The phase diagrams of the high temperature superconductors

Size: px
Start display at page:

Download "The phase diagrams of the high temperature superconductors"

Transcription

1 The phase diagrams of the high temperature superconductors Talk online: sachdev.physics.harvard.edu HARVARD

2 Max Metlitski, Harvard Eun Gook Moon, Harvard HARVARD

3 The cuprate superconductors

4 Square lattice antiferromagnet H = ij J ij Si S j Ground state has long-range Néel order Order parameter is a single vector field ϕ = η isi η i = ±1 on two sublattices ϕ = 0 in Néel state.

5 The cuprate superconductors Antiferromagnet d-wave superconductor

6 The cuprate superconductors Incommensurate/ disordered antiferromagnetism and charge order Antiferromagnet d-wave superconductor

7 The cuprate superconductors Incommensurate/ disordered antiferromagnetism and charge order Antiferromagnet Pseudogap d-wave superconductor

8 The cuprate superconductors Incommensurate/ disordered antiferromagnetism and charge order Antiferromagnet Pseudogap d-wave superconductor

9 The cuprate superconductors Incommensurate/ disordered antiferromagnetism and charge order Antiferromagnet Strange Metal Pseudogap d-wave superconductor

10 Strange Metal Γ Γ

11 Key Ingredients: Strange Metal Γ Γ

12 Key Ingredients: Antiferromagnetism (AF) Spin density wave (SDW) Strange Metal Γ Γ

13 Key Ingredients: d-wave superconductivity Antiferromagnetism (AF) Spin density wave (SDW) Strange Metal Γ Γ

14 Key Ingredients: d-wave superconductivity Antiferromagnetism (AF) Spin density wave (SDW) Fermi surface change Strange Metal Γ Γ

15 Holedoped Electrondoped

16 Electron-doped cuprate superconductors Holedoped Electrondoped

17 Electron-doped cuprate superconductors n 2 Holedoped Electrondoped Figure prepared by K. Jin and and R. L. Greene based on N. P. Fournier, P. Armitage, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). Resistivity ρ 0 + AT n

18 Electron-doped cuprate superconductors n 2 Holedoped Electrondoped Figure prepared by K. Jin and and R. L. Greene based on N. P. Fournier, P. Armitage, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). Resistivity ρ 0 + AT n

19 Electron-doped cuprate superconductors Strange Metal n Holedoped Electrondoped 1 Figure prepared by K. Jin and and R. L. Greene based on N. P. Fournier, P. Armitage, and R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010). Resistivity ρ 0 + AT n

20 Iron pnictides: a new class of high temperature superconductors

21 Iron pnictides: a new class of high temperature superconductors Ort Tet Ishida, Nakai, and Hosono arxiv: v1 50 AFM / Ort 0 SC S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, Physical Review Letters 104, (2010).

22 Temperature-doping phase diagram of the iron pnictides: BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c SDW! " Resistivity ρ 0 + AT α Superconductivity 0 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

23 Temperature-doping phase diagram of the iron pnictides: BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c SDW! " Resistivity ρ 0 + AT α Superconductivity 0 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

24 Temperature-doping phase diagram of the iron pnictides: Strange Metal BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c! " SDW Resistivity ρ 0 + AT α Superconductivity 0 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

25 Lower Tc superconductivity in the heavy fermion compounds a CePd2Si2 N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998)

26 Lower Tc superconductivity in the heavy fermion compounds G. Knebel, D. Aoki, and J. Flouquet, arxiv:

27 Questions Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity?

28 Questions Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity? If so, why is there no antiferromagnetism in the hole-doped cuprates near the point where the superconductivity is strongest?

29 Questions Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity? If so, why is there no antiferromagnetism in the hole-doped cuprates near the point where the superconductivity is strongest? What is the physics of the strange metal?

30 Outline 1. Loss of antiferromagnetism in an insulator Coupled-dimer antiferromagnets and quantum criticality 2. Onset of antiferromagnetism in a metal From large Fermi surfaces to Fermi pockets, d-wave superconductivity, and competing orders 3. Strongly-coupled quantum criticality in metals The AdS/CFT correspondence

31 Outline 1. Loss of antiferromagnetism in an insulator Coupled-dimer antiferromagnets and quantum criticality 2. Onset of antiferromagnetism in a metal From large Fermi surfaces to Fermi pockets, d-wave superconductivity, and competing orders 3. Strongly-coupled quantum criticality in metals The AdS/CFT correspondence

32 Square lattice antiferromagnet H = ij J ij Si S j Ground state has long-range Néel order Order parameter is a single vector field ϕ = η isi η i = ±1 on two sublattices ϕ = 0 in Néel state.

33 Square lattice antiferromagnet H = ij J ij Si S j J J/λ Weaken some bonds to induce spin entanglement in a new quantum phase

34 Square lattice antiferromagnet H = ij J ij Si S j J J/λ Ground state is a quantum paramagnet with spins locked in valence bond singlets = 1 2

35 = 1 2 λ c λ

36 = 1 2 λ c λ Pressure in TlCuCl3 A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, 1446 (2004).

37 TlCuCl 3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.

38 TlCuCl 3 Quantum paramagnet at ambient pressure

39 TlCuCl 3 Neel order under pressure A. Oosawa, K. Kakurai, T. Osakabe, M. Nakamura, M. Takeda, and H. Tanaka, Journal of the Physical Society of Japan, 73, 1446 (2004).

40 = 1 2 λ c λ

41 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

42 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

43 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

44 Excitation spectrum in the paramagnetic phase λ c Spin S =1 λ triplon

45 Excitation spectrum in the paramagnetic phase λ c Spin S =1 triplon λ

46 Excitation spectrum in the Néel phase λ c λ Spin waves

47 Excitation spectrum in the Néel phase λ c λ Spin waves

48 Excitation spectrum in the Néel phase λ c λ Spin waves

49 TlCuCl 3 with varying pressure Energy [mev] Pressure [kbar] Observation of 3 2 low energy modes, emergence of new Higgs particle in the Néel phase. Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, (2008)

50 = 1 2 λ c λ Quantum critical point with non-local entanglement in spin wavefunction

51 Description using Landau-Ginzburg field theory λ c CFT3 O(3) order parameter ϕ ( S = d 2 rdτ τ ϕ ) 2 + c 2 ( r ϕ ) 2 +(λ λ c )ϕ 2 + u ϕ 2 2 λ

52 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). Quantum critical Classical spin waves Dilute triplon gas Neel order Pressure in TlCuCl3

53 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). CFT3 at T>0 Quantum critical Classical spin waves Dilute triplon gas Neel order Pressure in TlCuCl3

54 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). CFT3 at T>0 Quantum critical Classical spin waves Dilute triplon gas Neel order Pressure in TlCuCl3

55 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, (1994). CFT3 at T>0 Classical spin waves Quantum critical Strongly coupled dynamics and transport with no Dilute triplon gas particle/wave interpretation, and relaxation thermal equilibration times are universally proportional to /k B T Neel order Pressure in TlCuCl3

56 Outline 1. Loss of antiferromagnetism in an insulator Coupled-dimer antiferromagnets and quantum criticality 2. Onset of antiferromagnetism in a metal From large Fermi surfaces to Fermi pockets, d-wave superconductivity, and competing orders 3. Strongly-coupled quantum criticality in metals The AdS/CFT correspondence

57 Outline 1. Loss of antiferromagnetism in an insulator Coupled-dimer antiferromagnets and quantum criticality 2. Onset of antiferromagnetism in a metal From large Fermi surfaces to Fermi pockets, d-wave superconductivity, and competing orders 3. Strongly-coupled quantum criticality in metals The AdS/CFT correspondence

58 Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal Γ Γ

59 Fermi surface+antiferromagnetism Metal with large Fermi surface

60 Fermi surface+antiferromagnetism Metal with large Fermi surface + The electron spin polarization obeys S(r, τ) = ϕ (r, τ)e ik r where K is the ordering wavevector.

61 Fermi surface+antiferromagnetism ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface s S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

62 Evidence for small Fermi pockets Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich Physical Review B 81, (R) (2010) Original observation: N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007)

63 Fermi surface+antiferromagnetism ncreasing SDW ϕ =0 ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface s S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

64 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Quantum Strange Critical Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Underlying SDW ordering quantum critical point in metal at x = x m

65 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Quantum Strange Critical Metal Large Fermi surface ncreasing SDW Spin density wave (SDW) Relaxation and equilibration times /k B T are robust properties of strongly-coupled quantum criticality

66 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Quantum Strange Metal Critical? Large Fermi surface ncreasing SDW Spin density wave (SDW) Relaxation and equilibration times /k B T are robust properties of strongly-coupled quantum criticality

67 Physical Review B 34, 8190 (1986)

68 Theory of quantum criticality in the cuprates T * Fluctuating Fermi pockets Quantum Strange Metal Critical? Large Fermi surface ncreasing SDW Spin density wave (SDW) Relaxation and equilibration times /k B T are robust properties of strongly-coupled quantum criticality

69 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal d-wave superconductor Large Fermi surface M. A. Metlitski and S. Sachdev, Physical Review B 82, (2010) Spin density wave (SDW) SDW quantum critical point is unstable to d-wave superconductivity This instability is stronger than that in the BCS theory

70 Temperature-doping phase diagram of the iron pnictides: Strange Metal BaFe 2 (As 1-x P x ) 2 T 0 T SDW T c! " SDW Resistivity ρ 0 + AT α Superconductivity 0 S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Physical Review B 81, (2010)

71 The cuprate superconductors Incommensurate/ disordered antiferromagnetism and charge order Antiferromagnet Strange Metal Pseudogap d-wave superconductor

72 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal d-wave superconductor Large Fermi surface M. A. Metlitski and S. Sachdev, Physical Review B 82, (2010) Spin density wave (SDW) SDW quantum critical point is unstable to d-wave superconductivity This instability is stronger than that in the BCS theory

73 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal d-wave superconductor Large Fermi surface E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

74 Theory of quantum criticality in the cuprates Fluctuating, Small Fermi paired pockets Fermi with pairing pockets fluctuations Strange Metal d-wave superconductor Large Fermi surface E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

75 Theory of quantum criticality in the cuprates Fluctuating, paired paired Fermi Fermi pockets pockets Strange Metal d-wave superconductor Large Fermi surface E. G. Moon and S. Sachdev, Phy. Rev. B 80, (2009) Spin density wave (SDW) Competition between SDW order and superconductivity moves the actual quantum critical point to x = x s <x m.

76 T * Fluctuating, paired Fermi pockets Strange Metal Large Fermi surface d-wave superconductor Spin density wave (SDW)

77 E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw d-wave SC SC+ SDW SC SDW (Small Fermi pockets) H M "Normal" (Large Fermi surface)

78 E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface T sdw d-wave SC SC+ SDW SC Quantum oscillations SDW (Small Fermi pockets) M H "Normal" (Large Fermi surface)

79 E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, (2001). T T * Fluctuating, Small Fermi pockets paired Fermi with pairing pockets fluctuations Strange Metal Large Fermi surface Many experiments have presented evidence for the predicted green quantum phase transition line from SC to SC +SDW in a magnetic field SDW (Small Fermi pockets) H T sdw SC+ SDW d-wave SC M SC "Normal" (Large Fermi surface)

80 Similar phase diagram for CeRhIn5 G. Knebel, D. Aoki, and J. Flouquet, arxiv:

81 Iron pnictides: a new class of high temperature superconductors Ort Tet Ishida, Nakai, and Hosono arxiv: v1 50 AFM / Ort 0 SC S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, Physical Review Letters 104, (2010).

82 Outline 1. Loss of antiferromagnetism in an insulator Coupled-dimer antiferromagnets and quantum criticality 2. Onset of antiferromagnetism in a metal From large Fermi surfaces to Fermi pockets, d-wave superconductivity, and competing orders 3. Strongly-coupled quantum criticality in metals The AdS/CFT correspondence

83 Outline 1. Loss of antiferromagnetism in an insulator Coupled-dimer antiferromagnets and quantum criticality 2. Onset of antiferromagnetism in a metal From large Fermi surfaces to Fermi pockets, d-wave superconductivity, and competing orders 3. Strongly-coupled quantum criticality in metals The AdS/CFT correspondence

84 Quantum criticality of the onset of antiferromagnetism in a metal ncreasing ϕ =0SDW ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface s

85 Quantum criticality of the onset of antiferromagnetism in a metal ncreasing ϕ =0SDW ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface s

86 Quantum criticality of the onset of antiferromagnetism in a metal ncreasing ϕ =0SDW ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface s

87 Quantum criticality of the onset of antiferromagnetism in a metal ncreasing ϕ =0SDW ϕ =0 Metal with electron and hole pockets Metal with large Fermi surface s Quantum critical theory is strongly-coupled in two (but not higher) spatial dimensions (but not a CFT). M.A. Metlitski and S. Sachdev, Physical Review B 82, (2010)

88 Field theories in D spacetime dimensions are characterized by couplings g which obey the renormalization group equation u dg du = β(g) where u is the energy scale. The RG equation is local in energy scale, i.e. the RHS does not depend upon u.

89 Field theories in D spacetime dimensions are characterized by couplings g which obey the renormalization group equation u dg du = β(g) where u is the energy scale. The RG equation is local in energy scale, i.e. the RHS does not depend upon u. Key idea: Implement u as an extra dimension, and map to a local theory in D+1 dimensions.

90 u J. McGreevy, arxiv

91 At the RG fixed point, β(g) = 0, the D dimensional field theory is invariant under the scale transformation x µ x µ /b, u bu

92 At the RG fixed point, β(g) = 0, the D dimensional field theory is invariant under the scale transformation x µ x µ /b, u bu This is an invariance of the metric of the theory in D + 1 dimensions. The unique solution is ds 2 = u L 2 dx µ dx µ + L 2 du2 u 2. Or, using the length scale z = L 2 /u ds 2 = L 2 dxµ dx µ + dz 2 z 2. This is the space AdS D+1, and L is the AdS radius.

93 J. McGreevy, arxiv

94 AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a 3+1 dimensional AdS space quantum critical point) in 2+1 dimensions Maldacena, Gubser, Klebanov, Polyakov, Witten

95 AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

96 AdS/CFT correspondence 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

97 AdS/CFT correspondence Move away from the quantum critical point to a system of matter at non-zero density: equivalent to adding an electrical charge to the black hole. 3+1 dimensional AdS space Extremal Reissner- Nordtrom black hole Finite density matter in 2+1 dimensions

98 AdS/CFT correspondence Examine the free energy and Green s function of a probe particle T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arxiv: F. Denef, S. Hartnoll, and S. Sachdev, arxiv: dimensional AdS space Extremal Reissner- Nordtrom black hole Finite density matter in 2+1 dimensions

99 Green s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arxiv: G(k, ω) 1 ω v F (k k F ) iω θ(k) See also S.-S. Lee, Phys. Rev. D 79, (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, (2009)

100 Green s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arxiv: G(k, ω) 1 ω v F (k k F ) iω θ(k) See also S.-S. Lee, Phys. Rev. D 79, (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, (2009)

101 Green s function of a fermion A Fermi surface: Green s function is singular on a spherical surface at a non-zero k=kf. But the nature of the singularity differs from that in Landau s Fermi liquid theory. T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arxiv: G(k, ω) 1 ω v F (k k F ) iω θ(k) See also S.-S. Lee, Phys. Rev. D 79, (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, (2009)

102 Green s function of a fermion Non-Fermi liquid strange metal behavior in many spectral functions and transport properties qualitatively similar to observations in cuprate superconductors T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arxiv: G(k, ω) 1 ω v F (k k F ) iω θ(k) See also S.-S. Lee, Phys. Rev. D 79, (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, (2009)

103 Questions Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity? If so, why is there no antiferromagnetism in the hole-doped cuprates near the point where the superconductivity is strongest? What is the physics of the strange metal?

104 Questions and answers Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity? Yes If so, why is there no antiferromagnetism in the hole-doped cuprates near the point where the superconductivity is strongest? What is the physics of the strange metal?

105 Questions and answers Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity? Yes If so, why is there no antiferromagnetism in the hole-doped cuprates near the point where the superconductivity is strongest? Competition between antiferromagnetism and superconductivity has shifted the antiferromagnetic quantumcritical point (QCP), and shrunk the region of antiferromagnetism. This QCP shift is largest in the cuprates What is the physics of the strange metal?

106 Questions and answers Can quantum fluctuations near the loss of antiferromagnetism induce higher temperature superconductivity? Yes If so, why is there no antiferromagnetism in the hole-doped cuprates near the point where the superconductivity is strongest? Competition between antiferromagnetism and superconductivity has shifted the antiferromagnetic quantumcritical point (QCP), and shrunk the region of antiferromagnetism. This QCP shift is largest in the cuprates What is the physics of the strange metal? Proposal: strongly-coupled quantum criticality of Fermi surface change in a metal

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter IISc, Bangalore January 23, 2012 sachdev.physics.harvard.edu HARVARD Outline 1. Conformal quantum matter Entanglement, emergent dimensions and string theory

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011

Quantum Criticality. S. Sachdev and B. Keimer, Physics Today, February Talk online: sachdev.physics.harvard.edu HARVARD. Thursday, May 5, 2011 Quantum Criticality S. Sachdev and B. Keimer, Physics Today, February 2011 Talk online: sachdev.physics.harvard.edu HARVARD What is a quantum phase transition? Non-analyticity in ground state properties

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Stony Brook University February 14, 2012 sachdev.physics.harvard.edu HARVARD Quantum superposition and entanglement Quantum Superposition The double slit experiment

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Toronto March 22, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter Imperial College May 16, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565 sachdev.physics.harvard.edu

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors

Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Max Metlitski, Harvard Sean Hartnoll, Harvard Christopher

More information

Saturday, April 3, 2010

Saturday, April 3, 2010 Phys. Rev. Lett. 1990 Superfluid-insulator transition Ultracold 87 Rb atoms - bosons M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). T σ = 4e2 h Σ Quantum Σ, auniversalnumber.

More information

AdS/CFT and condensed matter

AdS/CFT and condensed matter AdS/CFT and condensed matter Reviews: arxiv:0907.0008 arxiv:0901.4103 arxiv:0810.3005 (with Markus Mueller) Talk online: sachdev.physics.harvard.edu HARVARD Lars Fritz, Harvard Victor Galitski, Maryland

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

The quantum phases of matter. sachdev.physics.harvard.edu

The quantum phases of matter. sachdev.physics.harvard.edu The quantum phases of matter sachdev.physics.harvard.edu The phases of matter: The phases of matter: Solids Liquids Gases The phases of matter: Solids Liquids Gases Theory of the phases of matter: Theory

More information

General relativity and the cuprates

General relativity and the cuprates General relativity and the cuprates Gary T. Horowitz and Jorge E. Santos Department of Physics, University of California, Santa Barbara, CA 93106, U.S.A. E-mail: gary@physics.ucsb.edu, jss55@physics.ucsb.edu

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Strange metals and gauge-gravity duality

Strange metals and gauge-gravity duality Strange metals and gauge-gravity duality Loughborough University, May 17, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals Subir Sachdev sachdev.physics.harvard.edu HARVARD Max Metlitski Erez Berg HARVARD Max Metlitski Erez Berg Sean Hartnoll

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality of Fermi surfaces in two dimensions Quantum criticality of Fermi surfaces in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Yejin Huh, Harvard Max Metlitski, Harvard HARVARD Outline 1. Quantum criticality of Fermi points:

More information

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates Talk online: sachdev.physics.harvard.edu HARVARD Where is the quantum critical point

More information

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds Twelfth Arnold Sommerfeld Lecture Series January 31 - February 3, 2012 sachdev.physics.harvard.edu HARVARD Max

More information

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Subir Sachdev, Harvard University Quantum Entanglement and Superconductivity Superconductor, levitated by an unseen magnet, in which countless trillions of electrons

More information

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Strong coupling problems in condensed matter and the AdS/CFT correspondence Strong coupling problems in condensed matter and the AdS/CFT correspondence Reviews: arxiv:0910.1139 arxiv:0901.4103 Talk online: sachdev.physics.harvard.edu HARVARD Frederik Denef, Harvard Yejin Huh,

More information

Quantum phase transitions and Fermi surface reconstruction

Quantum phase transitions and Fermi surface reconstruction Quantum phase transitions and Fermi surface reconstruction Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski Matthias Punk Erez Berg HARVARD 1. Fate of the Fermi surface: reconstruction or

More information

Metals without quasiparticles

Metals without quasiparticles Metals without quasiparticles A. Review of Fermi liquid theory B. A non-fermi liquid: the Ising-nematic quantum critical point C. Fermi surfaces and gauge fields Metals without quasiparticles A. Review

More information

SYK models and black holes

SYK models and black holes SYK models and black holes Black Hole Initiative Colloquium Harvard, October 25, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Wenbo Fu, Harvard Yingfei Gu, Stanford Richard Davison,

More information

Quantum criticality and the phase diagram of the cuprates

Quantum criticality and the phase diagram of the cuprates Quantum criticality and the phase diagram of the cuprates Talk online: sachdev.physics.harvard.edu HARVARD Victor Galitski, Maryland Ribhu Kaul, Harvard Kentucky Max Metlitski, Harvard Eun Gook Moon, Harvard

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Quantum criticality and high temperature superconductivity

Quantum criticality and high temperature superconductivity Quantum criticality and high temperature superconductivity University of Waterloo February 14, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD William Witczak-Krempa Perimeter Erik

More information

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions HARVARD From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions ARO MURI review, University of Maryland October 13, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Condensed Matter Physics in the City London, June 20, 2012

Condensed Matter Physics in the City London, June 20, 2012 Entanglement, holography, and the quantum phases of matter Condensed Matter Physics in the City London, June 20, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World arxiv:1203.4565

More information

Physics of iron-based high temperature superconductors. Abstract

Physics of iron-based high temperature superconductors. Abstract Physics of iron-based high temperature superconductors Yuji Matsuda Department of Physics, Kyoto University, Kyoto 606-8502, Japan Abstract The discovery of high-t c iron pnictide and chalcogenide superconductors

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Quantum criticality in condensed matter

Quantum criticality in condensed matter Quantum criticality in condensed matter Inaugural Symposium of the Wolgang Pauli Center Hamburg, April 17, 2013 Subir Sachdev Scientific American 308, 44 (January 2013) HARVARD Sommerfeld-Pauli-Bloch theory

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals University of Cologne, June 8, 2012 Subir Sachdev Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arxiv:1203.4565

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu

AdS/CFT and condensed matter. Talk online: sachdev.physics.harvard.edu AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Particle theorists Sean Hartnoll, KITP Christopher Herzog, Princeton Pavel Kovtun, Victoria Dam Son, Washington Condensed matter theorists

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal Workshop on Frontiers of Quantum Materials Rice University, Houston, November 4, 2016 Subir Sachdev Talk online:

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Quantum bosons for holographic superconductors

Quantum bosons for holographic superconductors Quantum bosons for holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order

The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order The quantum criticality of metals in two dimensions: antiferromagnetism, d-wave superconductivity and bond order ICTP, Trieste July 2, 2013 Subir Sachdev HARVARD Max Metlitski Erez Berg Rolando La Placa

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity Mike Norman Materials Science Division Argonne National Laboratory & Center for Emergent Superconductivity Physics 3, 86

More information

Transport in non-fermi liquids

Transport in non-fermi liquids HARVARD Transport in non-fermi liquids Theory Winter School National High Magnetic Field Laboratory, Tallahassee Subir Sachdev January 12, 2018 Talk online: sachdev.physics.harvard.edu Quantum matter without

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada Thanks to: DOE (EFRC)+BNL Spin or Orbital-based Physics in the Fe-based Superconductors?

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

arxiv: v1 [hep-th] 19 Jan 2015

arxiv: v1 [hep-th] 19 Jan 2015 A holographic model for antiferromagnetic quantum phase transition induced by magnetic field arxiv:151.4481v1 [hep-th] 19 Jan 215 Rong-Gen Cai, 1, Run-Qiu Yang, 1, and F.V. Kusmartsev 2, 1 State Key Laboratory

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Subir Sachdev Research Accomplishments

Subir Sachdev Research Accomplishments Subir Sachdev Research Accomplishments Theory for the quantum phase transition involving loss of collinear antiferromagnetic order in twodimensional quantum antiferromagnets (N. Read and S. Sachdev, Phys.

More information

arxiv: v1 [cond-mat.str-el] 7 Oct 2009

arxiv: v1 [cond-mat.str-el] 7 Oct 2009 Finite temperature dissipation and transport near quantum critical points Subir Sachdev Department of Physics, Harvard University, Cambridge MA 02138 (Dated: Oct 5, 2009) arxiv:0910.1139v1 [cond-mat.str-el]

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Quantum matter and gauge-gravity duality

Quantum matter and gauge-gravity duality Quantum matter and gauge-gravity duality Institute for Nuclear Theory, Seattle Summer School on Applications of String Theory July 18-20 Subir Sachdev HARVARD Outline 1. Conformal quantum matter 2. Compressible

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

arxiv: v1 [cond-mat.supr-con] 2 Mar 2018

arxiv: v1 [cond-mat.supr-con] 2 Mar 2018 Interplay between nematic fluctuations and superconductivity in BaFe 2 x Ni x As 2 Zhaoyu Liu, 1, 2 Tao Xie, 1, 2 Dongliang Gong, 1, 2 Xiaoyan Ma, 1, 2 R. M. Fernandes, 3 Yi-feng Yang, 1, 2, 4 Huiqian

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

arxiv: v2 [cond-mat.str-el] 26 Feb 2010

arxiv: v2 [cond-mat.str-el] 26 Feb 2010 Generalized Lifshitz-Kosevich scaling at quantum criticality from the holographic correspondence Sean A. Hartnoll and Diego M. Hofman arxiv:09.0008v [cond-mat.str-el] 6 Feb 00 Department of Physics, Harvard

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Topology, quantum entanglement, and criticality in the high temperature superconductors

Topology, quantum entanglement, and criticality in the high temperature superconductors HARVARD Topology, quantum entanglement, and criticality in the high temperature superconductors Exploring quantum phenomena and quantum matter in ultrahigh magnetic fields, National Science Foundation,

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu

Unexpected Connections in Physics: From Superconductors to Black Holes. Talk online: sachdev.physics.harvard.edu Unexpected Connections in Physics: From Superconductors to Black Holes Talk online: sachdev.physics.harvard.edu The main unsolved problem in theoretical physics today: Unification of The main unsolved

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

J. McGreevy, arxiv Wednesday, April 18, 2012

J. McGreevy, arxiv Wednesday, April 18, 2012 r J. McGreevy, arxiv0909.0518 Consider the metric which transforms under rescaling as x i ζx i t ζ z t ds ζ θ/d ds. This identifies z as the dynamic critical exponent (z = 1 for relativistic quantum critical

More information