BIOLOGICAL OCEANOGRAPHY

Size: px
Start display at page:

Download "BIOLOGICAL OCEANOGRAPHY"

Transcription

1 BIOLOGICAL OCEANOGRAPHY The Living Ocean Chap 14 Production and Life Chap 15 The Plankton: Drifters of the Open Sea Chap 16 The Nekton: Free Swimmers of the Sea Chap 16

2 Groups of Organisms How do we organize life? In Reference to Habitat: Plankton, Nekton and Benthos In Reference to Taxonomy, the scientific classification of different kinds of organisms, some use the Linnean System (named after Carolus Linnaeus, a Swedish botanist) which typically has 5 Kingdoms: Monera, Protista, Fungi, Plantae and Animalia

3 Kingdom Monera: cells, simple and unspecialized, single cells that lack a membrane-bounded nuclei, sexual recombination and internal cell compartments. Some in groups or chains. Include Bacteria and Cyanobacteria. Sometimes referred to as Prokaryotes and sometimes divided into 2 kingdoms, Kingdom Archaebacteria (Extremophiles) and Kingdom Eubacteria. Protista: Microscopic and mostly single celled Eukaryotes including autotrophs (algae) and heterotrophs (protozoa). Eukaryotes have membrane bounded nucleus containing chromosomes, have sexual recombination, and internal cell compartments. Reproduction among protists can be sexual but is usually asexual. May capture food, absorb food or photosynthesize. A convenience kingdom including all eukaryotes that are not fungi, plants or animals. (algae, forams, rads ) Fungi: Filamentous multicellular eukaryotes. Not important in marine ecosystems. Plantae: plants, primarily nonmotile, multi cellular photosynthetic autotrophs. Can be planktonic brown algae Sargassum, or benthos Animalia: multicellular heterotrophs with specialized cells, tissues and organs, include marine zooplankton and a diverse group of nekton and benthos.

4 Humans Animalia Chordata (Subphylum Vertabrata) Mammalia Primates Hominidae Homo Homo Sapiens

5 The 3 Domains: Emphasizes separation of prokaryotes into 2 groups. A new system based on genetic and biochemical research organizes life into 3 categories above the kingdom level. Members of the Monera Kingdom are placed in either the Bacteria or Archea domains. The Eukarya domain includes many single celled organisms with nuclei and animals, plants and fungi.

6 Environmental Zones, or Biozones

7 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) Marine Ecology definition... Ecological Niches Factors that control the distribution and abundance of life in the marine environment or Biozones: PHYSICAL FACTORS: PHYSICAL FACTORS: light... photic zone, (in clear ocean water: ~60% absorbed in 1 st meter, 80% gone after 10 meters and <1% left below 100 meters) vision, photosynthesis, bioluminescence pressure (table 14.2) temperature circulation... currents / waves

8 Fig. 14.9

9

10 Fig. 5.8

11

12 Fig brown green brown green brown brown red red red

13 Bioluminescence Golden Brown Algae

14 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) Marine Ecology definition... Ecological Niches Factors that control the distribution and abundance of life in the marine environment or Biozones: PHYSICAL FACTORS: PHYSICAL FACTORS: light... photic zone, (in clear ocean water: ~60% absorbed in 1 st meter, 80% gone after 10 meters and <1% left below 100 meters) vision, photosynthesis, bioluminescence pressure (table 14.2) temperature circulation... currents / waves

15 Table 14.2

16

17 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) Ecology definition... Ecological Niches Factors that control the development & distribution of life in the marine environment or Biozones: PHYSICAL FACTORS: light... vision, photic zone, photosynthesis, bioluminescence pressure (table 14.2) temperature: can effect viscosity, floatation adaptations, surface temps change more than the deep water. Annual surface temps are small at very low and high latitudes and larger at mid latitudes. Change of temps act as signal to spawn, spring and summer reproduction and growth / winter dormancy circulation... currents / waves

18 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) CHEMICAL FACTORS: Salinity some Euryhaline fish: Salmon, Bull Shark, Herring, Molly, Trout, Sturgeon, Striped Bass, Lamprey, Tilapia, Puffer Fish some Stenohaline fish: most fresh water fish, most saltwater fish, Goldfish, Haddock - - Nutrients: NO 3 PO 3 4 SiO 4 dissolved gases: carbon dioxide and oxygen (Chapter 5) photosynthesis, respiration and decomposition Atmosphere: N 2 78%, O 2 21%, CO 2.03% Sea Water: N 2 48%, O 2 15%, CO 2 15%

19 Fig Nitrogen Cycle Nitrate=NO 3 -

20 Fig Phosphate Cycle (PO 4 _ 3 )

21 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) CHEMICAL FACTORS: salinity nutrients dissolved gases: carbon dioxide and oxygen (Chapter 5) photosynthesis, respiration and decomposition Atmosphere: N 2 78%, O 2 21%, CO 2.03% Sea Water: N 2 48%, O 2 15%, CO 2 15% BIOLOGICAL FACTORS: dispersal and migration abilities, buoyancy and flotation reproduction and numbers of offspring food predators... camouflage, colorings, armor, speed, poisons, senses GEOLOGICAL FACTORS: substrate slope failure chemosynthesis plate tectonics

22 Figure 5.7

23 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) CHEMICAL FACTORS: salinity nutrients dissolved gases: carbon dioxide and oxygen (Chapter 5) photosynthesis, respiration and decomposition Atmosphere: N 2 78%, O 2 21%, CO 2.03% Sea Water: N 2 48%, O 2 15%, CO 2 15% BIOLOGICAL FACTORS: dispersal and migration abilities, buoyancy and flotation reproduction and numbers of offspring Food, predators... camouflage, colorings, armor, speed, poisons, senses GEOLOGICAL FACTORS: substrate slope failure Chemosynthesis Plate tectonics

24 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) CHEMICAL FACTORS: salinity nutrients dissolved gases: carbon dioxide and oxygen (Chapter 5) photosynthesis, respiration and decomposition Atmosphere: N 2 78%, O 2 21%, CO 2.03% Sea Water: N 2 48%, O 2 15%, CO 2 15% BIOLOGICAL FACTORS: dispersal and migration abilities, buoyancy and flotation reproduction and numbers of offspring food predators... camouflage, colorings, armor, speed, poisons, senses GEOLOGICAL FACTORS: substrate slope failure Chemosynthesis: Hydrogen Sulfide chemosynthesis = 6{CO 2 }+6{H 2 O}+3{H 2 S} C 6 H 12 O 6 +3{H 2 SO 4 } Plate Tectonics

25 Location of Chemosynthetic Biological Communities (CBC) in Monterey Bay. Mostly bacteria, clams and worms.

26 MARINE ECOLOGY Chapters 14 (& parts of 5 and 6) CHEMICAL FACTORS: salinity nutrients dissolved gases: carbon dioxide and oxygen (Chapter 5) photosynthesis, respiration and decomposition Atmosphere: N 2 78%, O 2 21%, CO 2.03% Sea Water: N 2 48%, O 2 15%, CO 2 15% BIOLOGICAL FACTORS: dispersal and migration abilities, buoyancy and flotation reproduction and numbers of offspring food predators... camouflage, colorings, armor, speed, poisons, senses GEOLOGICAL FACTORS: substrate slope failure Chemosynthesis: Hydrogen sulfide chemosynthesis = 6{CO2}+6{H2O}+3{H2S} C6H12O6+3{H2SO4} plate tectonics??

27 Plankton Production and Life What is Plankton? (Chaps 15 &16) Phytoplankton and Zooplankton Food Web: All the feeding relationships of a community including production, consumption, decomposition and the flow of energy. Trophic Levels and Trophic Pyramids

28 The Ocean Food Web Plant, animal and bacterial populations are dependent on the flow of energy and the recycling of nutrients through the food web. The initial energy source is the sun, which fuels the primary production in the surface layers. Herbivores graze the phytoplankton and the benthic algae and are in turn consumed by the carnivores. Animals at deeper levels depend on organic matter from above. Upwelling recycles nutrients to the surface where they are used in photosynthesis.

29 Figure 14 p.385

30 Trophic Level = A link in a web of consumption.

31

32 All flesh is grass. British biological oceanographer, Sir Alister Hardy

33 Measuring Primary Production

34

35

36 The White & Dark Bottle Experiment: The carbon:oxygen ratio for photosynthesis, the volume of water in the bottles and the duration of the experiment are used to convert the calculated changes in dissolved oxygen to changes in gc/volume/time. Light nutrients and the stability of the water combine to provide conditions for the highest PP at a depth of approximately 30 meters. Bottle A Bottle B dark = measure of oxygen used in respiration Bottle C light Bottle A = measure of net oxygen produced by photosynthesis, or net PP Bottle C light Bottle B dark = measure of total oxygen produced or gross PP

37 Phytoplankton in the Black Sea

38 Phytoplankton in the South Atlantic

39 Figure 14.10

40 Phytoplankton biomass, nutrient supply and surface water stability respond to solar energy changes at the middle latitudes in the Northern Hemisphere.

41 Lack of surface mixing at low latitudes in the Northern Hemisphere results in a depressed phytoplankton biomass. The pattern is related to solar radiation that produces a year round stable water column.

42 Picoplankton: less than mm, typically bacteria and extremly small phytoplankton Nannoplankton: mm, larger phytoplankton Microplankton or Net Plankton: mm include phytoplankton and zooplankton often collected in tow nets. Macroplankton: 0.2 2mm or larger, typically zooplankton and other animals

43 Sampling Plankton

44 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON: II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

45 Cyanobacteria; lyngbya

46 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON : All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) II. KINGDOM PROTISTA: All Holoplankton A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

47 Fig. 16.1a

48

49

50 Coccolith Bloom

51 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON: II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

52

53 Nontoxic red tide of dinoflagellate Noctiluca in Puget Sound, The red tide extended ~10km and lasted ~1 week

54

55

56 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON: II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

57 Fig. 16.9

58 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON: II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

59

60 Fig There are ~86 species of Euphausiids, which are one of the more important zooplankton biomass because of their relatively large size and great abundance. They can occupy 1,000 s of square kilometers and weigh over 6 billion metric tons. Important food for whales, seals, fishes and birds.

61 Copepod Fun Facts: Copepod means oared foot Most numerous group of animals on earth; can be anywhere from 500,000 to 1 million/square meter of seawater Fastest animals on earth; can swim 500 body lengths per second which would be comparable to a cheetah running 2,000mph! A typical military fighter jet flies ~15 body lengths per second Huge capacity to graze phytoplankton; satellites can see missing patches of phytoplankton, similar to cows grazing on grasses but much faster.

62 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON: II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

63 Fig

64 Fig

65 GENERALIZED PLANKTON CLASSIFICATION PHYTOPLANKTON: I. KINGDOM MONERA: Single celled organisms without membrane-bounded nucleus, some in groups or chains A. Cyanobacteria: Blue-green algae, all autotrophic II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (Autotrophs / algae) A. Phylum Chrysophyta: Golden Brown and Yellow Algae, All Autotrophic 1. Diatoms - important siliceous sediment contributors, produce up to 60% of O 2 on the planet 2. Coccolithophorids (Coccoliths) - important Calcareous sediment producers B. Phylum Dinophyta: fire algae, often bioluminescent, single cells with flagella 1. Dinoflagellates - not important sediment contributors some autotrophic, some heterotrophic, some are both, usually considered phytoplankton ZOOPLANKTON: II. KINGDOM PROTISTA: All Holoplankton, microscopic, mostly single celled organisms (heterotrophs / protozoa) A. Phylum Sarcodina - single cell organisms 1. Foraminifera (Forams) - important calcareous sediment producers 2. Radiolaria (Radiolarians) - important siliceous sediment producers III. KINGDOM ANIMALIA: A. Phylum Arthropoda - paired, jointed appendages 1. Class Crustacea (Crustaceans) Holoplankton Members: a. Copepopds Both are herbivorous, not important sediment producers b. Euphausiids (Krill) MEROPLANKTON - Temporary Plankton from most other Phylums (i.e. fish, clams, snails, crabs, barnacles, worms, lobsters, starfish, sea urchins)

12/2/2010 BIOLOGICAL OCEANOGRAPHY

12/2/2010 BIOLOGICAL OCEANOGRAPHY BIOLOGICAL OCEANOGRAPHY The Living Ocean Chap 14 Production and Life Chap 15 The Plankton: Drifters of the Open Sea Chap 16 The Nekton: Free Swimmers of the Sea Chap 16 Groups of Organisms How do we organize

More information

Figure 14 p.385 5/11/2016. Plankton Production and Food Webs. Plankton Production and Food Webs

Figure 14 p.385 5/11/2016. Plankton Production and Food Webs. Plankton Production and Food Webs Plankton Production and Food Webs (Chapter 12) What is Plankton? Phytoplankton and Zooplankton Food Web: All the feeding relationships of a community including production, consumption, decomposition and

More information

CHAPTER 12 Marine Life and the Marine Environment Pearson Education, Inc.

CHAPTER 12 Marine Life and the Marine Environment Pearson Education, Inc. CHAPTER 12 Marine Life and the Marine Environment Chapter Overview There are more than 250,000 identified marine species. Most live in sunlit surface seawater. A species success depends on the ability

More information

(review) Organization of life

(review) Organization of life Marine life: the plankton Production & Energy Transfer Part of Chapter 12, Chapter 13 (review) Organization of life Prokaryotes (usually no nucleus simple life forms) Domain Archaea: : most are extremophiles

More information

The Microbial World. Microorganisms of the Sea

The Microbial World. Microorganisms of the Sea The Microbial World Microorganisms of the Sea Microorganisms Smallest, simplest marine organisms. Very important in evolutionary history of life on Earth. Important primary producers. Include prokaryotes

More information

Lesson: Primary Production

Lesson: Primary Production Lesson: Primary Production By Keith Meldahl Corresponding to Chapter 14: Primary Producers Microscopic phytoplankton -- tiny single-celled plants that float at the ocean s surface, are the ultimate food

More information

Prokaryotes and Kingdom Protista

Prokaryotes and Kingdom Protista Prokaryotes and Kingdom Protista Domain Eubacteria Domain Archae The Prokaryotes Cell type: Prokaryotes Found in: Domain Bacteria Domain Archae Cell type: Prokaryotes Two Domains: Bacteria and Archae Do

More information

Prokaryotes Vs. Eukaryotes

Prokaryotes Vs. Eukaryotes The Microbial World Prokaryotes Vs. Eukaryotes Mircrobes of the Ocean Primary Producers Are the organisms that produce bio-mass from inorganic compounds (autotrophs). -Photosynthetic autotrophs Phytoplankton

More information

Announcements. Third problem site due November 30 Review calculations

Announcements. Third problem site due November 30 Review calculations Announcements Geology Primary Fields of Oceanography Chemistry Third problem site due November 30 Review calculations Next Thursday quiz on Kirchman reading (microbes) Moving from physical to biological

More information

Primary Producers. Key Ideas

Primary Producers. Key Ideas Primary Producers Kelp forests are one of the ocean s most productive habitats. 1 Key Ideas Energy flows through living systems, but matter is recycled. Primary producers (autotrophs) synthesize glucose

More information

Classification & History of Life

Classification & History of Life Classification & History of Life Today & next time Taxonomy Modes of Life Origin of Life Traditional new History of life Taxonomy: Organize life into related groups Traditional Taxonomy Grouped by shared

More information

Look For the Following Key Ideas

Look For the Following Key Ideas Look For the Following Key Ideas * Energy flows through living systems, but matter is recycled. * Primary producers, called autotrophs, synthesize glucose by the process of photosynthesis or chemosynthesis.

More information

Period: Date: Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES.

Period: Date: Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES. Marine Science Midyear Exam Study Guide & Review This packet will be collected on the day of the exam for 2 HOMEWORK GRADES. Topics: Intro: the water planet; scientific method Properties of Water Tides,

More information

Plankton Ch. 14. Algae. Plants

Plankton Ch. 14. Algae. Plants Plankton Ch. 14 Algae Plants Plankton = Wanderer (Greek) Suspended in water column Float or weakly swim with currents Can t move against currents Producers & Consumers PHYTOPLANKTON (PLANT PLANKTON) Autotrophs

More information

Classifying Marine Organisms by how they get their carbon

Classifying Marine Organisms by how they get their carbon Classification of Marine Life & Habitats OCN 201 Biology Lecture 3 1 Classifying Marine Organisms by how they get their carbon Autotrophs - use CO 2 to make organics Who: All plants, some protista, bacteria,

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore PL ANKTO N REVEALED A critical component of life on Earth For the

More information

Life on Earth

Life on Earth Life on Earth By feeding, i.e. source of energy a) Autotrophs, self-feeding, e.g. plants (phyto-) b) Heterotrophs, eat others, e.g. animals (zoo-) By feeding, i.e. source of energy a) Autotrophs b)

More information

Eukarya. Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa

Eukarya. Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa Eukarya Eukarya includes all organisms with eukaryotic cells Examples: plants animals fungi algae single-celled animal-like protozoa Protists Eukaryotic; but comprises its own Kingdom Protista Algae -

More information

Three Domains of Life

Three Domains of Life Three Domains of Life The Microbial World All three biological domains include microbial organisms (or microorganisms ) Although microorganisms include some of the smallest organisms, they play critical

More information

Chapter 10. Marine Ecology

Chapter 10. Marine Ecology Chapter 10 Marine Ecology Copyright 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Marine Ecology Ecology is

More information

BIOLOGICAL OCEANOGRAPHY

BIOLOGICAL OCEANOGRAPHY BIOLOGICAL OCEANOGRAPHY AN INTRODUCTION 0 ^ J ty - y\ 2 S CAROL M. LALLI and TIMOTHY R. PARSONS University of British Columbia, Vancouver, Canada PERGAMON PRESS OXFORD NEW YORK SEOUL TOKYO ABOUT THIS VOLUME

More information

PHYLUM CLASS ORDER FAMILY SPECIES

PHYLUM CLASS ORDER FAMILY SPECIES CLASSIFICATION LEVELS KINGDOM PHYLUM CLASS ORDER FAMILY GENUS SPECIES Classification of ME! Animalia Multicellular, mobile, eukaryotic, heterotroph Chordata Dorsal nerve chord, pharyngeal gill slits, bilateral

More information

Plankton. -Plankton are almost always at the bottom of the food chain in any marine environment, making them possibly the most important group.

Plankton. -Plankton are almost always at the bottom of the food chain in any marine environment, making them possibly the most important group. Plankton -Plankton are almost always at the bottom of the food chain in any marine environment, making them possibly the most important group. -The word plankton isn t necessarily a technical science term,

More information

Classification. One Big Mess!

Classification. One Big Mess! Classification One Big Mess! Three domains, 5 (or 6) Kingdoms Let s make a big chart. Cell type? Chromosomes? Ribosomes? Cell wall or not? Made of what? Unicellular or multicellular? Autotroph or heterotroph?

More information

OCN 201 Fall 2013 Final Exam (75 pts)

OCN 201 Fall 2013 Final Exam (75 pts) Name ID# Section OCN 201 Fall 2013 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. Laboratory experiments have shown that amino acids could not have formed on the early earth. 2.

More information

Standing Waters: The Plankton Community

Standing Waters: The Plankton Community Standing Waters: The Plankton Community Introducing... Plankton! Do you know what plankton is? No. Not the one off of Spongebob. Well.. Plankton means small drifting organisms. Most of their time is spent

More information

Protists: Algae Lecture 5 Spring 2014

Protists: Algae Lecture 5 Spring 2014 Protists: Algae Lecture 5 Spring 2014 Meet the algae 1 Protist Phylogeny Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular From phytoplankton to kelp forests

More information

Viruses. Viruses. Chapter 5. Prokaryotes. Prokaryotes. Prokaryotes

Viruses. Viruses. Chapter 5. Prokaryotes. Prokaryotes. Prokaryotes Viruses Chapter 5 The Microbial World Non-cellular infectious agents that have two basic characteristics: Not capable of reproduction without a host cell Structure: Nucleic acid core- can be DNA or RNA

More information

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis Meet the algae Protists: Algae Lecture 5 Spring 2014 Protist Phylogeny 1 Primary & Secondary Endosymbiosis 2 Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular

More information

Biological Kingdoms. An introduction to the six kingdoms of living things

Biological Kingdoms. An introduction to the six kingdoms of living things Biological Kingdoms An introduction to the six kingdoms of living things 3 Domains Archaea 6 Kingdoms Archaebacteria Bacteria Eubacteria Eukaryota Plantae Animalia Fungi Protista Domain Eukaryota Kingdom

More information

Chapter 17B. Table of Contents. Section 1 Introduction to Kingdoms and Domains. Section 2 Advent of Multicellularity

Chapter 17B. Table of Contents. Section 1 Introduction to Kingdoms and Domains. Section 2 Advent of Multicellularity Introduction to the Kingdoms of Life Table of Contents Section 2 Advent of Multicellularity Section 3 Complex Multicellularity The Six Kingdoms of Life Living organisms are divided into six kingdoms and

More information

Evolution & Biodiversity: Origins, Niches, & Adaptation

Evolution & Biodiversity: Origins, Niches, & Adaptation Evolution & Biodiversity: Origins, Niches, & Adaptation tutorial by Paul Rich Outline 1. Life on Earth prokaryotes vs. eukaryotes; six kingdoms 2. Origins of Life chemical evolution, early life, fossils

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to the Kingdoms of Life Table of Contents Section 1 Introduction to Kingdoms and Domains Section 2 Advent of Multicellularity

More information

Building the Tree of Life

Building the Tree of Life 18.3 Building the Tree of Life Changing Ideas About Kingdoms This diagram shows some of the ways in which organisms have been classified into kingdoms since the 1700s. Three Domains Genetic analysis has

More information

An Introduction to the Science of Botany. Chapter 1

An Introduction to the Science of Botany. Chapter 1 An Introduction to the Science of Botany Chapter 1 TTU MS 43131 LEARNING OBJECTIVES Briefly describe the field of botany, and give short definitions of at least five subdisciplines of plant biology Summarize

More information

OCN 201 Spring 2012 Final Exam (75 pts)

OCN 201 Spring 2012 Final Exam (75 pts) Name ID# Section OCN 201 Spring 2012 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. Evidence suggests that amino acids (one of the building blocks of life) could not have formed

More information

Marine Life. and Ecology. 2. From phytoplanktons to invertebates

Marine Life. and Ecology. 2. From phytoplanktons to invertebates Marine Life and Ecology 2. From phytoplanktons to invertebates Virtually all primary productivity on land comes from large seaweeds such as these do exist, but they need shallow water where Sunlight is

More information

Taxonomy. Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms

Taxonomy. Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms Taxonomy Taxonomy Taxonomy is the science of classifying organisms. It has two main purposes: to identify organisms to represent relationships among organisms Binomial Nomenclature Our present biological

More information

The most widely used biological classification system has six kingdoms within three domains.

The most widely used biological classification system has six kingdoms within three domains. Section 3: The most widely used biological classification system has six kingdoms within three domains. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the major characteristics

More information

Important: Write answers on your Scantron sheet, not on this page. Read carefully and do your best.

Important: Write answers on your Scantron sheet, not on this page. Read carefully and do your best. Biology 13- Exam 1 Multiple choice. Important: Write answers on your Scantron sheet, not on this page. Read carefully and do your best. 1. The area of the ocean floor directly above the continental shelf

More information

The Origins of Eukaryotic Diversity

The Origins of Eukaryotic Diversity http://animal.discovery.com/tvshows/monsters-insideme/videos/the-brain-eatingamoeba.htm The Origins of Eukaryotic Diversity Introduction to the protists Kingdom Protista split into as many as 20 kingdoms

More information

Classification of Living Things. Unit II pp 98

Classification of Living Things. Unit II pp 98 Classification of Living Things Unit II pp 98 Why There is a Need for Classifying There are over 2 million different types of organisms known. biologists can organize living things into groups. Taxonomy

More information

OCEANOGRAPHY FINAL EXAM REVIEW

OCEANOGRAPHY FINAL EXAM REVIEW OCEANOGRAPHY 2013-2014 DATE: NAME: PERIOD: History of Oceanography (Chapter 2) OCEANOGRAPHY FINAL EXAM REVIEW 1. What is a chronometer and how is it relevant to oceanography? Who invented it and when?

More information

OCN 201 Spring 2012 Final Exam (75 pts)

OCN 201 Spring 2012 Final Exam (75 pts) Name ID# Section OCN 201 Spring 2012 Final Exam (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. Evidence suggests that amino acids (one of the building blocks of life) can only form under laboratory

More information

Most are autotrophic. Heterotrophic Some autotrophic. animal- like = heterotrophs plant- like = autotrophs fungi- like = heterotrophs.

Most are autotrophic. Heterotrophic Some autotrophic. animal- like = heterotrophs plant- like = autotrophs fungi- like = heterotrophs. Earth Science Exam 2 Review Energy and Nutrient Flow in Ecosystems Vocabulary to know: ecosystem biotic abiotic organism species population community producers consumers decomposers food chain food web

More information

Primary Productivity. Global Net PP. Chapter 5- The Microbial World. Fill in the blank. Bacteria Unicellular algae Protists The Microbial Loop

Primary Productivity. Global Net PP. Chapter 5- The Microbial World. Fill in the blank. Bacteria Unicellular algae Protists The Microbial Loop Chapter 5- The Microbial World Bacteria Unicellular algae Protists The Microbial Loop Megaplankton Macroplankton Mesoplankton Microplankton Nanoplankton Picoplankton Fill in the blank A. Femtoplankton

More information

The BIOTIC Component

The BIOTIC Component The BIOTIC Component Ecology = the study of organisms and their interaction with their environment Environment includes abiotic components and processes: light rainfall temperature humidity topography

More information

Domains and Kingdoms

Domains and Kingdoms Domains and Kingdoms Archaea Ancient Bacteria Bacteria Regular Bacteria Eukaryota Organisms with a nucleus DOMAIN: Archaea KINGDOM: Archaebacteria Cell Type Structural Organization Cell Wall Mode of Nutrition

More information

Domains and Kingdoms. Images, from left to right: Cholera bacteria, Volvox colony, Strep bacteria

Domains and Kingdoms. Images, from left to right: Cholera bacteria, Volvox colony, Strep bacteria Domains and Kingdoms Images, from left to right: Cholera bacteria, Volvox colony, Strep bacteria THE DOMAINS A domain is the broadest level in the classification of life. All living organisms belong to

More information

The Water Planet Ch. 22

The Water Planet Ch. 22 The Water Planet Ch. 22 What is Oceanography? the study of the Earth s oceans using chemistry, biology, geology, and physics. Oceans cover 70% of the Earth s surface Ocean Research 22.1 The use of submarines

More information

The Microbial World. Chapter 5

The Microbial World. Chapter 5 The Microbial World Chapter 5 Viruses Non-cellular infectious agents that have two basic characteristics: Not capable of reproduction without a host cell Structure: Nucleic acid core- can be DNA or RNA

More information

6 Kingdoms of Life. What is life? How are all living things organized?

6 Kingdoms of Life. What is life? How are all living things organized? 6 Kingdoms of Life What is life? How are all living things organized? Engage List reasons to support why this man is living. List reasons to support why this car is not living. Characteristics of Life

More information

Organisms fill various energy roles in an ecosystem. Organisms can be producers, consumers, or decomposers

Organisms fill various energy roles in an ecosystem. Organisms can be producers, consumers, or decomposers Organisms fill various energy roles in an ecosystem An organism s energy role is determined by how it obtains energy and how it interacts with the other living things in its ecosystem Organisms can be

More information

Unicellular Marine Organisms. Chapter 4

Unicellular Marine Organisms. Chapter 4 Unicellular Marine Organisms Chapter 4 The Cellular Structure of Life: Review Cell wall: firm, fairly rigid structure located outside the plasma membrane of plants, fungi, most bacteria, and some protists;

More information

Physiography Ocean Provinces p. 1 Dimensions p. 1 Physiographic Provinces p. 2 Continental Margin Province p. 2 Deep-Ocean Basin Province p.

Physiography Ocean Provinces p. 1 Dimensions p. 1 Physiographic Provinces p. 2 Continental Margin Province p. 2 Deep-Ocean Basin Province p. Physiography Ocean Provinces p. 1 Dimensions p. 1 Physiographic Provinces p. 2 Continental Margin Province p. 2 Deep-Ocean Basin Province p. 2 Mid-Ocean Ridge Province p. 3 Benthic and Pelagic Provinces

More information

Unit 9: Taxonomy (Classification) Notes

Unit 9: Taxonomy (Classification) Notes Name Exam Date Class Unit 9: Taxonomy (Classification) Notes What is Classification? is when we place organisms into based on their. Classification is also known as. Taxonomists are scientists that & organisms

More information

A. Aristotle ( B.C.) Greek philosopher. 2 groups: plants & animals

A. Aristotle ( B.C.) Greek philosopher. 2 groups: plants & animals Classification = the grouping of objects or organisms based on a set of criteria. i TAXONOMY = A branch of biology that groups and names organisms. I. History A. Aristotle (384-322 B.C.) Greek philosopher

More information

19.1 Diversity of Protists. KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms.

19.1 Diversity of Protists. KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms. 19.1 Diversity of Protists KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms. 19.1 Diversity of Protists Protists can be animal-like, plantlike, or funguslike. Protists are eukaryotes

More information

1A Review Questions. Matching 6. Class 7. Order 8. Binomial nomenclature 9. Phylum 10. Species

1A Review Questions. Matching 6. Class 7. Order 8. Binomial nomenclature 9. Phylum 10. Species 1A Review Questions 1. What is taxonomy? a. Set of paired statements that are used to identify organisms b. Relationships between organisms c. A science involving naming and categorizing species based

More information

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators Classification of Living Organisms Learning Outcome B1 Learning Outcome B1 Apply the Kingdom System of classification to study the diversity of organisms. Student Achievement Indicators Students who have

More information

Ch. 2 Patterns Association

Ch. 2 Patterns Association Ch. 2 Patterns of Ch. 2 Patterns of Association Association Classifying organisms by habitat, evolutionary relationships, trophic interactions (feeding) Classifying organisms by habitat, evolutionary relationships,

More information

Ocean facts continued

Ocean facts continued Ocean Facts A dynamic system in which many chemical and physical changes take place Formed over millions of years as precipitation filled low areas on Earth called basins and now covers 70% of the Earth

More information

Multiple Choice Write the letter on the line provided that best answers the question or completes the statement.

Multiple Choice Write the letter on the line provided that best answers the question or completes the statement. Chapter 18 Classification Chapter Test A Multiple Choice Write the letter on the line provided that best answers the question or completes the statement. 1. Scientists assign each kind of organism a universally

More information

Characteristics of Living Things Card Sort

Characteristics of Living Things Card Sort Characteristics of Living Things Card Sort All of these terms are characteristics of organisms that allow scientists to classify (organize) them into groups. Chapter 9 in your text covers the characteristics

More information

A Planned Course Statement for. Oceanography. Course # 410 Grade(s) 9, 10, 11, 12. Length of Period (mins.) 40 Total Clock Hours: 60

A Planned Course Statement for. Oceanography. Course # 410 Grade(s) 9, 10, 11, 12. Length of Period (mins.) 40 Total Clock Hours: 60 East Penn School District Secondary Curriculum A Planned Course Statement for Oceanography Course # 410 Grade(s) 9, 10, 11, 12 Department: Science ength of Period (mins.) 40 Total Clock Hours: 60 Periods

More information

What makes things alive? CRITERIA FOR LIFE

What makes things alive? CRITERIA FOR LIFE What makes things alive? CRITERIA FOR LIFE Learning Goals I can determine if something is alive based on the criteria for life. I can describe the history of life on Earth. I can describe how organisms

More information

Taxonomy and Biodiversity

Taxonomy and Biodiversity Chapter 25/26 Taxonomy and Biodiversity Evolutionary biology The major goal of evolutionary biology is to reconstruct the history of life on earth Process: a- natural selection b- mechanisms that change

More information

Two of the main currents in the Arctic region are the North Atlantic Current (in red) and the Transport Current (in blue).

Two of the main currents in the Arctic region are the North Atlantic Current (in red) and the Transport Current (in blue). Have you ever enjoyed playing in the snow or making snowmen in the wintertime? The winter season is our coldest season. However, some of the coldest days we have here in Indiana have the same temperature

More information

1.1 Characteristics of Life Block: Date:

1.1 Characteristics of Life Block: Date: Biology 12 Name: 1.1 Characteristics of Life Block: Date: ization of Life (p. 3) Definition Cell Example Blood cell Tissue Muscle tissue Several tissues joined together to form a function system Circulatory

More information

Chapter 6. Life on Earth: What do Fossils Reveal?

Chapter 6. Life on Earth: What do Fossils Reveal? Chapter 6 Life on Earth: What do Fossils Reveal? Fossils Fossils are the remains or traces of ancient life which have been preserved by natural causes in the Earth's crust. Fossils include both the remains

More information

OCN 201 Fall 2005 Final Exam (90 pts)

OCN 201 Fall 2005 Final Exam (90 pts) OCN 201 Fall 2005 Final Exam (90 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. The Miller-Urey experiment showed that Panspermia is not possible. 2. Holoplankton refers to plankton that spend

More information

Finding Order in Diversity

Finding Order in Diversity Finding Order in Diversity Videos Scishow Taxonomy: https://youtu.be/f38bmgpcz_i Bozeman Taxonomy: https://youtu.be/tyl_8gv7rie Terms to Know 1. Radiometric Dating 12. Miller and Urey s 2. Geologic Time

More information

Major Events in the History of Earth

Major Events in the History of Earth Major Events in the History of Earth Cenozoic Humans Land plants Animals Origin of solar system and Earth Multicellular eukaryotes 1 Proterozoic eon 2 Archaean eon 3 4 Single-celled eukaryotes Atmospheric

More information

Marine biologists have identified over 250,000 marine species. This number is constantly increasing as new organisms are discovered.

Marine biologists have identified over 250,000 marine species. This number is constantly increasing as new organisms are discovered. A wide variety of organisms inhabit the marine environment. These organisms range in size from microscopic bacteria and algae to the largest organisms alive today blue whales, which are as long as three

More information

CHAPTER 5 WARM UPS. Mrs. Hilliard

CHAPTER 5 WARM UPS. Mrs. Hilliard CHAPTER 5 WARM UPS Mrs. Hilliard CHAPTER 5 VOCABULARY 1. Photosynthesis 2. Cellular respiration 3. Producer 4. Consumer 5. Decomposer 6. Food chain 7. Food web 8. Trophic level 9. Carbon cycle 10. Nitrogen-fixing

More information

1. The picture below shows a paramecium. 2. Anya is observing an organism in the laboratory. The table below shows her observations.

1. The picture below shows a paramecium. 2. Anya is observing an organism in the laboratory. The table below shows her observations. Name: Period: Date: Life Science MCAS Review Packet Directions: Answer each of the following questions under the standards. The question may be multiple choice or open response, if needed please use a

More information

DAZZLING DRIFTERS IN THE SEA

DAZZLING DRIFTERS IN THE SEA F R O M T H E B I R C H A Q U A R I U M A T S C R I P P S F O R K I D S O F A L L A G E S By Memorie Yasuda DAZZLING DRIFTERS IN THE SEA PLANKTON ARE ORGANISMS that float freely in the ocean. Plankton

More information

Ecology. ECOLOGY and DIVERSITY OF LIFE. Diversity. Global Declines in Biodiversity 1/1/2018

Ecology. ECOLOGY and DIVERSITY OF LIFE. Diversity. Global Declines in Biodiversity 1/1/2018 Ecology ECOLOGY and DIVERSITY OF LIFE Ecology is the study of life in the environment, as well as how all factors of the living and non-living world interact Earth is an elaborate, interconnected system

More information

Classification Systems. Classification is just a fancy word for organization. So this chapter is equivalent to Biology cleaning its room!

Classification Systems. Classification is just a fancy word for organization. So this chapter is equivalent to Biology cleaning its room! Classification Systems Classification is just a fancy word for organization. So this chapter is equivalent to Biology cleaning its room! A Vast Science Biology, the study of life, is no simple science.

More information

Classification of Marine Life & Habitats. OCN 201 Biology Lecture 3 Professor Grieg Steward

Classification of Marine Life & Habitats. OCN 201 Biology Lecture 3 Professor Grieg Steward Classification of Marine Life & Habitats OCN 201 Biology Lecture 3 Professor Grieg Steward Autotrophs can make the organic building blocks of life starting from carbon dioxde Heterotrophs have to eat organics

More information

Key Concepts 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology?

Key Concepts 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology? Chapter 3 The Biosphere 3 1 What is Ecology? 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology? Ecology study of interactions between organisms and

More information

Life Science. Chapter 9 Part 1 Protista

Life Science. Chapter 9 Part 1 Protista Life Science Chapter 9 Part 1 Protista Protista Junk drawer kingdom a little bit of everything, some w/ cell walls (composition varies), some w/out. All are Eukaryotes, autotrophs and heterotrophs represented.

More information

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics

Biology Classification Unit 11. CLASSIFICATION: process of dividing organisms into groups with similar characteristics Biology Classification Unit 11 11:1 Classification and Taxonomy CLASSIFICATION: process of dividing organisms into groups with similar characteristics TAXONOMY: the science of classifying living things

More information

29/11/2012. Characteristics. Protist Diversity. Characteristics. Kingdom Protista. Examples of Plant-like Protists

29/11/2012. Characteristics. Protist Diversity. Characteristics. Kingdom Protista. Examples of Plant-like Protists Kingdom Protista Learning Outcome B1 Characteristics Appeared in the fossil record 1.5 billion years ago have an evolutionary advancement over bacteria, because they have a membranebound nucleus. also

More information

13.3. Energy in Ecosystems. Producers provide energy for other organisms in an ecosystem.

13.3. Energy in Ecosystems. Producers provide energy for other organisms in an ecosystem. 13.3 Energy in Ecosystems KEY CONCEPT Life in an ecosystem requires a source of energy. Producers provide energy for other organisms in an ecosystem. Almost all producers obtain energy from sunlight. VOCABULARY

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

Choose a category. You will be given the answer. You must give the correct question. Click to begin.

Choose a category. You will be given the answer. You must give the correct question. Click to begin. Choose a category. You will be given the answer. You must give the correct question. Click to begin. Click here for Final Jeopardy Classify This For Cell Gene Gene the Dancin Machine Cycles & Changes Feed

More information

1. Evolution and Classification

1. Evolution and Classification 1. Evolution and Classification 1.1 Origin of Life and Plants 1.2 Animal Evolution 1.3 Human Evolution 1.4 Mechanisms of Evolution 1.5 Hardy-Weinberg Equilibrium 1.6 Mechanisms of Speciation 1.7 Classification

More information

What are Dichotomous Keys?

What are Dichotomous Keys? Classification What are Dichotomous Keys? a method for determining the identity of something (like the name of a butterfly, a plant, a lichen, or a rock) by going through a series of choices that leads

More information

Round One All play. Each question = 1 point

Round One All play. Each question = 1 point Ecology Unit Review Round One All play Each question = 1 point Leaf cells are one type of tree cell. Which process occurs in a live leaf cell? a. Evolution b. Adaptation c. sugar production d. sexual reproduction

More information

What is classification? Basically classification is a fancy word for organization.

What is classification? Basically classification is a fancy word for organization. Classification What is classification? Basically classification is a fancy word for organization. Some Scientists believe there are as many as 200 million different kinds of living things on our planet.

More information

CLASSIFICATION OF LIVING THINGS

CLASSIFICATION OF LIVING THINGS CLASSIFICATION OF LIVING THINGS 1. Taxonomy The branch of biology that deals with the classification of living organisms About 1.8 million species of plants and animals have been identified. Some scientists

More information

Classification of Marine Life & Habitats

Classification of Marine Life & Habitats Classification of Marine Life & Habitats OCN 201 Biology Lecture 3 Grieg Steward Autotrophs can make the organic building blocks of life starting from carbon dioxde Heterotrophs have to eat organics carbon

More information

KINGDOM SYSTEM OF CLASSIFICATION OF LIVING ORGANISM. Dr. Urvashi Sinha, Asst. Prof., Department of Botany Patna Women s College, Patna

KINGDOM SYSTEM OF CLASSIFICATION OF LIVING ORGANISM. Dr. Urvashi Sinha, Asst. Prof., Department of Botany Patna Women s College, Patna KINGDOM SYSTEM OF CLASSIFICATION OF LIVING ORGANISM Dr. Urvashi Sinha, Asst. Prof., Department of Botany Patna Women s College, Patna THE CONCEPT Carl Linnaeus introduced the rank-based system of nomenclature

More information

The Domain Eukarya is a large, diverse and complex group or organisms that consist of one or more Eukaryotic Cells

The Domain Eukarya is a large, diverse and complex group or organisms that consist of one or more Eukaryotic Cells The Domain Eukarya is a large, diverse and complex group or organisms that consist of one or more Eukaryotic Cells This domain is divided into four fairly distinct kingdoms: - Protists (Protista) - Plants

More information

A. Difference between bacteria (Monera) and other algae (Eukaryotes). -normal stuff: circular v. linear DNA; organelles or not; nucleus or not.

A. Difference between bacteria (Monera) and other algae (Eukaryotes). -normal stuff: circular v. linear DNA; organelles or not; nucleus or not. Cyanophyta (Cyanobacteria; blue-green algae). A. Difference between bacteria (Monera) and other algae (Eukaryotes). -normal stuff: circular v. linear DNA; organelles or not; nucleus or not. B. Differences

More information

Chapter 14: Primary Producers

Chapter 14: Primary Producers Chapter 14: Primary Producers Ernst Haeckel diatoms Diatom drawings by Ernst Haeckel Diatom art under a microscope slide 1 Images from Puget Sound: M. Guannel/H. van Tol 2 Images from Puget Sound: M. Guannel/H.

More information

Classification. Classifying Organisms. * Organisms are divided into 3 domains and 6 kingdoms based on the following characteristics

Classification. Classifying Organisms. * Organisms are divided into 3 domains and 6 kingdoms based on the following characteristics Classification Classifying Organisms * Organisms are divided into 3 domains and 6 kingdoms based on the following characteristics Cell Type: Prokaryotic vs. Eukaryotic Prokaryotic - No nucleus Eukaryotic

More information

CARBONATES. part 3 MICRITES, CHALK and CHERTS: a very simple introduction to carbonates and silica in deep ocean waters

CARBONATES. part 3 MICRITES, CHALK and CHERTS: a very simple introduction to carbonates and silica in deep ocean waters CARBONATES part 3 MICRITES, CHALK and CHERTS: a very simple introduction to carbonates and silica in deep ocean waters notes from lecture: a quick summary Chalk (in white) and Chert Nodules (in black)

More information

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology CP Biology Name Date Period HOMEWORK PACKET UNIT 2A Part I: Introduction to Ecology Name Class Date 3.1 What Is Ecology? Studying Our Living Planet 1. What is ecology? 2. What does the biosphere contain?

More information