Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane

Size: px
Start display at page:

Download "Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane"

Transcription

1 Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane Heiko Fettig, PhD James Wylde, PhD Nortel Networks - Optical Components Ottawa ON K2H 8E9 Canada Abstract This paper examines the modelling of a square four layer MEMS membrane for a combined thermal and structural analysis. The membrane consists of four dissimilar layers, two polymer and two metal layers. Only the bottom polymer layer is fixed to the substrate and only around the perimeter. The second polymer layer is sandwiched between two metal layers. Dielectric loss in this polymer induced by a high frequency AC voltage between the metal layers heats the membrane and deforms it. Due to the extreme aspect ratios of the membrane, up to 3,500:1 for the metal layers, solid modelling proves inefficient and alternatives are examined in this paper. It is shown that for this specific membrane set-up axisymmetric modelling yields results that are sufficient for parameter optimization. The shortcomings of this method are presented as well. Introduction Traditional (MEMS) micro-electro-mechanical systems devices are fabricated using silicon, either etched in the bulk material as with wet and dry bulk etching, etched in a device layer for silicon on insulator (SOI) devices, or deposited in polycrystalline form on a wafer surface. While silicon has proved to be a viable material for the fabrication of MEMS structures, devices tend to be limited to several microns of motion and limited to in-plane 2-D motion. It has been proposed that the fabrication of devices using polymer materials can offer larger ranges of motion and allow out-of-plane motion. There is a substantial amount of work in the literature involving bimorphed and multi-morphed structures for the realization of motion with MEMS devices. Much of it involves the use of either pseudo bi-morph structures (by using geometry to concentrate the heat in one portion of a structure; Hickey et al., 2001) or by using dissimilar materials (Rashidian and Allen, 1993). This paper will present an analysis technique for optimizing a finite element model, using ANSYS, to maximize the displacement of a multi-layer out of plane actuator subject to power and geometric constraints. The structure is formed by the deposition of two layers of polymer materials (with the properties determined from the simulation) and two metal layers. The actuation mechanism is similar to a bi-morph; however, the heat is provided by dielectric heating in a lossy polymer. The advantages of structures such as those proposed here include: 1. The structures allow out-of-plane motion, 2. Can be more readily fabricated than silicon MEMS, and 3. Can operate at a lower power-displacement metric (mw/µm) than typical silicon MEMS.

2 Multi-layer Actuator Membrane A model of an actuator formed from four layers of dissimilar material is desired (see Figure 1). When one layer of the actuator is heated (in this case the lossy polymer), the actuator bows out as shown in Figure 2. This effect is similar to the thermostat effect (Boley, 1960). It is desirable to optimize the maximum displacement d by finding the optimal thickness t j, the relative thermal coefficient of expansion (TCE j ), and material Young s Modulus E j for each layer, as well as the opening size b, for a given power consumption P and overall dimension a. Metal Lossy Polymer Metal Base Polymer Silicon Substrate } V~ Figure 1 - Schematic of layers used for analysis of multi-morph membrane actuator structure. Note that the alternating voltage is applied between the metal layers encasing the lossy dielectric. t4 t3 d t2 t1 b Figure 2 - Schematic of multi-layer structure showing the pertinent dimensions and deflected shape of the structure due to a heat load applied to the lossy dielectric (layer 3). Dielectric Heating Typical polymer materials experience dielectric losses in the presence of an alternating electric field due to the alternating orientation change of dipoles and the movement of charge carriers (Rashidian and Allen, 1993). These losses are realized as heat generated in the material. In the models presented here, the heat is generated in the devices by dielectric loss in the third (second polymer) layer by applying an alternating voltage across the two metal plates as shown in Figure 1. The specific heat generated in this layer is given as (Rashidian and Allen, 1993): Where P = Power generated per unit volume [W/m 3 ] 1 2 P = ω ε ε0 E (1) 2

3 ω = ε" = ε 0 = E = Circular frequency of applied voltage [rad/s] Imaginary part of the dielectric permittivity, sometimes called dielectric loss factor. Note that many materials are defined in terms of the dielectric constant ε' and the loss tangent (or dissipation factor) given as: Permittivity of free space equal to F/m ε δ = ε The electric field between the two metal layers in the lossy dielectric Bartinkas (2000) gives a more thorough description of dielectric losses. tan (2) Analysis Analysis Theory Due to the number of variables (thickness, TCE, Young s Modulus, dimensions) and because the analysis is a coupled thermal-structural analysis, it is desirable to optimize the device by developing a numerical model using ANSYS and examining the effect of each variable. Furthermore it is desirable to reduce the solution time such that a large range and number of cases for each variable can be examined. The types of models are outlined below. The models were analyzed using six steps: 1. Applying a heat load (through HGEN) to the lossy dielectric layer of the stack, 2. Performing a steady-state thermal analysis to determine the temperature distribution throughout the membrane, 3. Re-meshing the model with structural elements (through ETCHG), 4. Loading the temperature results of the previous analysis as body loads for the structural analysis, 5. Solving for the deflected shape of the membrane, and 6. Extracting the deflection curve along the centreline of the structure. As boundary condition, an isothermal surface at the interface between the bottom layer and the substrate was modeled. The heat load per unit volume was calculated using Equation (1), with the power dissipation calculated from the voltage, frequency, and dielectric properties (input as parameters, using *SET) and the known geometry. The output from the model was the maximum temperature in the device and the displacement d of the centreline as shown in Figure 2. Solid Model A solid model of the smallest of the membranes in question was constructed using four square block volumes. The model was meshed with more than 40,000 SOLID90/SOLID95 elements yielding approximately 150,000 DOF for the thermal model and 450,000 DOF for the mechanical model. These large numbers are the result of the high aspect ratios that are present in this model. Some of the structures to be simulated

4 feature overall aspect ratios of up to 200:1 (lateral dimension to thickness) with aspect ratios of some of the layers being up to 3,500:1. To avoid running into shape violations flagged by ANSYS the maximum aspect ratio of the brick elements has to be 20:1 or less. Therefore the maximum element size in lateral direction is governed by the thickness of the thinnest layer. The thinner the layer, the smaller the lateral element size, the more elements are needed. Solve time on a 650MHz desktop PC with 384MB RAM running Windows 2000 was approximately 1000 minutes for the combined thermal and structural analysis. The outputs from the model were the maximum temperature and the maximum deflection of the top surface of the stack. It was desired to enhance this solve time to speed up the optimization process for the model. Several methods for enhancing the solve time are presented. Performance Enhancement Symmetric Model Observation of the solid model reveals that it is symmetric about 2 axes. A quarter model was developed with similar boundary conditions applied along two edges and symmetric boundary conditions applied along the other two edges. This reduced the number of elements and DOF by a factor of four. In return the solve time per iteration was reduced to 60 minutes. The advantage of the symmetric model is that the model is developed similarly to the full 3-D model by entering the geometry into PREP7, meshing with brick elements, and solving. For examination of larger membranes (a > 1000µm), however, even the quarter model with 8-node brick elements (SOLID45/70) resulted in models with over 400,000 DOF. These models were not economic for large number of variation optimization runs. A one-eighth model of the membrane was also considered but the meshing of the triangle with brick elements proved to result in a higher number of elements and DOFs than in the quarter model. This also resulted in a longer solve time and was therefore not examined any further. Axisymmetric Model Although the quadratic membrane examined in this paper is not axisymmetric, initial tests showed that an axisymmetric model of half the membrane s cross-section using axisymmetric PLANE78/PLANE83 elements produced results under-estimating the solid model by 10-30% (lower for larger membranes). In spite of the fact that the axisymmetric model describes a circular membrane rather than a square membrane, the general trends for the behaviour of the membrane were found to be the same. The axisymmetric model, however, solves in about one minute, which makes the calculation of a wide variety of scenarios possible. Using the axisymmetric model it was possible to quickly examine variations in layer thickness, membrane size, overlap size and layer materials, in order to derive guidelines for the behaviour of the square membrane. Analysis Results & Discussion Figure 3 shows the displacement of a membrane with a side length a = 800µm, an opening b = 480µm with an input power of 200mW as calculated using a quarter solid model. Figure 4 shows the same displacement as calculated using an axisymmetric model (quarter model symmetric expansion was used).

5 Figure 3 - Plot of deflected shape of multi-layer membrane simulated using a quarter solid model. Figure 4 - Plot of deflected shape of multi-layer membrane using an axisymmetric model. Figure 5 shows a plot of the displacement along the centreline of a deflected membrane (extracted from an ANSYS result with PATH commands). For design purposes, it is desirable to maximize this deflection by adjusting the geometry shown in Figure 2. The sample plot is for a membrane with a side length a = 1100µm, an opening b = 1000µm with an input power of 200mW.

6 Figure 5 - Plot of deflected shape along the centreline of the multi-layer membrane In order to optimize the base polymer thickness of this membrane for maximum deflection, a number of variations were calculated using both an axisymmetric and a quarter solid model. As can be seen from the graph shown in Figure 6 both models show a maximal deflection for a base polymer thickness t 1 = 8.46µm. Although the actual calculated displacements show a difference of 23% between the results from the axisymmetric and the quarter solid model, both models give the same optimal base polymer thickness for the membrane. This effect was observed for other parameters as well. Membrane Displacement [µm] µm Base Polymer Thickness [µm] Axisymmetric Fit (AS) Quarter Solid Fit (QS) Figure 6 - Plot of calculated membrane deflection for various base polymer thicknesses.

7 Comparisons between axisymmetric and quarter solid models have shown that the axisymmetric model constantly under-predicts the results of the quarter solid model. For the displacement result this is not a problem, in fact it is rather welcome since it makes the estimate more conservative. The under-prediction in the temperature result, however, can lead to problems since the temperature of the device for a given power will actually be higher than the value predicted by the axisymmetric model. Since polymers have relatively low melting points an overheating of the membrane could mean its destruction. Figures 7 and 8 show graphs of membrane displacement and temperature versus power for an axisymmetric and a quarter solid model. If a maximum allowable membrane temperature of T = 75 C over ambient is assumed it can be seen from Figure 7 that the maximum allowable input power is P QS = 187mW for the solid model and P AS = 215mW for the axisymmetric model. Using these power values in Figure 8 the maximum possible membrane deflections are found to be d QS = -6.7µm and d AS = -5.9µm. This means that although the maximum allowable power is over-predicted by the axisymmetric model the maximum achievable displacement is still under-predicted Membrane Displacement [µm] µm µm mW 215mW Power Consumption [mw] Axisymmetric Fit (AS) Quarter Solid Fit (QS) Figure 7 - Plot of calculated membrane temperature versus input power.

8 100 Membrane Temperature Above Ambient [ C] C 187mW 215mW Power Consumption [mw] Axisymmetric Fit (AS) Quarter Solid Fit (QS) Figure 8 - Plot of calculated membrane deflection versus input power. Conclusion The modelling of a multi-layered square membrane structure for the purpose of optimizing its geometry to yield maximum deflection was examined in this paper. It was found that the cycle time for a given number of optimization iterations could be reduced by a factor of 16 by simulating the solid model as a 1/4 model and by a factor of 1,000 by using an axisymmetric model. It was shown that for the optimization of parameters, like thickness and size, the axisymmetric model yields the same optimal parameter values as a quarter solid model, in considerably less time. However, it was also shown, that the axisymmetric model constantly under-predicts the results of the quarter solid model for membrane temperature and displacement. Although the under-estimate of the maximum achievable displacement is welcome in a conservative design approach, the under-estimate of the membrane temperature for given power can lead to over-heating and therefore destruction of the membrane. Given that the purpose of the simulation was to understand the influence of geometric parameters on the membrane deflection, the authors recommend the use of an axisymmetric model to examine these influences and the use of a quarter solid model to calculate the temperature/displacement versus power curves for a given optimized membrane. References 1. Bartinkas, R Dielectrics and Insulators. In The Electrical Engineering Handbook. Boca Raton: CRC Press. 2. Boley, B.A Theory of Thermal Stresses. New York: John Wiley and Sons, Inc. 3. Hickey, R. M., M. R. Kujath, and T. J. Hubbard Heat Transfer Analysis and Optimization of MEMS Thermal Actuators. Journal of Vacuum Science and Technology A 20 (2).

9 4. Rashidian, B., and M. G. Allen, 1993, Electrothermal Microactuators Based on Dielectric Loss Heating. In Proceedings of IEEE MEMS 93, Fort Lauderdale, FL, February San Diego: IEEE

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 77 CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 5.1 INTRODUCTION Fixed guided clamped and cantilever beams have been designed and analyzed using ANSYS and their performance were calculated. Maximum deflection

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Validation of High Displacement Piezoelectric Actuator Finite Element Models

Validation of High Displacement Piezoelectric Actuator Finite Element Models Validation of High Displacement Piezoelectric Actuator Finite Element Models Barmac Taleghani * Army Research Laboratory Vehicle Technology Directorate NASA Langley Research Center Hampton, VA ABSTRACT

More information

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT)

An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) An Accurate Model for Pull-in Voltage of Circular Diaphragm Capacitive Micromachined Ultrasonic Transducers (CMUT) Mosaddequr Rahman, Sazzadur Chowdhury Department of Electrical and Computer Engineering

More information

GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION

GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION GENERAL CONTACT AND HYSTERESIS ANALYSIS OF MULTI-DIELECTRIC MEMS DEVICES UNDER THERMAL AND ELECTROSTATIC ACTUATION Yie He, James Marchetti, Carlos Gallegos IntelliSense Corporation 36 Jonspin Road Wilmington,

More information

Simulation based Analysis of Capacitive Pressure Sensor with COMSOL Multiphysics

Simulation based Analysis of Capacitive Pressure Sensor with COMSOL Multiphysics Simulation based Analysis of Capacitive Pressure Sensor with COMSOL Multiphysics Nisheka Anadkat MTech- VLSI Design, Hindustan University, Chennai, India Dr. M J S Rangachar Dean Electrical Sciences, Hindustan

More information

CAPACITIVE MICRO PRESSURE SENSORS WITH UNDERNEATH READOUT CIRCUIT USING A STANDARD CMOS PROCESS

CAPACITIVE MICRO PRESSURE SENSORS WITH UNDERNEATH READOUT CIRCUIT USING A STANDARD CMOS PROCESS Journal of the Chinese Institute of Engineers, Vol. 26, No. 2, pp. 237-241 (2003) 237 Short Paper CAPACITIVE MICRO PRESSURE SENSORS WITH UNDERNEATH READOUT CIRCUIT USING A STANDARD CMOS PROCESS Ching-Liang

More information

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané Stresa, Italy, 5-7 April 007 MODELING OF T-SHAPED MICROCANTILEVER RESONATORS Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Centro Nacional de Microelectrónica

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

Tunable MEMS Capacitor for RF Applications

Tunable MEMS Capacitor for RF Applications Tunable MEMS Capacitor for RF Applications Shriram H S *1, Tushar Nimje 1, Dhruv Vakharia 1 1 BITS Pilani, Rajasthan, India *1167, 1 st Main, 2 nd Block, BEL Layout, Vidyaranyapura, Bangalore 560097; email:

More information

Simulation and Optimization of an In-plane Thermal Conductivity Measurement Structure for Silicon Nanostructures

Simulation and Optimization of an In-plane Thermal Conductivity Measurement Structure for Silicon Nanostructures 32nd International Thermal Conductivity Conference 20th International Thermal Expansion Symposium April 27 May 1, 2014 Purdue University, West Lafayette, Indiana, USA Simulation and Optimization of an

More information

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 5-9-2011 Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS

More information

Kurukshetra University INDIA

Kurukshetra University INDIA American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments 07-Rodrigues-V4 N2-AF 19.08.09 19:41 Page 84 Time-of-Flight Flow Microsensor using Free-Standing Microfilaments Roberto Jacobe Rodrigues 1,2, and Rogério Furlan 3 1 Center of Engineering and Social Sciences,

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

A THERMAL ACTUATOR DESIGN USING TORSIONAL LOADING TO ACHIEVE OUT-OF-PLANE MOTION AND FORCE TRANSMISSION

A THERMAL ACTUATOR DESIGN USING TORSIONAL LOADING TO ACHIEVE OUT-OF-PLANE MOTION AND FORCE TRANSMISSION A THERMAL ACTUATOR DESIGN USING TORSIONAL LOADING TO ACHIEVE OUT-OF-PLANE MOTION AND FORCE TRANSMISSION Anargyros Panayotopoulos MEMS Division, Mechanical Engineering Dept. University of California, Berkeley,

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Design of a MEMS Capacitive Comb-drive Accelerometer

Design of a MEMS Capacitive Comb-drive Accelerometer Design of a MEMS Capacitive Comb-drive Accelerometer Tolga Kaya* 1, Behrouz Shiari 2, Kevin Petsch 1 and David Yates 2 1 Central Michigan University, 2 University of Michigan * kaya2t@cmich.edu Abstract:

More information

Curvature of a Cantilever Beam Subjected to an Equi-Biaxial Bending Moment. P. Krulevitch G. C. Johnson

Curvature of a Cantilever Beam Subjected to an Equi-Biaxial Bending Moment. P. Krulevitch G. C. Johnson UCRL-JC-30440 PREPRINT Curvature of a Cantilever Beam Subjected to an Equi-Biaxial Bending Moment P. Krulevitch G. C. Johnson This paper was prepared for submittal to the Materials Research Society Spring

More information

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing ScieTech 014 Journal of Physics: Conference Series 495 (014) 01045 doi:10.1088/174-6596/495/1/01045 Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing H. F. Hawari, Y. Wahab,

More information

Thermal Sensors and Actuators

Thermal Sensors and Actuators Thermal Sensors and Actuators Part I Fundamentals of heat transfer Heat transfer occurs where there is a temperature gradient until an equilibrium is reached. Four major mechanism Thermal conduction Natural

More information

Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA

Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA Presented at the COMSOL Conference 2009 Boston Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA V. Mathur, K.Anglin, V.S. Prasher, K.Tremkoa, S.R. Vangala, X. Qian,

More information

EFFICIENT MULTI-PHYSICS MODELING OF THE DYNAMIC RESPONSE OF RF-MEMS SWITCHES

EFFICIENT MULTI-PHYSICS MODELING OF THE DYNAMIC RESPONSE OF RF-MEMS SWITCHES EFFICIENT MULTI-PHYSICS MODELING OF THE DYNAMIC RESPONSE OF RF-MEMS SWITCHES Jeroen Bielen 1, Jiri Stulemeijer 1 1 EPCOS Netherlands Deepak Ganjoo 2, Dale Ostergaard 2, Stephen Scampoli 2 2 Ansys Inc.

More information

BACKEND IMPLICATIONS FOR THERMAL EFFECTS IN 3D INTEGRATED SOI STRUCTURES

BACKEND IMPLICATIONS FOR THERMAL EFFECTS IN 3D INTEGRATED SOI STRUCTURES BACKEND IMPLICATIONS FOR THERMAL EFFECTS IN 3D INTEGRATED SOI STRUCTURES D. Celo, R. Joshi 1, and T. Smy Dept. of Electronics, Carleton University, Ottawa, ON, Canada K1S 5B6, ph: 613-520-3967, fax: 613-520-5708:

More information

2D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL ABSTRACT

2D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL ABSTRACT D BEAM STEERING USING ELECTROSTATIC AND THERMAL ACTUATION FOR NETWORKED CONTROL Jitendra Makwana 1, Stephen Phillips 1, Lifeng Wang 1, Nathan Wedge, and Vincenzo Liberatore 1 Department of Electrical Engineering,

More information

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Modelling

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism

Simulation of a Micro-Scale Out-of-plane Compliant Mechanism Simulation of a Micro-Scale Out-of-plane Compliant Mechanism by Arpys Arevalo PhD Candidate in Electrical Engineering Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) King Abdullah

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4 Issued: Wednesday, Mar. 5, 2014 PROBLEM SET #4 Due (at 9 a.m.): Tuesday Mar. 18, 2014, in the EE C247B HW box near 125 Cory. 1. Suppose you would like to fabricate the suspended cross beam structure below

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by Foundations of MEMS Second Edition Chang Liu McCormick School of Engineering and Applied Science Northwestern University International Edition Contributions by Vaishali B. Mungurwadi B. V. Bhoomaraddi

More information

Physical Modeling and Simulation Rev. 2

Physical Modeling and Simulation Rev. 2 11. Coupled Fields Analysis 11.1. Introduction In the previous chapters we have separately analysed the electromagnetic, thermal and mechanical fields. We have discussed their sources, associated material

More information

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN

Evaluation of Capacitance in Motor Circuit Analysis Findings. Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Evaluation of Capacitance in Motor Circuit Analysis Findings Howard W Penrose, Ph.D., CMRP President, SUCCESS by DESIGN Introduction The question related to the ability of low voltage testing to detect

More information

December 1999 FINAL TECHNICAL REPORT 1 Mar Mar 98

December 1999 FINAL TECHNICAL REPORT 1 Mar Mar 98 REPORT DOCUMENTATION PAGE AFRL-SR- BL_TR " Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruct the collection

More information

Mechanics of wafer bonding: Effect of clamping

Mechanics of wafer bonding: Effect of clamping JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 1 1 JANUARY 2004 Mechanics of wafer bonding: Effect of clamping K. T. Turner a) Massachusetts Institute of Technology, Cambridge, Massachusetts 0219 M. D. Thouless

More information

SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY

SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY S. Sunithamani 1, P. Lakshmi 1, E. Eba Flora 1 1 Department of EEE, College of Engineering, Anna University,

More information

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Table S1 Comparison of cooling performance of various thermoelectric (TE) materials and device architectures

More information

2.76/2.760 Multiscale Systems Design & Manufacturing

2.76/2.760 Multiscale Systems Design & Manufacturing 2.76/2.760 Multiscale Systems Design & Manufacturing Fall 2004 MOEMS Devices for Optical communications system Switches and micromirror for Add/drops Diagrams removed for copyright reasons. MOEMS MEMS

More information

Microstructure cantilever beam for current measurement

Microstructure cantilever beam for current measurement 264 South African Journal of Science 105 July/August 2009 Research Articles Microstructure cantilever beam for current measurement HAB Mustafa and MTE Khan* Most microelectromechanical systems (MEMS) sensors

More information

Modeling and simulation of multiport RF switch

Modeling and simulation of multiport RF switch Journal of Physics: Conference Series Modeling and simulation of multiport RF switch To cite this article: J Vijay et al 006 J. Phys.: Conf. Ser. 4 715 View the article online for updates and enhancements.

More information

Thin Wafer Handling Challenges and Emerging Solutions

Thin Wafer Handling Challenges and Emerging Solutions 1 Thin Wafer Handling Challenges and Emerging Solutions Dr. Shari Farrens, Mr. Pete Bisson, Mr. Sumant Sood and Mr. James Hermanowski SUSS MicroTec, 228 Suss Drive, Waterbury Center, VT 05655, USA 2 Thin

More information

SENSOR DEVICES MECHANICAL SENSORS

SENSOR DEVICES MECHANICAL SENSORS SENSOR DEVICES MECHANICAL SENSORS OUTLINE 4 Mechanical Sensors Introduction General mechanical properties Piezoresistivity Piezoresistive sensors Capacitive sensors Applications INTRODUCTION MECHANICAL

More information

EXPERIMENT 4: AN ELECTRICAL-THERMAL ACTUATOR

EXPERIMENT 4: AN ELECTRICAL-THERMAL ACTUATOR EXPERIMENT 4: AN ELECTRICAL-THERMAL ACTUATOR 1. OBJECTIVE: 1.1 To analyze an electrical-thermal actuator used in a micro-electromechanical system (MEMS). 2. INTRODUCTION 2.1 Introduction to Thermal Actuator

More information

Design and Analysis of dual Axis MEMS Capacitive Accelerometer

Design and Analysis of dual Axis MEMS Capacitive Accelerometer International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 779-790 Research India Publications http://www.ripublication.com Design and Analysis of dual Axis

More information

Characterization of an AlGaN/GaN Electrostatically Actuated Cantilever using Finite Element Method

Characterization of an AlGaN/GaN Electrostatically Actuated Cantilever using Finite Element Method Presented at the COMSOL Conference 2010 Boston Characterization of an AlGaN/GaN Electrostatically Actuated Cantilever using Finite Element Method Nicholas DeRoller, Muhammad Qazi, Jie Liu, and Goutam Koley

More information

Virtual Prototype of a Dielectric Window for High Power Microwave Tubes

Virtual Prototype of a Dielectric Window for High Power Microwave Tubes Virtual Prototype of a Dielectric Window for High Power Microwave Tubes Alberto Leggieri, Davide Passi and Franco Di Paolo Università degli Studi di Roma Tor Vergata, Department of Electronic Engineering,

More information

Platform Isolation Using Out-of-plane Compliant Mechanism

Platform Isolation Using Out-of-plane Compliant Mechanism Platform Isolation Using Out-of-plane Compliant Mechanism by Arpys Arevalo PhD Candidate in Electrical Engineering Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) King Abdullah University

More information

The Characterization of Thermal Interface Materials using Thermal Conductivity for Within Sample and Batch to Batch Variation Analysis

The Characterization of Thermal Interface Materials using Thermal Conductivity for Within Sample and Batch to Batch Variation Analysis The Characterization of Thermal Interface s using Thermal Conductivity for Within Sample and Batch to Batch Variation Analysis Raymond Qiu, Karina Schmidt, Adam Harris and Gareth Chaplin* *Manager, Application

More information

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Slavka Tzanova 1, Lora Kamenova 2, Yvan Avenas

More information

440. Simulation and implementation of a piezoelectric sensor for harmonic in-situ strain monitoring

440. Simulation and implementation of a piezoelectric sensor for harmonic in-situ strain monitoring 440. Simulation and implementation of a piezoelectric sensor for harmonic in-situ strain monitoring 0. Incandela a, L. Goujon b, C. Barthod c University of Savoie, BP 80439 Annecy-le-Vieux CEDEX, France

More information

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs)

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Manuscript for Review Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Journal: Electronics Letters Manuscript ID: draft Manuscript Type: Letter

More information

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications ..SKELETON.. Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications Colin Shear Advisor: Dr. Brady Gibbons 2010 Table of Contents Chapter 1 Introduction... 1 1.1 Motivation and Objective...

More information

b. The displacement of the mass due to a constant acceleration a is x=

b. The displacement of the mass due to a constant acceleration a is x= EE147/247A Final, Fall 2013 Page 1 /35 2 /55 NO CALCULATORS, CELL PHONES, or other electronics allowed. Show your work, and put final answers in the boxes provided. Use proper units in all answers. 1.

More information

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications Presented at the COMSOL Conference 2010 India 2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications Presented By Velmathi.G, Ramshanker.N and Mohan.S

More information

Temperature-dependent Thermal Stress Determination for Through-Silicon-Vias (TSVs) by Combining Bending Beam Technique with Finite Element Analysis

Temperature-dependent Thermal Stress Determination for Through-Silicon-Vias (TSVs) by Combining Bending Beam Technique with Finite Element Analysis Temperature-dependent Thermal Stress Determination for Through-Silicon-Vias (TSVs) by Combining Bending Beam Technique with Finite Element Analysis Kuan H. Lu, Suk-Kyu Ryu*, Qiu Zhao, Klaus Hummler**,

More information

Comparative Analysis on Design and Simulation of Perforated Mems Capacitive Pressure Sensor

Comparative Analysis on Design and Simulation of Perforated Mems Capacitive Pressure Sensor Comparative Analysis on Design and Simulation of Perforated Mems Capacitive Pressure Sensor Kirankumar B Balavalad*, Bhagyashree Mudhol*, B G Sheeparamatti*, Praveenkumar B. Balavalad** *Department of

More information

Chapter 2: Review of Microbolometer

Chapter 2: Review of Microbolometer Chapter 2: Review of Microbolometer In this chapter, the basics of microbolometer theory and micromachining are covered. The theory of microbolometer detectors is discussed in detail, as well as their

More information

2D Hybrid Fluid-Analytical Model of Inductive/Capacitive Plasma Discharges

2D Hybrid Fluid-Analytical Model of Inductive/Capacitive Plasma Discharges 63 rd GEC & 7 th ICRP, 2010 2D Hybrid Fluid-Analytical Model of Inductive/Capacitive Plasma Discharges E. Kawamura, M.A. Lieberman, and D.B. Graves University of California, Berkeley, CA 94720 This work

More information

Comparative Study on Capacitive Pressure Sensor for Structural Health Monitoring Applications

Comparative Study on Capacitive Pressure Sensor for Structural Health Monitoring Applications Comparative Study on Capacitive Pressure Sensor for Structural Health Monitoring Applications Shivaleela.G 1, Dr. Praveen. J 2, Dr. Manjunatha. DVᶾ, Dr. Habibuddin Shaik 4 P.G. Student, Department of Electronics

More information

The Effect of Distribution for a Moving Force

The Effect of Distribution for a Moving Force Paper Number 66, Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia The Effect of Distribution for a Moving Force Ahmed M. Reda (1,2), Gareth L. Forbes (2) (1) Atkins, Perth, Australia

More information

Design and Simulation of A MEMS Based Horseshoe Shaped Low Current Lorentz Deformable Mirror (LCL-DM).

Design and Simulation of A MEMS Based Horseshoe Shaped Low Current Lorentz Deformable Mirror (LCL-DM). Design and Simulation of A MEMS Based Horseshoe Shaped Low Current Lorentz Deformable Mirror (LCL-DM). Byoungyoul Park 1, Tao Chen 1, Cyrus Shafai 1 1 Electrical and Computer Engineering, University of

More information

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS JYH-CHENG YU and FU-HSIN LAI Department of Mechanical Engineering National Taiwan University of Science and Technology

More information

Optimizing the Design of Polymer Based Unimorph Actuator using COMSOL Multiphysics Vineet Tiwari, Rashiya Sharma, R. K. Dwivedi and Geetika Srivastava

Optimizing the Design of Polymer Based Unimorph Actuator using COMSOL Multiphysics Vineet Tiwari, Rashiya Sharma, R. K. Dwivedi and Geetika Srivastava Optimizing the Design of Polymer Based Unimorph Actuator using COMSOL Multiphysics Vineet Tiwari, Rashiya Sharma, R. K. Dwivedi and Geetika Srivastava Department of Physics and Materials Science & Engineering

More information

Design And Analysis of Microcantilevers With Various Shapes Using COMSOL Multiphysics Software

Design And Analysis of Microcantilevers With Various Shapes Using COMSOL Multiphysics Software Design And Analysis of Microcantilevers With Various Shapes Using COMSOL Multiphysics Software V. Mounika Reddy 1, G.V.Sunil Kumar 2 1,2 Department of Electronics and Instrumentation Engineering, Sree

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES a b c Supplementary Figure 1 Fabrication of the near-field radiative heat transfer device. a, Main fabrication steps for the bottom Si substrate. b, Main fabrication steps for the

More information

Design and Optimization of Piezoelectric Dual-Mode Micro-Mirror

Design and Optimization of Piezoelectric Dual-Mode Micro-Mirror Design and Optimization of Piezoelectric Dual-Mode Micro-Mirror Jichao Zhong, Xingguo Xiong, Zheng Yao, Junling Hu*, Prabir Patra* Department of Electrical and Computer Engineering, *Department of Mechanical

More information

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Alexey I. Borovkov Eugeny V. Pereyaslavets Igor A. Artamonov Computational Mechanics Laboratory, St.Petersburg State

More information

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and Actuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems HEMOESISIVE SENSOS (Chapter 16.3) 3 emperature sensors placement excitation

More information

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting Excerpt from the Proceedings of the COMSOL Conference 29 Milan Thickness Optimization of a Piezoelectric Converter for Energy Harvesting M. Guizzetti* 1, V. Ferrari 1, D. Marioli 1 and T. Zawada 2 1 Dept.

More information

Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch

Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch J. Lau, Z. Mei, S. Pang, C. Amsden, J. Rayner and S. Pan Agilent Technologies, Inc. 5301 Stevens

More information

Simulation of Buckled Cantilever Plate with Thermal Bimorph Actuators

Simulation of Buckled Cantilever Plate with Thermal Bimorph Actuators Simulation of Buckled Cantilever Plate with Thermal Bimorph Actuators Arpys Arevalo *1, David Conchouso 1, David Castro 1, Marlon Diaz 2, Yi Ying 3, and Ian G. Foulds 1,3 1 Computer, Electrical and Mathematical

More information

Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration

Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration 2016-06-15, Chemnitz Chemnitz University of Technology Basic Research Fraunhofer ENAS System-Packaging (SP) Back-End of Line (BEOL) Applied

More information

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration

Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Analytical Design of Micro Electro Mechanical Systems (MEMS) based Piezoelectric Accelerometer for high g acceleration Arti Arora 1, Himanshu Monga 2, Anil Arora 3 Baddi University of Emerging Science

More information

Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis

Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis Multi-Physics Analysis of Microfluidic Devices with Hydrodynamic Focusing and Dielectrophoresis M. Kathryn Thompson Mechanical Engineering Dept, MIT John M. Thompson, PhD Consulting Engineer Abstract Among

More information

1106. Numerical investigation of dynamical properties of vibroactive pad during hot imprint process

1106. Numerical investigation of dynamical properties of vibroactive pad during hot imprint process 1106. Numerical investigation of dynamical properties of vibroactive pad during hot imprint process B. Narijauskaitė 1, A. Palevičius 2, G. Janušas 3, R. Šakalys 4 International Studies Centre, Kaunas

More information

Laser Interferometric Displacement Measurements of Multi-Layer Actuators and PZT Ceramics

Laser Interferometric Displacement Measurements of Multi-Layer Actuators and PZT Ceramics Ferroelectrics, 320:161 169, 2005 Copyright Taylor & Francis Inc. ISSN: 0015-0193 print / 1563-5112 online DOI: 10.1080/00150190590967026 Laser Interferometric Displacement Measurements of Multi-Layer

More information

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS)

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee Department of Mechanical Engineering University of Colorado Boulder, CO 80309-0427 leeyc@colorado.edu January 15, 2014 1 Contents

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Dr. Maria-Alexandra PAUN

Dr. Maria-Alexandra PAUN Performance comparison of Hall Effect Sensors obtained by regular bulk or SOI CMOS technology Dr. Maria-Alexandra PAUN Visiting Researcher High Voltage Microelectronics and Sensors (HVMS) Group, Department

More information

A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency

A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency A Stacked-type Electrostatic Actuator and Measurement of its Energy Efficiency Yoshiyuki Hata Tokyo Institute of Technology yoshiyuki@ric.titech.ac.jp Keiji Saneyoshi Tokyo Institute of Technology ksaneyos@ric.titech.ac.jp

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

V. 2 (p.1 of 8) / Color: No / Format: Letter / Date: 5/3/ :01:37 AM. SPIE USE: DB Check, Prod Check, Notes: Abstract 1.

V. 2 (p.1 of 8) / Color: No / Format: Letter / Date: 5/3/ :01:37 AM. SPIE USE: DB Check, Prod Check, Notes: Abstract 1. Thermomechancial Characterization in a Radiant Energy Imager Using Null Switching Javaneh Boroumand, Imen Rezadad, Ammar Alhasan, Evan Smith, Robert E. Peale Department of Physics, University of Central

More information

Supporting Information

Supporting Information Supporting Information Oh et al. 10.1073/pnas.0811923106 SI Text Hysteresis of BPE-PTCDI MW-TFTs. Fig. S9 represents bidirectional transfer plots at V DS 100VinN 2 atmosphere for transistors constructed

More information

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter S. Sadat 1, E. Meyhofer 1 and P. Reddy 1, 1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 Department

More information

Simulation Analysis of Microchannel Deformation during LTCC Warm Water Isostatic Pressing Process Lang Ping, Zhaohua Wu*

Simulation Analysis of Microchannel Deformation during LTCC Warm Water Isostatic Pressing Process Lang Ping, Zhaohua Wu* International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Simulation Analysis of Microchannel Deformation during LTCC Warm Water Isostatic Pressing Process Lang Ping,

More information

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis

Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis Materials Science-Poland, Vol. 28, No. 3, 2010 Application of nanoindentation technique to extract properties of thin films through experimental and numerical analysis A. WYMYSŁOWSKI 1*, Ł. DOWHAŃ 1, O.

More information

u = λ u 2 in Ω (1) u = 1 on Ω (2)

u = λ u 2 in Ω (1) u = 1 on Ω (2) METHODS AND APPLICATIONS OF ANALYSIS. c 8 International Press Vol. 15, No. 3, pp. 37 34, September 8 4 SYMMETRY ANALYSIS OF A CANONICAL MEMS MODEL J. REGAN BECKHAM AND JOHN A. PELESKO Abstract. A canonical

More information

Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening

Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening Analysis of a Casted Control Surface using Bi-Linear Kinematic Hardening Abdul Manan Haroon A. Baluch AERO, P.O Box 91, Wah Cantt. 47040 Pakistan Abstract Control Surfaces or Fins are very essential parts

More information

Thermo-elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating

Thermo-elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating Thermo-elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating Joel N. Jiménez Lozano, Paulino Vacas-Jacques, Walfre Franco. Excerpt from the Proceedings of the 2012

More information

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS Third International Conference on Energy, Materials, Applied Energetics and Pollution. ICEMAEP016, October 30-31, 016, Constantine,Algeria. ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM

More information

Comparison of Mechanical Deflection and Maximum Stress of 3C SiC- and Si-Based Pressure Sensor Diaphragms for Extreme Environment

Comparison of Mechanical Deflection and Maximum Stress of 3C SiC- and Si-Based Pressure Sensor Diaphragms for Extreme Environment Comparison of Mechanical Deflection and Maximum Stress of 3C SiC- and Si-Based Pressure Sensor Diaphragms for Extreme Environment Author Marsi, Noraini, Majlis, Burhanuddin Yeop, Hamzah, Azrul Azlan, Mohd-Yasin,

More information

White Paper: Transparent High Dielectric Nanocomposite

White Paper: Transparent High Dielectric Nanocomposite Zhiyun (Gene) Chen, Ph.D., Vice President of Engineering Pixelligent Technologies 64 Beckley Street, Baltimore, Maryland 2224 Email: zchen@pixelligent.com February 205 Abstract High dielectric constant

More information

Una Metodología Para Resolver Problemas Inversos en Mecánica Experimental de Sólidos

Una Metodología Para Resolver Problemas Inversos en Mecánica Experimental de Sólidos Una Metodología Para Resolver Problemas Inversos en Mecánica Experimental de Sólidos J. F. Cárdenas-García, PhD, PE Becario Prometeo Escuela Politécnica Nacional Quito, ECUADOR 1 of 69 Outline Motivation

More information

Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs

Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs Optimizing the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure Springs Shefali Gupta 1, Tanu Pahwa 1, Rakesh Narwal 1, B.Prasad 1, Dinesh Kumar 1 1 Electronic Science Department,

More information