Free-living Phagotrophic Protists. Introducing the role of remineralization and placing protists in a food web context

Size: px
Start display at page:

Download "Free-living Phagotrophic Protists. Introducing the role of remineralization and placing protists in a food web context"

Transcription

1 Free-living Phagotrophic Protists Introducing the role of remineralization and placing protists in a food web context

2 Tuesday: Feeding selectively Model Protist: Ingestion (methods) and Metabolism Today: Last few slides: Metabolism -- growth efficiency and temperature effects Continue with: 1) Excretion, Remineralization in the Model Grazer 2) How do protists link to higher trophic levels? Size considerations... 3) Metazoans that directly impact the microbial food web

3 Metabolism: Excretion/Remineralization New Handout...

4 Protist Excretion Grazing of flagellate on diatom No bacteria With bacteria diatom abundance flagellate abundance particulate nitrogen NH 4 & urea Goldman & Caron 1985

5 Factors affecting Excretion Rates Ciliate feeding on bacteria Flagellate feeding on bacteria Ferrier-Pages & Rassoulzadegan 1994

6 Why waste that food? Concept: Organisms tend to retain the nutrients that are limiting to growth and excrete the nutrients that are available in excess. Underlying assumption: Organisms try to maintain a constant stoichiometry of elements, such as C, N, P, in their own cells through conserving or excreting/egesting food.

7 Prey (food) Quality Matters Paraphysomonas (flagellate) fed phytoplankton grown in chemostats GGE (G/I) Caron et al n.b., GGE s probably 10-15% high, because of re-ingestion

8 Elemental Ratios Organism C:N N:C Bacteria Phagotrophic Protist Algae (healthy)* Algae (N-limited) *healthy ratio from Redfield ratio N:C (predator) < N:C (prey), then excess N excreted e.g., protozoa feeding on bacteria excrete excess N, but if feeding on algal cell would conserve N.

9 Relative Importance of Microbial Loop Organisms with regard to Remineralization Who are the important nutrient cyclers? An example: DOM BACT ALGAE Parameter BACT ZOOFL CILIATE Ingestion(C) Respiration (C) AE GGE C:N(prey) C:N(pred)

10 DOM Uptake by Bacteria Bacteria C:N = 5, DOM C:N = 6.6 (from algae) Bacteria are generally not efficient recyclers of nutrients (Nitrogen). High GGE, C:N(bact) << C:N(DOM)

11 Impact of Bacterial GGE? Cycling of DOC during diatom blooms: two examples Bacterial GGE Kirchman et al HMW: mainly polysacharides (high C:N) LMW: mainly amino acids (low C:N) Amon & Benner 1994

12 Food (DOM) quality matters Bacteria grown on substrates, ranging in C:N from At C:N > 6 (~algal C:N), GGE = 40-50%, Nitrogen regeneration: 0-20% Bacteria are significant respirers of C, but if DOM poor in N, they have little role in N remineralization

13 Protists feeding on bacteria Protist C:N = 5.6, Bacteria C:N = 5 Bacterivores expected to excrete and egest a significant portion of consumed food. Protist C:N > Bacteria C:N

14 Protist feeding on Algae Protist C:N = 5.6, Algae C:N = 6.6 Protist herbivores would be expected to excrete and egest less, because their elemental ratio is closer to that of their prey.

15 Protist Egestion: Contribution to DOM pool Strom et al Protist Grazer: in all experiments, more DOC produced in presence of grazing % of algal carbon released as DOC (30% carbohydrates) Copepod Grazer: in 2/4 experiments, more DOC produced in presence of grazing

16 Summary Role of organisms as nutrient remineralizers 1) low GGE increases with 2) low C:N(prey) relative to C:N(pred) 3) small size = high specific rates - because larger organisms (metazoans) also have to fuel metabolic products into reproduction - also, sinking velocity of fecal material decreases with small size

17 Phagotrophic Protists as Links to Higher Trophic Levels Bigger organisms tend to feed on smaller ones... 10:1 predator:prey size ratios Filter feeders vs. Direct Interception feeders Metazoan predators that are important microbial loop consumers vs. those that aren t Implications for food web efficiency Classic vs. Microbial Food Web High vs. Low Energy Ecosystems

18 Prey:Predator Size Ratios All organisms feed selectively, the optimal range of prey being determined by: Sensory mechanisms & thresholds for detecting prey Physical constraints on contact (encounter) frequency Minimum size that can be effectively captured/handled Maximum size that can be effectively captured/handled

19 Feeding Mechanisms: Searching for Food Increasingly complex sensory & capture mechanisms are required to offset the fact that organism mass increases at a faster rate than surface area Flagellates Ciliates Crustacea Fish Direct Contact Filter feeding Structures Chemo & Mechanical Receptors Visual mm very large Body Size (length) Radiolarians Strategy: increase surface are at expense of mass & organizational complexity Salps Baleen whales behavior: exploit patches Karen figure after Selph, a drawing OCN 626, by M. Fall Landry,pictures 2009 from J. Drazen (fish), D. Keith (salp), K. Sime (whale), (copepod), R. Patterson (flagellates)

20 Food particle size as a function of predator size line = 1:10 food:predator size filled circles: filter feeders open circles: direct interception feeders Fenchel 1986

21 Protist optimum Prey Selection: Is it 10:1? Hansen et al. 1994

22 Dinoflagellate s place in food webs 1) predators of autotrophs 2) prey of mesozooplankton 3) predators of juvenile/naupliar mesozooplankton 4) predators and prey of other HTD

23 Metazoans: Raptors above/on the 1:10 line ambush predators/raptors raptorial feeders

24 Metazoan predators: Crustaceans -- hard-bodied (chitin exoskeleton) with specialized, segmented feeding, swimming, and sensory appendages. Responsive to mechanical, chemical and light cues. Daily vertical migration in many forms. Copepods: most numerous multicellular animals. Many species benthic or parasitic. Most are <3 mm, the largest free-living form ~16 mm. Suspension feeding via water currents generated by mouth parts, particles strained by appendages with fine setae. Raptorial feeding by forms with larger, less setose maxillae and maxillipeds for grasping and manipulating prey. Most pelagic forms omnivorous. Euphausiids: stalked compound eyes, shrimp-like body. Omnivorous, some suspension feed on larger phytoplankton, highly motile, some exhibit schooling (e.g., krill in Antarctic waters). Amphipods: sessile compound eyes, legs usually modified for grasping. Most benthic, most open ocean forms live on, or in association with, gelatinous zooplankton. Most are predators. The crustaceans also include shrimp, crabs, lobster and many other forms that are planktonic only as larvae (meroplankton, as opposed to holoplankton - plankton for entire life). Photo credits: copepod: euphausiid: Uwe Kils, amphipod: shrimp larvae: geochange.er.usgs.gov/sw/impacts/biology crab larvae: ibss.iuf.net/people/skryabin/merop.html lobster larvae: Russell Bradford, CSIRO

25 Crustacean feeding appendages filter feeder: crushing mandible, fine hairs on appendages e.g., Calanus sp. Filter feeder Cutting edge of mandible Predator predator: slicing mandible, no hairs on appendages e.g., Euchaeta sp.

26 Why they don t feed on small organisms Herbivorous copepod, Acartia clausi ~15 µm ~7 µm ~5 µm Florian Hantzshe Nival & Nival 1976

27 Metazoan Predators: Chaetognaths -- arrow worms with elongated body separated into head, trunk, and tail. Exclusively marine. Head with paired eyes and prehensile, chitinous jaws with hooks. Ambush predator, responds to mechanical cues, swallows prey (copepods, fish larvae, other chaetognaths) whole. Hermaphroditic, testes in tail, ovaries in trunk. chaetognath: R. Hopcroft, Univ. Alaska - Fairbanks chaetognath head: chaetognath with copepod: Jean-Marie Cavanihac, Karen Selph, OCN 626, Fall uk.org

28 Metazoans: Filter feeders below 1:10 line filter feeders microbial loop organisms

29 Gelatinous Zooplankton: grouped by morphological traits, not genetic relatedness, bodies with high water contents, secrete mucus nets so that animal is effectively bigger and can capture more food Medusae: carnivores, food captured with tentacles armed with paralyzing nematocysts. Siphonophores, including the Portugese Man-of-War, are particularly significant in oceanic waters. Ctenophores: comb jellies, characterized by bands of joined cilia around body surface. Tentaculate forms have 2 tentacles with special sticky cells to entangle prey; Lobate types capture prey contacting their large lobed feeding surfaces. Salps: Barrel-shaped animal with muscle bands that contract to force water into a buccal opening and out of an atrial opening. Ciliary-mucus filter feeders - particles in the water current entering the buccal opening are captured on a net of mucus strands. Chiefly oceanic -- sometimes occur in dense swarms. Photo credits: ctenophores: & Marsh Youngbluth, life.bio.sunysb.edu/marinebio/plankton medusae: & salps: &

30 jellyzone.com Appendicularians (Hemichordata) a.k.a. larvaceans -- mature forms retain appearance of tadpole chordate larvae, head with tail. Body enclosed in a feeding house. Undulations of tail cause water to enter house through coarse filter where fine particles are concentrated. The house is abandoned periodically and a new house is built. Old houses are important component of marine snow. Because of house mesh size, potentially important as grazers Karen of Selph, picoplankton OCN 626, Fall 2009

31 Short-circuits vs. Baby-steps effect on food web Filter feeders that Short-circuit the food chain: Appendicularians (1-10 mm) Bacteria & Sm. flagellates Salps (~10 cm) Sm. flagellates Neocalanus spp., SubArctic Pacific (5-10 mm) 2 µm+ Anchovetta (10+ mm) Diatoms Baleen Whales (10s of meters) Krill Raptorial feeders that reduce food web efficiency: Paraphysomonas (flagellate) Diatoms (1/2 size) Didinium (ciliate) Paramecium (ciliate) (equal size) Oblea (dinoflagellate) Lg. Diatoms (e.g., Ditylum) Pelagic Foraminifera Copepods Lg. Predatory Copepods Copepods Sharks Other large prey

32 Classic View of simple, linear food chain: diatoms copepods fish

33 Trophic Cascades: this model of ecosystems hypothesizes that, by their presence or absence, higher trophic levels will determine whether or not blooms will occur at the base of the system (as opposed to just resource limitation/sufficiency) Location: Station ALOHA Manipulation: Bacterial net growth in a size-truncated food web Implied Grazer Chain: 2-5 µm HF 5-20 µm HF Bacteria Calbet & Landry 1999 Western Arabian Sea plankton: Reckermann & Veldhuis 1997

34 OLIGOTROPHIC (Low Latitude) 0.06 Ocean Ecosystems Divided 6 EUTROPHIC (High Latitude) 20 Fish (GGE = 0.2) 0.3 FISH MacroZP (GGE = 0.2) MesoZP (GGE = 0.2) 6.3 Ciliate (GGE = 0.3) 21 Flagellate (GGE = 0.3) 20 COPEPODS 100 PHYTO= Bacteria (GGE = 0.4) Phyto = 100 FISH 100 PHYTO=100 (UPWELLING)

35 Low Energy Stable Systems Low energy Lack of nutrient re-supply Low nutrients (oligotrophic) Small Phytoplankton (high surface:volume ratio) Long food chains (small consumers at base) Relatively stable system

36 High energy (storm activity, eddy action, upwelling, etc.) High Energy Unstable Systems High nutrients (eutrophic) Large Phytoplankton (small, too!) Composite Spring Picture Mean Chlorophyll (µg/l) at the surface Short food chain (dynamic) (superimposed on stable long food chain) Unstable (dynamic) system

37 Macro+ Meso Autotrophic Food Web Structure Heterotrophic Fish Copepods eutrophic Micro diatoms & dinoflagellates Ciliates Nano oligotrophic Pico a-flagellates cyanobacteria Mixotrophs flag level 3 zooflagellates level 2 flag level 1 H-Bacteria viruses DOM Nutrients

Feeding: Metazoan Predators

Feeding: Metazoan Predators Feeding: Metazoan Predators What do Metazoans Eat? Other metazoans (carnivores) e.g., chaetognaths eat copepods & copepods eat smaller crustaceans phytoplankton (herbivores) esp. larger ones like diatoms

More information

Figure 14 p.385 5/11/2016. Plankton Production and Food Webs. Plankton Production and Food Webs

Figure 14 p.385 5/11/2016. Plankton Production and Food Webs. Plankton Production and Food Webs Plankton Production and Food Webs (Chapter 12) What is Plankton? Phytoplankton and Zooplankton Food Web: All the feeding relationships of a community including production, consumption, decomposition and

More information

Dominant Types of Plankton. Phytoplankton Size. Diatoms. Diatoms. Each size has advantages & disadvantages Small cells

Dominant Types of Plankton. Phytoplankton Size. Diatoms. Diatoms. Each size has advantages & disadvantages Small cells Dominant Types of Plankton Phytoplankton Diatoms dominant in neritic & upwelling zones Microflagellates dominant in oceanic zone Dinoflagellates dominant in transitional situations Zooplankton Protozoa

More information

Microbial Grazers Lab

Microbial Grazers Lab Microbial Grazers Lab Objective: Measure the rate at which bacteria are consumed by predators. Overview Size based food webs Microbial loop concepts Bacterial predators Methods to assess microbial grazing

More information

FISHERIES AND AQUACULTURE Vol. V Microzooplankton, Key Organisms in the Pelagic Food Web - Albert Calbet and Miquel Alcaraz

FISHERIES AND AQUACULTURE Vol. V Microzooplankton, Key Organisms in the Pelagic Food Web - Albert Calbet and Miquel Alcaraz MICROZOOPLANKTON, KEY ORGANISMS IN THE PELAGIC FOOD WEB Albert Calbet and Institut de Ciències del Mar, CSIC, Barcelona, Spain Keywords: microzooplankton, marine, food webs, phytoplankton, grazing, ciliate,

More information

Microbial Grazers Lab

Microbial Grazers Lab Microbial Grazers Lab Objective: Measure the rate at which bacteria are consumed by predators. Overview Size based food webs Microbial loop concepts acterial predators Methods to assess microbial grazing

More information

Marine Life. and Ecology. 2. From phytoplanktons to invertebates

Marine Life. and Ecology. 2. From phytoplanktons to invertebates Marine Life and Ecology 2. From phytoplanktons to invertebates Virtually all primary productivity on land comes from large seaweeds such as these do exist, but they need shallow water where Sunlight is

More information

OCN 201 Spring 2012 Final Exam (75 pts)

OCN 201 Spring 2012 Final Exam (75 pts) Name ID# Section OCN 201 Spring 2012 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. Evidence suggests that amino acids (one of the building blocks of life) could not have formed

More information

Diel Vertical Migration OCN 621

Diel Vertical Migration OCN 621 Diel Vertical Migration OCN 621 Outline Definition Who does it? How fast? Migration cues Why? Variations: seasonal, ontogenic, reverse Biogeochemical implications Diel Vertical Migration: Definitions Usually

More information

Classifying Marine Organisms by how they get their carbon

Classifying Marine Organisms by how they get their carbon Classification of Marine Life & Habitats OCN 201 Biology Lecture 3 1 Classifying Marine Organisms by how they get their carbon Autotrophs - use CO 2 to make organics Who: All plants, some protista, bacteria,

More information

BIOLOGICAL OCEANOGRAPHY

BIOLOGICAL OCEANOGRAPHY BIOLOGICAL OCEANOGRAPHY The Living Ocean Chap 14 Production and Life Chap 15 The Plankton: Drifters of the Open Sea Chap 16 The Nekton: Free Swimmers of the Sea Chap 16 Groups of Organisms How do we organize

More information

OCN 201 Spring 2012 Final Exam (75 pts)

OCN 201 Spring 2012 Final Exam (75 pts) Name ID# Section OCN 201 Spring 2012 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. Evidence suggests that amino acids (one of the building blocks of life) can only form under laboratory

More information

Plankton Ch. 14. Algae. Plants

Plankton Ch. 14. Algae. Plants Plankton Ch. 14 Algae Plants Plankton = Wanderer (Greek) Suspended in water column Float or weakly swim with currents Can t move against currents Producers & Consumers PHYTOPLANKTON (PLANT PLANKTON) Autotrophs

More information

12/2/2010 BIOLOGICAL OCEANOGRAPHY

12/2/2010 BIOLOGICAL OCEANOGRAPHY BIOLOGICAL OCEANOGRAPHY The Living Ocean Chap 14 Production and Life Chap 15 The Plankton: Drifters of the Open Sea Chap 16 The Nekton: Free Swimmers of the Sea Chap 16 Groups of Organisms How do we organize

More information

5. Reproduction in corals is commonly through broadcast spawning of gametes directly into the water column.

5. Reproduction in corals is commonly through broadcast spawning of gametes directly into the water column. Name ID# Section OCN 201 Spring 2015 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B= FALSE 1. Bacteria are more abundant than viruses in the ocean. 2. Box jellies and corals are both cnidarians.

More information

Announcements. Third problem site due November 30 Review calculations

Announcements. Third problem site due November 30 Review calculations Announcements Geology Primary Fields of Oceanography Chemistry Third problem site due November 30 Review calculations Next Thursday quiz on Kirchman reading (microbes) Moving from physical to biological

More information

Lesson: Primary Production

Lesson: Primary Production Lesson: Primary Production By Keith Meldahl Corresponding to Chapter 14: Primary Producers Microscopic phytoplankton -- tiny single-celled plants that float at the ocean s surface, are the ultimate food

More information

OCN 201 Fall 2013 Final Exam (75 pts)

OCN 201 Fall 2013 Final Exam (75 pts) Name ID# Section OCN 201 Fall 2013 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. Laboratory experiments have shown that amino acids could not have formed on the early earth. 2.

More information

Organisms fill various energy roles in an ecosystem. Organisms can be producers, consumers, or decomposers

Organisms fill various energy roles in an ecosystem. Organisms can be producers, consumers, or decomposers Organisms fill various energy roles in an ecosystem An organism s energy role is determined by how it obtains energy and how it interacts with the other living things in its ecosystem Organisms can be

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

Focus on 5. Newton s Laws of Inertia

Focus on 5. Newton s Laws of Inertia Focus on 5 Newton s Laws of Inertia Newton s First Law Objects at rest do not move unless something moves it. Objects in motion do not stop unless something stops it. Newton s Second Law Force = mass times

More information

Eukarya. Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa

Eukarya. Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa Eukarya Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa Protists Eukaryotic; but comprises its own Kingdom Protista Algae -

More information

(review) Organization of life

(review) Organization of life Marine life: the plankton Production & Energy Transfer Part of Chapter 12, Chapter 13 (review) Organization of life Prokaryotes (usually no nucleus simple life forms) Domain Archaea: : most are extremophiles

More information

Antarctic Undersea Foodweb

Antarctic Undersea Foodweb Details Completion Time: 2-3 hours Permission: Download, Share, and Remix Antarctic Undersea Foodweb Overview Using photos from a variety of websites, including the PolarTREC and SCINI websites, students

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore PL ANKTO N REVEALED A critical component of life on Earth For the

More information

Plankton. Relationship between nutrients and Primary productivity in PS. Puget Sound s primary producers and primary consumers

Plankton. Relationship between nutrients and Primary productivity in PS. Puget Sound s primary producers and primary consumers Plankton Puget Sound s primary producers and primary consumers SeaWiFS image July 9th, 2003 Relationship between nutrients and Primary productivity in PS Do nutrients limit PP in summer? Winter? NO 3 vs.

More information

Deep-Sea Life. OCN 201 Biology Lecture 12. BBC Blue Planet

Deep-Sea Life. OCN 201 Biology Lecture 12. BBC Blue Planet Deep-Sea Life OCN 201 Biology Lecture 12 BBC Blue Planet The Pelagic Divisions (By Light) EUPHOTIC DISPHOTIC Good Light Twilight Photosynthesis! 20 to 100 m APHOTIC No Light about 600 m Photosynthesis

More information

The factors together:

The factors together: Biotic Interactions 8.11A DESCRIBE PRODUCER/CONSUMER, PREDATOR/PREY AND PARASITE/HOST RELATIONSHIPS AS THEY OCCUR IN FOOD WEBS WITHIN MARINE, FRESHWATER AND TERRESTRIAL ECOSYSTEMS Biotic These are the

More information

DAZZLING DRIFTERS IN THE SEA

DAZZLING DRIFTERS IN THE SEA F R O M T H E B I R C H A Q U A R I U M A T S C R I P P S F O R K I D S O F A L L A G E S By Memorie Yasuda DAZZLING DRIFTERS IN THE SEA PLANKTON ARE ORGANISMS that float freely in the ocean. Plankton

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information

The Ecology of Protists

The Ecology of Protists The Ecology of Protists Harmful Algal Blooms Stefanie Moorthi ICBM -Terramare, Planktology The Ecology of Protists Introduction distribution and nutritional modes => protists as primary producers => protists

More information

Standing Waters: The Plankton Community

Standing Waters: The Plankton Community Standing Waters: The Plankton Community Introducing... Plankton! Do you know what plankton is? No. Not the one off of Spongebob. Well.. Plankton means small drifting organisms. Most of their time is spent

More information

2) Under commensalism both organisms benefit from a prolonged interaction between species.

2) Under commensalism both organisms benefit from a prolonged interaction between species. Name ID# Section OCN 201 Spring 2013 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B= FALSE 1) Dinoflagellates are responsible for harmful algal blooms. 2) Under commensalism both organisms

More information

Round One All play. Each question = 1 point

Round One All play. Each question = 1 point Ecology Unit Review Round One All play Each question = 1 point Leaf cells are one type of tree cell. Which process occurs in a live leaf cell? a. Evolution b. Adaptation c. sugar production d. sexual reproduction

More information

Classification & History of Life

Classification & History of Life Classification & History of Life Today & next time Taxonomy Modes of Life Origin of Life Traditional new History of life Taxonomy: Organize life into related groups Traditional Taxonomy Grouped by shared

More information

IMO HARMFUL AQUATIC ORGANISMS IN BALLAST WATER. Description of the proposed model groups defined under Tier 1. Submitted by Norway

IMO HARMFUL AQUATIC ORGANISMS IN BALLAST WATER. Description of the proposed model groups defined under Tier 1. Submitted by Norway INTERNATIONAL MARITIME ORGANIZATION E IMO MARINE ENVIRONMENT PROTECTION COMMITTEE 47th session Agenda item 2 MEPC 47/INF.11 28 December 2001 ENGLISH ONLY HARMFUL AQUATIC ORGANISMS IN BALLAST WATER Description

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

What creates a coral reef? Why are corals able to form huge reefs?

What creates a coral reef? Why are corals able to form huge reefs? Marine ecosystems 5: Coral Reefs Unique features The foundation of the ecosystem is produced by living things Reef-building corals Similarities with tropical rain forests Richness and complexity 3-dimensional

More information

Chapter 4 SECTION 2 - Populations

Chapter 4 SECTION 2 - Populations Chapter 4 SECTION 2 - Populations 1 Each organism in an ecosystem needs a place to live called habitat. The habitat provides everything an organism needs to SURVIVE AND REPRODUCE: Food, water Shelter Habitats

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

Three Domains of Life

Three Domains of Life Three Domains of Life The Microbial World All three biological domains include microbial organisms (or microorganisms ) Although microorganisms include some of the smallest organisms, they play critical

More information

Period: Date: Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES.

Period: Date: Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES. Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES. Topics: Intro: the water planet; scientific method Properties of Water Tides,

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

1 (a (i) willow (tree) and / or aquatic plants moose wolf. ignore the Sun at the start of the food chain

1 (a (i) willow (tree) and / or aquatic plants moose wolf. ignore the Sun at the start of the food chain 1 (a (i) willow (tree) and / or aquatic plants moose wolf arrows point from food to feeder ; organisms are in the correct order in the food chain ; [2] ignore the Sun at the start of the food chain (ii)

More information

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology CP Biology Name Date Period HOMEWORK PACKET UNIT 2A Part I: Introduction to Ecology Name Class Date 3.1 What Is Ecology? Studying Our Living Planet 1. What is ecology? 2. What does the biosphere contain?

More information

Biology (Biology_Hilliard)

Biology (Biology_Hilliard) Name: Date: 1. There are two types of modern whales: toothed whales and baleen whales. Baleen whales filter plankton from the water using baleen, plates made of fibrous proteins that grow from the roof

More information

Copepods as indicator species for comparing pelagic ecosystem models

Copepods as indicator species for comparing pelagic ecosystem models Copepods as indicator species for comparing pelagic ecosystem models Outline Harold P. Batchelder Oregon State University Corvallis, OR hbatchelder@coas.oregonstate.edu Ecosystem Model Types Decisions

More information

Primary Producers. Key Ideas

Primary Producers. Key Ideas Primary Producers Kelp forests are one of the ocean s most productive habitats. 1 Key Ideas Energy flows through living systems, but matter is recycled. Primary producers (autotrophs) synthesize glucose

More information

Microbial Grazers Lab

Microbial Grazers Lab Microbial Grazers Lab Objective: Measure the rate at which bacteria are consued by predators. Overview Size based food webs Microbial loop concepts acterial predators Methods to assess icrobial grazing

More information

Phytoplankton. Zooplankton. Nutrients

Phytoplankton. Zooplankton. Nutrients Phytoplankton Zooplankton Nutrients Patterns of Productivity There is a large Spring Bloom in the North Atlantic (temperate latitudes remember the Gulf Stream!) What is a bloom? Analogy to terrestrial

More information

OCN 201 Fall 2014 Final Exam (75 pts)

OCN 201 Fall 2014 Final Exam (75 pts) Name ID# Section (use 01 for the 10:30 AM class; 02 for 12:30 PM class) OCN 201 Fall 2014 Final Exam (75 pts) True or False (1 pt each) Note: on Scantron Sheet A = True, B = False 1. The scientific evidence

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

Oceanography Page 1 of 9 Lab: Pond Water M.Sewell rm #70

Oceanography Page 1 of 9 Lab: Pond Water M.Sewell rm #70 Oceanography Page 1 of 9 Pond Water Lab Introduction: Why Study Pond Microlife? Right, what are all those little things really good for? Well, for one thing, without bacteria no fish, no frogs, no birds,

More information

A population is a group of individuals of the same species, living in a shared space at a specific point in time.

A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population size refers to the number of individuals in a population. Increase Decrease

More information

Plankton. -Plankton are almost always at the bottom of the food chain in any marine environment, making them possibly the most important group.

Plankton. -Plankton are almost always at the bottom of the food chain in any marine environment, making them possibly the most important group. Plankton -Plankton are almost always at the bottom of the food chain in any marine environment, making them possibly the most important group. -The word plankton isn t necessarily a technical science term,

More information

The Origins of Eukaryotic Diversity

The Origins of Eukaryotic Diversity http://animal.discovery.com/tvshows/monsters-insideme/videos/the-brain-eatingamoeba.htm The Origins of Eukaryotic Diversity Introduction to the protists Kingdom Protista split into as many as 20 kingdoms

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

OCN 201 Fall 2005 Final Exam (90 pts)

OCN 201 Fall 2005 Final Exam (90 pts) OCN 201 Fall 2005 Final Exam (90 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. The Miller-Urey experiment showed that Panspermia is not possible. 2. Holoplankton refers to plankton that spend

More information

Foraging ecology. Road map. Amphibians that feed under water 2/23/2012. Part II. Roberto Brenes. I. Adaptations of amphibians to foraging on water

Foraging ecology. Road map. Amphibians that feed under water 2/23/2012. Part II. Roberto Brenes. I. Adaptations of amphibians to foraging on water Foraging ecology Part II Roberto Brenes University of Tennessee Center for Wildlife Health Department of Forestry, Wildlife and Fisheries Road map I. Adaptations of amphibians to foraging on water i. Caecilians

More information

for CESM Jessica Luo, Matthew Long, Keith Lindsay, Mike Levy NCAR Climate and Global Dynamics OMWG / BGC Working Group Meeting, Jan 12, 2018

for CESM Jessica Luo, Matthew Long, Keith Lindsay, Mike Levy NCAR Climate and Global Dynamics OMWG / BGC Working Group Meeting, Jan 12, 2018 Constructing a sizestructured plankton model for CESM Jessica Luo, Matthew Long, Keith Lindsay, Mike Levy NCAR Climate and Global Dynamics OMWG / BGC Working Group Meeting, Jan 12, 2018 Challenge: predicting

More information

Sponges and Cnidarians

Sponges and Cnidarians The Animal Kingdom Multicellular Sponges and Cnidarians Biology : Chapter 26 Eukaryotic Heterotrophs Cells lack cell walls 95% are invertebrates What Animals Do to Survive Feeding Response Respiration

More information

Microbial food web structure in a changing Arctic

Microbial food web structure in a changing Arctic Microbial food web structure in a changing Arctic Tatiana M Tsagaraki, Jorun K Egge, Gunnar Bratbak, Øystein Leikness, T. Frede Thingstad, Lise Øvreås, Ruth-Anne Sandaa, Elzbieta A. Petelenz-Kurdziel,

More information

General Characteristics

General Characteristics Polar Seas General Characteristics Seasonal Sea ice can cover up to 13% of Earth s surface Arctic 5% of the world ocean Mostly north of the Arctic Circle Antarctic 10% of the world ocean General Characteristics

More information

Prokaryotes and Kingdom Protista

Prokaryotes and Kingdom Protista Prokaryotes and Kingdom Protista Domain Eubacteria Domain Archae The Prokaryotes Cell type: Prokaryotes Found in: Domain Bacteria Domain Archae Cell type: Prokaryotes Two Domains: Bacteria and Archae Do

More information

Look For the Following Key Ideas

Look For the Following Key Ideas Look For the Following Key Ideas * Energy flows through living systems, but matter is recycled. * Primary producers, called autotrophs, synthesize glucose by the process of photosynthesis or chemosynthesis.

More information

Prokaryotes Vs. Eukaryotes

Prokaryotes Vs. Eukaryotes The Microbial World Prokaryotes Vs. Eukaryotes Mircrobes of the Ocean Primary Producers Are the organisms that produce bio-mass from inorganic compounds (autotrophs). -Photosynthetic autotrophs Phytoplankton

More information

Chapter 8. Sponges, Cnidarians, Comb Jellies, and Marine Worms

Chapter 8. Sponges, Cnidarians, Comb Jellies, and Marine Worms Chapter 8 Sponges, Cnidarians, Comb Jellies, and Marine Worms Cnidarians: Animals with Stinging Cells Phylum Cnidaria Includes hydroids, corals, and sea anemones Coelenterate: synonym Named for their cnidocytes

More information

The Microbial World. Chapter 5

The Microbial World. Chapter 5 The Microbial World Chapter 5 Viruses Non-cellular infectious agents that have two basic characteristics: Not capable of reproduction without a host cell Structure: Nucleic acid core- can be DNA or RNA

More information

Characteristics of Echinoderms

Characteristics of Echinoderms Characteristics of Echinoderms Adult echinoderms have a body plan with five parts organized symmetrically around a center Does not have an anterior nor posterior end or a brain Most echinoderms are two

More information

What Are the Protists?

What Are the Protists? Protists 1 What Are the Protists? 2 Protists are all the eukaryotes that are not fungi, plants, or animals. Protists are a paraphyletic group. Protists exhibit wide variation in morphology, size, and nutritional

More information

13.3. Energy in Ecosystems. Producers provide energy for other organisms in an ecosystem.

13.3. Energy in Ecosystems. Producers provide energy for other organisms in an ecosystem. 13.3 Energy in Ecosystems KEY CONCEPT Life in an ecosystem requires a source of energy. Producers provide energy for other organisms in an ecosystem. Almost all producers obtain energy from sunlight. VOCABULARY

More information

Viruses. Viruses. Chapter 5. Prokaryotes. Prokaryotes. Prokaryotes

Viruses. Viruses. Chapter 5. Prokaryotes. Prokaryotes. Prokaryotes Viruses Chapter 5 The Microbial World Non-cellular infectious agents that have two basic characteristics: Not capable of reproduction without a host cell Structure: Nucleic acid core- can be DNA or RNA

More information

What is Ecology? The scientific study of interactions among organisms and between organisms in their environment, or surroundings

What is Ecology? The scientific study of interactions among organisms and between organisms in their environment, or surroundings ECOLOGY What is Ecology? The scientific study of interactions among organisms and between organisms in their environment, or surroundings Organization of the Biosphere Levels of organization Biosphere-

More information

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges Learning Outcome G2 Analyse the increasing complexity of the Phylum Porifera and the Phylum Cnidaria Learning Outcome G2 Phylum Porifera & Phylum Cnidaria Student Achievement Indicators Students who have

More information

Two of the main currents in the Arctic region are the North Atlantic Current (in red) and the Transport Current (in blue).

Two of the main currents in the Arctic region are the North Atlantic Current (in red) and the Transport Current (in blue). Have you ever enjoyed playing in the snow or making snowmen in the wintertime? The winter season is our coldest season. However, some of the coldest days we have here in Indiana have the same temperature

More information

CELL THEORY & FUNCTION

CELL THEORY & FUNCTION UNIT 1- THE CELL CELL THEORY & FUNCTION A Word From Bill Record your observations about the picture to the right. What do you think you are you looking at? Describe the structure with as much detail

More information

Chapter 10. Marine Ecology

Chapter 10. Marine Ecology Chapter 10 Marine Ecology Copyright 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Marine Ecology Ecology is

More information

Classification of Marine Life & Habitats

Classification of Marine Life & Habitats Classification of Marine Life & Habitats OCN 201 Biology Lecture 3 Grieg Steward Autotrophs can make the organic building blocks of life starting from carbon dioxde Heterotrophs have to eat organics carbon

More information

The functional biology of krill (Thysanoessa raschii)

The functional biology of krill (Thysanoessa raschii) DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kavalergaarden 6, 2920, Charlottenlund, Denmark. The functional biology of krill (Thysanoessa raschii) with focus on

More information

Primary Productivity (Phytoplankton) Lab

Primary Productivity (Phytoplankton) Lab Name: Section: Due Date: Lab 10A-1 Primary Productivity (Phytoplankton) Lab Before Coming to Lab: Read Chapter 13 (387-424) in Thurman & Trujillo, 11 th ed. The purpose of this lab is to familiarize you

More information

Academic Year Second Term. Science Revision sheets

Academic Year Second Term. Science Revision sheets Academic Year 2015-2016 Second Term Science Revision sheets Name: Date: Grade:3/ Q1 : Choose the letter of the choice that best answer the questions 1. Which of these is what a plant does that makes more

More information

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria Protists Simple Eukaryotes Domain Bacteria Domain Archaebacteria Domain Eukaryotes Regents Biology 2006-2007 Common ancestor General characteristics Classification criteria eukaryotes not animal, plant

More information

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep COMPARISON BETWEEN PORIFERA AND CNIDARIA Colwyn Sleep INTRODUCTION Porifera Cnidaria Porifera and Cnidaria are organisms which share similar characteristics with one another. -They are both multicellular,

More information

HW/CW #5 CHAPTER 3 PRACTICE

HW/CW #5 CHAPTER 3 PRACTICE HW/CW #5 CHAPTER 3 PRACTICE 1. The portion of Earth in which all life exists is known as A) the climax stage B) the biosphere C) a population D) a biotic community 2. The study of the interactions between

More information

FOSS California Environments Module Glossary 2007 Edition. Adult: The last stage in a life cycle when the organism is mature and can reproduce.

FOSS California Environments Module Glossary 2007 Edition. Adult: The last stage in a life cycle when the organism is mature and can reproduce. FOSS California Environments Module Glossary 2007 Edition Adult: The last stage in a life cycle when the organism is mature and can reproduce. Algae: A large group of water organisms. Amphibian: An organism,

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore FO O D CHAIN For the complete encyclopedic entry with media resources,

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Classification of Marine Life & Habitats. OCN 201 Biology Lecture 3 Professor Grieg Steward

Classification of Marine Life & Habitats. OCN 201 Biology Lecture 3 Professor Grieg Steward Classification of Marine Life & Habitats OCN 201 Biology Lecture 3 Professor Grieg Steward Autotrophs can make the organic building blocks of life starting from carbon dioxde Heterotrophs have to eat organics

More information

Notes - Porifera and Cnideria

Notes - Porifera and Cnideria Notes - Porifera and Cnideria - Animals exist on every continent on the planet. Most people consider animals to be the most important kingdom as we are considered animals. But, what is an animal? What

More information

Criteria Of Growth and Development

Criteria Of Growth and Development 1 Word Bank: Adaptation Concept Map: Characteristics of Life Homeostasis Reaction Bigger Metabolism Response Composed of CHNOPS Made of Cells One To Build Ex: Make cells Two Change To Break Ex: Digestion

More information

Station 1. View the picture of Volvox on the next slide. Draw a picture of what you see.

Station 1. View the picture of Volvox on the next slide. Draw a picture of what you see. Volvox Station 1 View the picture of Volvox on the next slide Draw a picture of what you see. Why do you think Volvox is green? How do you think Volvox gets its energy? Use the reading on Slide 3 to answer

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

Energy, Producers, and Consumers. Lesson Overview. Lesson Overview. 4.1 Energy, Producers, and Consumers

Energy, Producers, and Consumers. Lesson Overview. Lesson Overview. 4.1 Energy, Producers, and Consumers 4.1 Energy, Producers, and Consumers THINK ABOUT IT At the core of every organism s interaction with the environment is its need for energy to power life s processes. Where does energy in living systems

More information

The Microbial World. Microorganisms of the Sea

The Microbial World. Microorganisms of the Sea The Microbial World Microorganisms of the Sea Microorganisms Smallest, simplest marine organisms. Very important in evolutionary history of life on Earth. Important primary producers. Include prokaryotes

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

adaptation any structure or behavior of an organism that allows it to survive in its environment (IG)

adaptation any structure or behavior of an organism that allows it to survive in its environment (IG) FOSS Environments Module Glossary NGSS Edition 2019 adaptation any structure or behavior of an organism that allows it to survive in its environment (IG) adult a fully grown organism (IG) algae a large

More information

9 Week Review Biology. Magnolia High School 2015

9 Week Review Biology. Magnolia High School 2015 9 Week Review Biology Magnolia High School 2015 What is the cellular process shown below? Phagocytosis The BEST choice to complete this concept map! Animal Cell or Plant Cell? PLANT Cell What is the function

More information