Method of Sections for Truss Analysis

Size: px
Start display at page:

Download "Method of Sections for Truss Analysis"

Transcription

1 RH 331 Note Set 5.2 F2013abn Method of Sections for Truss nalysis Notation: () = shorthand for compression = name for load or axial force vector (T) = shorthand for tension Joint onfigurations (special cases to recognize for faster solutions) ase 1) Two odies onnected or F has to be equal and opposite to F ase 2) Three odies onnected with Two odies in Line or or even F and F have to be equal, and F has to have zero force. ase 3) Three odies onnected and a Force 2 odies aligned & 1 ody and a Force are ligned Four odies onnected - 2 odies ligned and the Other 2 odies ligned F has to equal F, and [F has to equal ] or [F has to equal F] Method of Sections (relies on internal forces being in equilibrium with external forces on a section) 1. etermine support reaction forces. 2. ut a section in such a way that force action lines intersect. 3. Solve for equilibrium. Sum moments about an intersection of force lines of action 107

2 RH 331 Note Set 5.2 F2013abn dvantages: Quick when you only need one or two forces (only 3 equations needed) isadvantages: Not always easy to find a place to cut a section or see where force lines intersect F ompound Truss: truss assembled of simple trusses and additional links. It has b=2n-3, is statically determinate, rigid and completely constrained with a pin and roller. It can be identified by triangles with pins in the middle of some sides. Statically Indeterminate Trusses: Occur if there are more members than equations for all the joints OR if there are more reaction supports unknowns than 3 iagonal Tension ounters: rossed bracing of cables or slender members is commonly used in bridge trusses, buildings and towers. These trusses look indeterminate, but can be solved statically because the bracing cannot hold a compressive force. The members are excluded in the analysis. Method: 1. etermine support reaction forces. 2. ut a section in such a way that the tension counters are exposed. 3. Solve for force equilibrium in y with one counter. If the value is positive (in tension), this is the solution. 4 F G H 4. Solve for force equilibrium in y with the other counter. 108

3 RH 331 Note Set 5.2 F2013abn xample 1 (pg 99) (Support forces must be found as well). 109

4 RH 331 Note Set 5.2 F2013abn xample 2 Using the method of sections, determine member forces in F,,, and F. SOLUTION: section can t pass through 5 members, so there will have to be two sections. The first passes through F, and. F is shown assumed to be in compression, while the other forces are drawn assumed to be in tension. There can be only two intersections when two of the three forces are parallel at and : Σ M = 100 ( 6 ft ) ( 8 ft ) = 0 = 75 (T) Σ M = 100 ( 12 ft ) F( 8 ft ) = 0 F = 150 () ecause is the only unknown force with a y component, it is useful to sum forces in the y direction (although it also has the only remaining unknown x component): Σ F = ft y ( ) = ft (or Σ F = ( 6 ft ) = ft = 125 (T) x ) second section can be drawn through, F and F. There are three points of intersection of the unknown forces - at, F and. is not on the section, but we know where it is. Σ M = 300 ( 6 ft ) + F( 6 ft ) = 0 F = 300 () Σ M F = 200 ( 6 ft ) + y( 6 ft ) = 0 (sliding components to ) = y ( 100 ) = (T) or Σ M F = 200 ( 6 ft ) + x( 8 ft ) = 0 (sliding components to ) = x ( 100 ) = (T) Σ M = 200 ( 6 ft ) + F( 8 ft ) = 0 F = 150 () 110

5 RH 331 Note Set 5.2 F2013abn xample 3 (pg 90) etermine the member forces, and F

6 RH 331 Note Set 5.2 F2013abn xample 4 Using the method of sections, determine member forces in, and. SOLUTION: Find the support reactions from rigid body equilibrium, or in this case, from load tracing with symmetrical loads. raw a section line through the members of interest, cutting through no more than 3 members to separate the truss into two pieces. In this case, and can be cut through, while will need another section. raw one of the sections, exposing the member forces. rawing them out or away from the cut assumes tension. is drawn in compression. So is, but because it has a 45 degree angle, the components will have the same magnitude. Find a point to sum moments where two unknown forces intersect. This may be on a point of the section or off the section. X is such a location where the line of action of intersects that of. For every 15 ft to the left, the line slopes down 5 ft, so X is located (10 ft/ 5 ft)15 ft = 30 ft to the left of. Σ M = 450 ( 15 ft ) 300 ( 30 ft ) ( 30 ft ) = 0 X y = -75, so = y/sin45 = 106 tension y X (compression was assumed, but the answer was negative indicating our assumption wasn t verified). (Notice that x and y slid down to and then the lever arm for x was 0. The components can also slide to the other end point of the member to locate the lever arms) Summing at where and intersect means there will be no lever arms. Sliding the components of to means there will be no lever arm for y: Σ M = 450 ( 15 ft ) + x( 10 ft ) = 0 x = 675, so = x 10 = compression raw a section line that passes through and cuts through no more than three members. If we hadn t already found, we could sum moments at point X again to eliminate and from our equation, leaving. ut it is obvious that we have only one unknown y force, which is : ΣF y =. = 0 = 225 tension

Method of Sections for Truss Analysis

Method of Sections for Truss Analysis Method of Sections for Truss Analysis Notation: (C) = shorthand for compression P = name for load or axial force vector (T) = shorthand for tension Joint Configurations (special cases to recognize for

More information

Point Equilibrium & Truss Analysis

Point Equilibrium & Truss Analysis oint Equilibrium & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, T, and F = name of a truss force between joints named and,

More information

three point equilibrium and planar trusses Equilibrium Equilibrium on a Point Equilibrium on a Point

three point equilibrium and planar trusses Equilibrium Equilibrium on a Point Equilibrium on a Point RHITETURL STRUTURES: FORM, EHVIOR, N ESIGN R. NNE NIHOLS SUMMER 2014 lecture three Equilibrium balanced steady resultant of forces on a particle is 0 X point equilibrium and planar trusses http:// nisee.berkeley.edu/godden

More information

Calculating Truss Forces Unit 2 Lesson 2.1 Statics

Calculating Truss Forces Unit 2 Lesson 2.1 Statics alculating Truss Forces alculating Truss Forces Principles of Engineering 22 Forces ompression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

Truss Analysis Method of Joints. Steven Vukazich San Jose State University

Truss Analysis Method of Joints. Steven Vukazich San Jose State University Truss nalysis Method of Joints Steven Vukazich San Jose State University General Procedure for the nalysis of Simple Trusses using the Method of Joints 1. raw a Free Body iagram (FB) of the entire truss

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies RCH 331 Note Set 5.1 Su2016abn Equilibrium of Rigid odies Notation: k = spring constant F = name for force vectors, as is P Fx = force component in the x direction Fy = force component in the y direction

More information

Trusses - Method of Joints

Trusses - Method of Joints Trusses - Method of Joints ME 22 Truss - efinition truss is a framework of members joined at ends with frictionless pins to form a stable structure. (Onl two-force members.) asic shape is a triangle. truss

More information

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules

REVIEW. Final Exam. Final Exam Information. Final Exam Information. Strategy for Studying. Test taking strategy. Sign Convention Rules Final Exam Information REVIEW Final Exam (Print notes) DATE: WEDNESDAY, MAY 12 TIME: 1:30 PM - 3:30 PM ROOM ASSIGNMENT: Toomey Hall Room 199 1 2 Final Exam Information Comprehensive exam covers all topics

More information

8.1 Internal Forces in Structural Members

8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members 8.1 Internal Forces in Structural Members xample 1, page 1 of 4 1. etermine the normal force, shear force, and moment at sections passing through a) and b). 4

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: Eleventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek

STATICS VECTOR MECHANICS FOR ENGINEERS: Eleventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Eleventh E 6 Analysis CHAPTER VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. David. Mazurek of Structures Contents Application Introduction Definition of a Truss Simple

More information

Outline: Frames Machines Trusses

Outline: Frames Machines Trusses Outline: Frames Machines Trusses Properties and Types Zero Force Members Method of Joints Method of Sections Space Trusses 1 structures are made up of several connected parts we consider forces holding

More information

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO-AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. READING

More information

6.5 Cables: Concentrated Loads

6.5 Cables: Concentrated Loads 6.5 ables: oncentrated Loads 6.5 ables: oncentrated Loads Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving ables With oncentrated Loads 1. Pass sections through

More information

Calculating Truss Forces. Method of Joints

Calculating Truss Forces. Method of Joints Calculating Truss Forces Method of Joints Forces Compression body being squeezed Tension body being stretched Truss truss is composed of slender members joined together at their end points. They are usually

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

STATICS--AN INVESTIGATION OF FORCES

STATICS--AN INVESTIGATION OF FORCES STTIS--N INVESTIGTION O ORES Two areas of study to investigate forces. Statics where the forces acting on a material are balanced so that the material is either stationary or in uniform motion. or fluid

More information

Chapter 5: Equilibrium of a Rigid Body

Chapter 5: Equilibrium of a Rigid Body Chapter 5: Equilibrium of a Rigid Body Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of a free-body diagram for a rigid body. To show how to solve

More information

Unit M1.4 (All About) Trusses

Unit M1.4 (All About) Trusses Unit M1.4 (ll bout) Trusses Readings: DL 1.9 16.001/002 -- Unified Engineering Department of eronautics and stronautics Massachusetts Institute of Technology LERNING OBJETIVES FOR UNIT M1.4 Through participation

More information

The case where there is no net effect of the forces acting on a rigid body

The case where there is no net effect of the forces acting on a rigid body The case where there is no net effect of the forces acting on a rigid body Outline: Introduction and Definition of Equilibrium Equilibrium in Two-Dimensions Special cases Equilibrium in Three-Dimensions

More information

three Point Equilibrium 1 and planar trusses ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

three Point Equilibrium 1 and planar trusses ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture three point equilibrium http:// nisee.berkeley.edu/godden and planar trusses Point Equilibrium 1 Equilibrium balanced

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. In-Class

More information

Determinate portal frame

Determinate portal frame eterminate portal frame onsider the frame shown in the figure below with the aim of calculating the bending moment diagram (M), shear force diagram (SF), and axial force diagram (F). P H y R x x R y L

More information

Structural Analysis. Method of Joints. Method of Pins

Structural Analysis. Method of Joints. Method of Pins Structural nalysis / Method of Pins I m reading a book about an1gravity. It s impossible to put down. Pop Quiz What is today s date? 2 1 Trusses Trusses are common means of transferring loads from their

More information

Portal Frame Calculations Lateral Loads

Portal Frame Calculations Lateral Loads Portal Frame Calculations Lateral Loads Consider the following multi-story frame: The portal method makes several assumptions about the internal forces of the columns and beams in a rigid frame: 1) Inflection

More information

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES

CHAPTER 2: EQUILIBRIUM OF RIGID BODIES For a rigid body to be in equilibrium, the net force as well as the net moment about any arbitrary point O must be zero Summation of all external forces. Equilibrium: Sum of moments of all external forces.

More information

three Equilibrium 1 and planar trusses ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture ARCH 614

three Equilibrium 1 and planar trusses ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2015 lecture three equilibrium and planar trusses Equilibrium 1 Equilibrium balanced steady resultant of forces

More information

Support Idealizations

Support Idealizations IVL 3121 nalysis of Statically Determinant Structures 1/12 nalysis of Statically Determinate Structures nalysis of Statically Determinate Structures The most common type of structure an engineer will analyze

More information

ME Statics. Structures. Chapter 4

ME Statics. Structures. Chapter 4 ME 108 - Statics Structures Chapter 4 Outline Applications Simple truss Method of joints Method of section Germany Tacoma Narrows Bridge http://video.google.com/videoplay?docid=-323172185412005564&q=bruce+lee&pl=true

More information

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by

The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by Unit 12 Centroids Page 12-1 The centroid of an area is defined as the point at which (12-2) The distance from the centroid of a given area to a specified axis may be found by (12-5) For the area shown

More information

Newton s Third Law Newton s Third Law: For each action there is an action and opposite reaction F

Newton s Third Law Newton s Third Law: For each action there is an action and opposite reaction F FRAMES AND MACHINES Learning Objectives 1). To evaluate the unknown reactions at the supports and the interaction forces at the connection points of a rigid frame in equilibrium by solving the equations

More information

Physics 8 Wednesday, October 28, 2015

Physics 8 Wednesday, October 28, 2015 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses,

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

To show how to determine the forces in the members of a truss using the method of joints and the method of sections.

To show how to determine the forces in the members of a truss using the method of joints and the method of sections. 5 Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the members of frames and machines

More information

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015 6 Analsis CHAPTER VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. of Structures Lecture Notes: J. Walt Oler Texas Tech Universit Contents Introduction Definition of a Truss

More information

MEM202 Engineering Mechanics - Statics MEM

MEM202 Engineering Mechanics - Statics MEM E Engineering echanics - Statics E hapter 6 Equilibrium of Rigid odies k j i k j i R z z r r r r r r r r z z E Engineering echanics - Statics Equilibrium of Rigid odies E Pin Support N w N/m 5 N m 6 m

More information

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1 E2027 Structural nalysis I TYPES OF STRUUTRES H in ivil Engineering Page 1-1 E2027 Structural nalysis I SUPPORTS Pin or Hinge Support pin or hinge support is represented by the symbol H or H V V Prevented:

More information

FRAMES AND MACHINES Learning Objectives 1). To evaluate the unknown reactions at the supports and the interaction forces at the connection points of a

FRAMES AND MACHINES Learning Objectives 1). To evaluate the unknown reactions at the supports and the interaction forces at the connection points of a FRAMES AND MACHINES Learning Objectives 1). To evaluate the unknown reactions at the supports and the interaction forces at the connection points of a rigid frame in equilibrium by solving the equations

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To develop the equations of equilibrium for a rigid body. To introduce the concept of the free-body diagram for a rigid body. To show how to solve rigid-body equilibrium problems using

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

Similar to trusses, frames are generally fixed, load carrying structures.

Similar to trusses, frames are generally fixed, load carrying structures. Similar to trusses, frames are generally fixed, load carrying structures. The main difference between a frame and a truss is that in a frame at least one member is a multi force member (çoklu kuvvet elemanı).

More information

ENT 151 STATICS. Contents. Introduction. Definition of a Truss

ENT 151 STATICS. Contents. Introduction. Definition of a Truss CHAPTER 6 Analysis ENT 151 STATICS Lecture Notes: Mohd Shukry Abdul Majid KUKUM of Structures Contents Introduction Definition of a Truss Simple Trusses Analysis of Trusses by the Method of Joints Joints

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 12e 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

0.3 m. 0.4 m. 0.3 m. A 2 kn. 0.4 m. tan γ = 7. (BC = kn) γ = Fx = BC cos θ + AC cos γ =0

0.3 m. 0.4 m. 0.3 m. A 2 kn. 0.4 m. tan γ = 7. (BC = kn) γ = Fx = BC cos θ + AC cos γ =0 Problem 6.4 etermine the aial forces in the members of the truss. kn 0.3 m 0.4 m 0.6 m 1. m Solution: irst, solve for the support reactions at and, and then use the method of joints to solve for the forces

More information

T R U S S. Priodeep Chowdhury;Lecturer;Dept. of CEE;Uttara University//TRUSS Page 1

T R U S S. Priodeep Chowdhury;Lecturer;Dept. of CEE;Uttara University//TRUSS Page 1 T R U S S A truss is a structure that consists of All straight members connected together with pin joints connected only at the ends of the members and All external forces (loads & reactions) must be applied

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

Framed Structures PLANE FRAMES. Objectives:

Framed Structures PLANE FRAMES. Objectives: Framed Structures 2 Objectives: ifferentiate between perfect, imperfect and redundant frames. To compute the member forces in a frame by graphical method. To compute the forces in a truss by method of

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information

Method of Consistent Deformation

Method of Consistent Deformation Method of onsistent eformation Structural nalysis y R.. Hibbeler Theory of Structures-II M Shahid Mehmood epartment of ivil Engineering Swedish ollege of Engineering and Technology, Wah antt FRMES Method

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

Chapter 6: Structural Analysis

Chapter 6: Structural Analysis Chapter 6: Structural Analysis Chapter Objectives To show how to determine the forces in the members of a truss using the method of joints and the method of sections. To analyze the forces acting on the

More information

Pin-Jointed Frame Structures (Frameworks)

Pin-Jointed Frame Structures (Frameworks) Pin-Jointed rame Structures (rameworks) 1 Pin Jointed rame Structures (rameworks) A pin-jointed frame is a structure constructed from a number of straight members connected together at their ends by frictionless

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. APPLICATIONS

More information

11.1 Virtual Work Procedures and Strategies, page 1 of 2

11.1 Virtual Work Procedures and Strategies, page 1 of 2 11.1 Virtual Work 11.1 Virtual Work rocedures and Strategies, page 1 of 2 rocedures and Strategies for Solving roblems Involving Virtual Work 1. Identify a single coordinate, q, that will completely define

More information

CHAPTER 5 ANALYSIS OF STRUCTURES. Expected Outcome:

CHAPTER 5 ANALYSIS OF STRUCTURES. Expected Outcome: CHAPTER ANALYSIS O STRUCTURES Expected Outcome: Able to analyze the equilibrium of structures made of several connected parts, using the concept of the equilibrium of a particle or of a rigid body, in

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Module 1 : Introduction : Review of Basic Concepts in Mechnics Lecture 4 : Static Indeterminacy of Structures

Module 1 : Introduction : Review of Basic Concepts in Mechnics Lecture 4 : Static Indeterminacy of Structures Module 1 : Introduction : Review of Basic Concepts in Mechnics Lecture 4 : Static Indeterminacy of Structures Objectives In this course you will learn the following Review of the concepts of determinate

More information

7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES 7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

More information

Equilibrium of rigid bodies Mehrdad Negahban (1999)

Equilibrium of rigid bodies Mehrdad Negahban (1999) Equilibrium of rigid bodies Mehrdad Negahban (1999) Static equilibrium for a rigid body: A body (or any part of it) which is currently stationary will remain stationary if the resultant force and resultant

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

Announcements. Equilibrium of a Rigid Body

Announcements. Equilibrium of a Rigid Body Announcements Equilibrium of a Rigid Body Today s Objectives Identify support reactions Draw a free body diagram Class Activities Applications Support reactions Free body diagrams Examples Engr221 Chapter

More information

ARCH 631 Note Set 2.1 F2010abn. Statics Primer

ARCH 631 Note Set 2.1 F2010abn. Statics Primer RCH 631 Note Set.1 F010abn Statics Primer Notation: a = name for acceleration = area (net = with holes, bearing = in contact, etc...) (C) = shorthand for compression d = perpendicular distance to a force

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body Ishik University / Sulaimani Architecture Department 1 Structure ARCH 214 Chapter -5- Equilibrium of a Rigid Body CHAPTER OBJECTIVES To develop the equations of equilibrium for a rigid body. To introduce

More information

Framed Structures PLANE FRAMES. Objectives:

Framed Structures PLANE FRAMES. Objectives: Framed Structures 2 Objectives: ifferentiate between perfect, imperfect and redundant frames. To compute the member forces in a frame by graphical method. To compute the forces in a truss by method of

More information

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

Graphical Analysis of a Four-Bar Mechanism

Graphical Analysis of a Four-Bar Mechanism Graphical nalysis of a Four-ar Mechanism Tutorial instruction: 1. lick Slide Show at the lower right corner for full screen slide show. o not click slide page 2. lick NXT when you are ready for the next

More information

Equilibrium of a Rigid Body. Chapter 5

Equilibrium of a Rigid Body. Chapter 5 Equilibrium of a Rigid Body Chapter 5 Overview Rigid Body Equilibrium Free Body Diagrams Equations of Equilibrium 2 and 3-Force Members Statical Determinacy CONDITIONS FOR RIGID-BODY EQUILIBRIUM Recall

More information

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six

READING QUIZ. 2. When using the method of joints, typically equations of equilibrium are applied at every joint. A) Two B) Three C) Four D) Six READING QUIZ 1. One of the assumptions used when analyzing a simple truss is that the members are joined together by. A) Welding B) Bolting C) Riveting D) Smooth pins E) Super glue 2. When using the method

More information

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns b) Identify support reactions c) Recognize

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

The area of structural engineering should cover four important aspects : - Planning - Analysis - Design - Construction

The area of structural engineering should cover four important aspects : - Planning - Analysis - Design - Construction Chapter 1 INTRODUCTION TO STRUCTURE Bambang Prihartanto; Shahrul Niza Mokhatar 1.1 STRUCTURE & STRUCTURAL ANALYSIS A structure is defined to a system of connected/fabricated parts used to support a load

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads.

6.6 FRAMES AND MACHINES APPLICATIONS. Frames are commonly used to support various external loads. 6.6 FRAMES AND MACHINES APPLICATIONS Frames are commonly used to support various external loads. How is a frame different than a truss? How can you determine the forces at the joints and supports of a

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

Eng Sample Test 4

Eng Sample Test 4 1. An adjustable tow bar connecting the tractor unit H with the landing gear J of a large aircraft is shown in the figure. Adjusting the height of the hook F at the end of the tow bar is accomplished by

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 201 Engineering Mechanics: Statics Unit 7.1 Simple Trusses Method of Joints Zero Force Members Simple Truss structure composed of slender members joined together at their end points Planar Truss Simple

More information

1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member BF.

1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member BF. 1. If it is known that the center pin A supports one-half of the vertical loading shown, determine the force in member B. Joint A AB A I. Cut D D B A 26 kn A I. Cut H 13 kn D B D A H 13 kn 2. Determine

More information

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions

Introduction. 1.1 Introduction. 1.2 Trigonometrical definitions Introduction 1.1 Introduction Stress analysis is an important part of engineering science, as failure of most engineering components is usually due to stress. The component under a stress investigation

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

EQUILIBRIUM OF A RIGID BODY

EQUILIBRIUM OF A RIGID BODY EQUILIBRIUM OF A RIGID BODY Today s Objectives: Students will be able to a) Identify support reactions, and, b) Draw a free diagram. APPLICATIONS A 200 kg platform is suspended off an oil rig. How do we

More information

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members CH. 5 TRUSSES BASIC PRINCIPLES Typical depth-to-span ratios range from 1:10 to 1:20 - Flat trusses require less overall depth than pitched trusses Spans: 40-200 Spacing: 10 to 40 on center - Residential

More information

Statics: Lecture Notes for Sections

Statics: Lecture Notes for Sections Chapter 6: Structural Analysis Today s Objectives: Students will be able to: a) Define a simple truss. b) Determine the forces in members of a simple truss. c) Identify zero-force members. READING QUIZ

More information

Chapter 14 Truss Analysis Using the Stiffness Method

Chapter 14 Truss Analysis Using the Stiffness Method Chapter 14 Truss Analsis Using the Stiffness Method Structural Mechanics 2 ept of Arch Eng, Ajou Univ Outline undamentals of the stiffness method Member stiffness matri isplacement and force transformation

More information

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

More information

The analysis of trusses Mehrdad Negahban (1999)

The analysis of trusses Mehrdad Negahban (1999) The analysis of trusses Mehrdad Negahban (1999) A truss: A truss is a structure made of two force members all pin connected to each other. The method of joints: This method uses the free-body-diagram of

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 1 PRINCIPLES OF STATICS PRINCIPLES OF STTICS Statics is the study of how forces act and react on rigid bodies which are at rest or not in motion. This study is the basis for the engineering principles, which guide the design

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614

five moments ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture ARCH 614 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture five moments Moments 1 Moments forces have the tendency to make a body rotate about an axis http://www.physics.umd.edu

More information

Equilibrium Equilibrium and Trusses Trusses

Equilibrium Equilibrium and Trusses Trusses Equilibrium and Trusses ENGR 221 February 17, 2003 Lecture Goals 6-4 Equilibrium in Three Dimensions 7-1 Introduction to Trusses 7-2Plane Trusses 7-3 Space Trusses 7-4 Frames and Machines Equilibrium Problem

More information