphene Monoliths for Flexible Solid-State Supercapacitors with Excellent Cycle Stability Xiaoqian Wang, Yujia Ding, Fang Chen, Han Lu, Ning Zhang*,

More information

Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance

Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance CARBON 49 (2011) 4580 4588 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance

More information

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity 1 Electronic Supplementary Information (ESI) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity for Chao Chen, Seung-Tae Yang, Wha-Seung Ahn* and

More information

Metal-free and Solvent-free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds

Metal-free and Solvent-free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds 1 Supporting Information Metal-free and Solvent-free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds Bo Chen, 1, Lianyue Wang, 1 Wen Dai, 1 Sensen Shang, 1, Ying

More information

Microstructure and formation mechanism of titanium dioxide nanotubes

Microstructure and formation mechanism of titanium dioxide nanotubes Chemical Physics Letters 365 (2002) 427 431 www.elsevier.com/locate/cplett Microstructure and formation mechanism of titanium dioxide nanotubes Y.Q. Wang a,b, *, G.Q. Hu a, X.F. Duan a, H.L. Sun c, Q.K.

More information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization Supporting Information High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization Zhuo Wang, Tingting Yan, Guorong Chen, Liyi Shi and Dengsong Zhang* Research Center

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201600121 Discovering a Dual-Buffer Effect for Lithium Storage:

More information

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon

Supporting Information. Phenolic/resin assisted MOFs derived hierarchical Co/N-doping carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Supporting Information

Supporting Information Supporting Information Collapsed (Kippah) Hollow Silica Nanoparticles Kun-Che Kao, Chieh-Jui Tsou and Chung-Yuan Mou* Experimental Section Materials: Reagents: Cetyltrimethylammonium bromide (CTAB, 99%+),

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO 2 induced nanoemulsion. Supporting Information

Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO 2 induced nanoemulsion. Supporting Information Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO 2 induced nanoemulsion Yueju Zhao, Jianling Zhang, Wei Li, Chaoxing Zhang, Buxing Han* Beijing National Laboratory for

More information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) General Synthesis of Graphene-Supported

More information

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors Supporting Information Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for High-Rate Supercapacitors Miao Gao, Wei-Kang Wang, Xing Zhang, Jun Jiang, Han-Qing Yu CAS Key Laboratory of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Cation exchange MOF-derived nitrogen-doped

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting Supporting Information for Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting Zhengfei Dai,,, Hongbo Geng,,, Jiong Wang, Yubo Luo, Bing Li, ǁ Yun Zong, ǁ Jun Yang, Yuanyuan

More information

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Electronic Supporting Information for Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Cheng-Meng Chen* a, Qiang Zhang b, Chun-Hsien Huang c, Xiao-Chen

More information

Angewandte. A General Route to Macroscopic Hierarchical 3D Nanowire Networks**

Angewandte. A General Route to Macroscopic Hierarchical 3D Nanowire Networks** Nanostructures A General Route to Macroscopic Hierarchical 3D Nanowire Networks** Donghai Wang, Hongmei Luo, Rong Kou, Maria P. Gil, Shuaigang Xiao, Vladimir O. Golub, Zhenzhong Yang,* C. Jeffrey Brinker,

More information

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors

Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Electronic Supporting Information for Macroporous bubble graphene film via template-directed ordered-assembly for high rate supercapacitors Cheng-Meng Chen* a, Qiang Zhang b, Chun-Hsien Huang c, Xiao-Chen

More information

Core-shell 2 mesoporous nanocarriers for metal-enhanced fluorescence

Core-shell 2 mesoporous nanocarriers for metal-enhanced fluorescence Core-shell Ag@SiO 2 @msio 2 mesoporous nanocarriers for metal-enhanced fluorescence Jianping Yang a, Fan Zhang a *, Yiran Chen a, Sheng Qian a, Pan Hu a, Wei Li a, Yonghui Deng a, Yin Fang a, Lu Han a,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially-Isolated Catalytic Groups on Mesoporous Materials By Krishna K. Sharma

More information

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Large-Area and Uniform Surface-Enhanced Raman. Saturation Supporting Information Large-Area and Uniform Surface-Enhanced Raman Spectroscopy Substrate Optimized by Enhancement Saturation Daejong Yang 1, Hyunjun Cho 2, Sukmo Koo 1, Sagar R. Vaidyanathan 2, Kelly

More information

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information Self-assembled pancake-like hexagonal

More information

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials Before starting Julien Schmitt, postdoc in the Physical Chemistry department Internship 2010: Study of the SAXS scattering pattern of mesoporous materials PhD 2011-2014: Self-assembly mechanism of mesoporous

More information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Supporting Information Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material Wei Huang,, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng,

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) Experimental details 1. Preparation of KIT-6 mesoporous silica: Conc. HCl solution (37 wt%) and Pluronic P123 were dissolved in water. After the dissolution,

More information

Supporting Information. Modulating the photocatalytic redox preferences between

Supporting Information. Modulating the photocatalytic redox preferences between Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Modulating the photocatalytic redox preferences between anatase TiO 2 {001}

More information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Electronic Supplementary Material Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Li Qin 1,2,5, Ruimin Ding 1,2, Huixiang

More information

Electronic supplementary information

Electronic supplementary information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic supplementary information Heterogeneous nucleation and growth of highly crystalline

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

A Hydrophilic/Hydrophobic Janus Inverse-Opal

A Hydrophilic/Hydrophobic Janus Inverse-Opal Supporting information A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration Dajie Zhang #, Jie Liu //#, Bo Chen *, Yong Zhao, Jingxia Wang * //, Tomiki Ikeda, Lei Jiang //. CAS

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Control of Wall Thickness and Extraordinarily High Hydrothermal Stability of Nanoporous MCM-41 Silica

Control of Wall Thickness and Extraordinarily High Hydrothermal Stability of Nanoporous MCM-41 Silica Journal of the Chinese Chemical Society, 2007, 54, 35-40 35 Control of Wall Thickness and Extraordinarily High Hydrothermal Stability of Nanoporous MCM-41 Silica Chi-Feng Cheng* ( ), Shu-Hsien Chou ( ),

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

Role of iron in preparation and oxygen reduction reaction activity of nitrogen-doped carbon

Role of iron in preparation and oxygen reduction reaction activity of nitrogen-doped carbon Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Role of iron in preparation and oxygen reduction reaction

More information

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions 2015 2 nd International Conference on Material Engineering and Application (ICMEA 2015) ISBN: 978-1-60595-323-6 Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different

More information

bifunctional electrocatalyst for overall water splitting

bifunctional electrocatalyst for overall water splitting Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Hierarchical Ni/NiTiO 3 derived from NiTi LDHs: a bifunctional electrocatalyst

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Rational design of thermo-responsive adsorbents:

More information

One-step Carbonization Route to Nitrogen-doped Porous Carbon Hollow Spheres with Ultrahigh Nitrogen Content for CO 2 Adsorption

One-step Carbonization Route to Nitrogen-doped Porous Carbon Hollow Spheres with Ultrahigh Nitrogen Content for CO 2 Adsorption Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information One-step Carbonization Route to Nitrogen-doped Porous Carbon Hollow Spheres

More information

Enhancing Sodium Ion Battery Performance by. Strongly Binding Nanostructured Sb 2 S 3 on

Enhancing Sodium Ion Battery Performance by. Strongly Binding Nanostructured Sb 2 S 3 on Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb 2 S 3 on Sulfur-Doped Graphene Sheets Xunhui Xiong, Guanhua Wang, Yuwei Lin, Ying Wang, Xing Ou, Fenghua Zheng, Chenghao Yang,*,a

More information

Having a High Mg/Al Molar Ratio

Having a High Mg/Al Molar Ratio SUPPORTING INFORMATION High-Temperature CO 2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio Suji Kim, Sang Goo Jeon, and Ki Bong Lee*, Department of Chemical and Biological Engineering, Korea

More information

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction Supporting Information Electronic Modulation of Electrocatalytically Active Center of Cu 7 S 4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction Qun Li, Xianfu Wang*, Kai Tang,

More information

Supporting information

Supporting information a Supporting information Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron- Embedded Porous Carbons Derived from Metal Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and

More information

Supporting Information

Supporting Information Supporting Information Controllable Adsorption of CO2 on Smart Adsorbents: An Interplay between Amines and Photoresponsive Molecules Lei Cheng, Yao Jiang, Shi-Chao Qi, Wei Liu, Shu-Feng Shan, Peng Tan,

More information

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information for One-pot synthesis of bi-metallic PdRu tripods

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 2006, 6, 318-323 sensors ISSN 1424-8220 2006 by MDPI http://www.mdpi.org/sensors Gas Sensing Properties of Ordered Mesoporous SnO 2 Thorsten Wagner 1,2,*, Claus-Dieter Kohl 1, Michael Fröba 2 and

More information

Research Article Synthesis and Electrochemical Characterization of Mesoporous MnO 2

Research Article Synthesis and Electrochemical Characterization of Mesoporous MnO 2 Chemistry Volume 2015, Article ID 768023, 5 pages http://dx.doi.org/10.1155/2015/768023 Research Article Synthesis and Electrochemical Characterization of Mesoporous MnO 2 Jia Chang Zhao, Jun Wang, and

More information

Synthesis of Mesoporous ZSM-5 Zeolite Crystals by Conventional Hydrothermal Treatment

Synthesis of Mesoporous ZSM-5 Zeolite Crystals by Conventional Hydrothermal Treatment Synthesis of Mesoporous ZSM-5 Zeolite Crystals by Conventional Hydrothermal Treatment Ming Zhou,* Ali A. Rownaghi, and Jonas Hedlund,* *Chemical Technology, Luleå University of Technology, SE-971 87 Luleå,

More information

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction Supporting Information: Magnesiothermic synthesis of sulfur-doped as an efficient metal-free electrocatalyst for oxygen reduction Jiacheng Wang, 1,2,3, * Ruguang Ma, 1,2,3 Zhenzhen Zhou, 1,2,3 Guanghui

More information

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 1 Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

More information

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Supporting Information Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor Liuan Gu, Jingyu Wang *, Hao Cheng, Yunchen Du and Xijiang Han* Department

More information

Template-Free Synthesis of Beta Zeolite Membranes on Porous α-al 2 O 3 Supports

Template-Free Synthesis of Beta Zeolite Membranes on Porous α-al 2 O 3 Supports Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Template-Free Synthesis of Beta Zeolite Membranes on Porous

More information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information Supporting Information Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and Long-Life Anodes for Lithium-Ion Batteries Lichun Yang, a Xiang Li, a Yunpeng Ouyang, a Qingsheng Gao, b Liuzhang

More information

Utilization of Rice Husk Ash Silica in Controlled Releasing Application

Utilization of Rice Husk Ash Silica in Controlled Releasing Application Journal of Metals, Materials and Minerals, Vol.9 No.2 pp.6-65, 29 Utilization of Rice Husk Ash Silica in Controlled Releasing Application Piyawan PRAWINGWONG, Chaiyan CHAIYA 2, Prasert REUBROYCHAROEN 3

More information

Research Article Nanostructured Mesoporous Silica Wires with Intrawire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels

Research Article Nanostructured Mesoporous Silica Wires with Intrawire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels Nanomaterials, Article ID 932160, 8 pages http://dx.doi.org/10.1155/2014/932160 Research Article Nanostructured Mesoporous Silica Wires with Intrawire Lamellae via Evaporation-Induced Self-Assembly in

More information

Supplementary Information for Self-assembled, monodispersed, flowerlike γ-alooh

Supplementary Information for Self-assembled, monodispersed, flowerlike γ-alooh Supplementary Information for Self-assembled, monodispersed, flowerlike γ-alooh hierarchical superstructures for greatly fast removal of heavy metal ions with high efficiency Yong-Xing Zhang, a,b Yong

More information

Seeding-Growth of Helical Mesoporous Silica Nanofibers Templated by Achiral Cationic Surfactant

Seeding-Growth of Helical Mesoporous Silica Nanofibers Templated by Achiral Cationic Surfactant pubs.acs.org/langmuir 2009 American Chemical Society Seeding-Growth of Helical Mesoporous Silica Nanofibers Templated by Achiral Cationic Surfactant Longping Zhou, Guosong Hong, Limin Qi,, * and Yunfeng

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Supporting Information

Supporting Information Supporting Information A General Strategy for the Synthesis of Transition-Metal Phosphide/N-doped Carbon Frameworks for Hydrogen and Oxygen Evolution Zonghua Pu, Chengtian Zhang, Ibrahim Saana Amiinu,

More information