International Mathematics TOURNAMENT OF THE TOWNS

Size: px
Start display at page:

Download "International Mathematics TOURNAMENT OF THE TOWNS"

Transcription

1 1 International Mathematics TOURNAMENT OF THE TOWNS Senior A-Level Paper Spring Assume a convex polygon with 100 vertices is given. Prove that one can chose 50 points inside the polygon in such a way that every vertex lies on a line passing through two of the chosen points. B.R.Frenkin) Solution. Enumerate vertices of the polygon in a clockwise order: 1,..., 100. Consider polygon consisting of 10 vertices: 1, 2, 21, 22, 41, 42, 61, 62, 81, 82. Its vertices lay on the 5 straight lines 1-22, 21-42, 41-62, 61-82, 81-2, which are given by 5 points of intersections the first straight line with the second one, the second one with the third one... the fifth one with the second one, it is evident, that all these points are different ). Repeat this for the decagons with numbers of vertices that can be obtained from the numbers of considered decagon by adding 2, 4,..., 18. This problem has lots of different solutions. 2. Do there exist positive integers n and k such that the decimal representation of 2 n contains the decimal representation of 5 k as its leftmost part, while the decimal representation of 5 n contains the decimal representation of 2 k as its leftmost part? G.A.Galperin) Answer: No, they doesnt exist. Solution If for some positive integer n the number 2 n starts by 5 k and the number 5 n by 2 k then this means that 5 k 10 s < 2 n < 5 k + 1) 10 s and 2 k 10 l < 5 n < 2 k + 1) 10 l, thus 10 k+l+s < 10 n < 10 k+l+s+1, which is impossible. Last inequality 10 n < 10 k+l+s+1 is true, because 5 k + 1 < 2 5 k and 2 k + 1 < 5 2 k ). 3. Consider the polynomial P x) = x 4 + x 3 3x 2 + x + 2. Prove that for every positive integer k, the polynomial P x) k has at least one negative coefficient. M.I.Malkin) Solution 1. Observe that for any polynomial P x) its value in the point x = 1 is equal to the sum of all coefficients. Consequently, the sum of the coefficients of the polynomial P x) n is equal to P 1) n = ) n = 2 n. But the free term of P x) n is equal to P 0) n = 2 n, while the coefficient at x 4n is equal to 1, and their sum is already 2 n + 1. Hence one of the remaining coefficients of P x) n is negative. Solution 2. The coefficient at x 3 for the polynomial P x) n can be obtained by adding n items 2 n 1 x 3 and nn 1) items 3x 2 x 2 n 2, consequently this coefficient is equal n 2 n 1 3nn 1)2 n 2 = 2 n 2 3n 2 + 5n) = n 2 n 2 3n + 5), which is negative number for an arbitrary integer n 2. Solution 3. Observe that P 0) n = P 1) n = 2 n. But any polynomial F with positive coefficients is strongly monotonic when x > 0 i.e. x > y > 0 = F x) > F y) > 0). This means that polynomial P x) n has at least one negative coefficient. 4. Consider a triangle ABC, take the angle bisector AA, and assume given a point X on the interval AA. Assume that the line BX intersects the line AC in a point denoted B, while the line CX intersects the line AB in a point denoted C. Assume also that the intervals A B and CC meet in a point denoted P, and the intervals A C and BB meet in a point denoted Q. Prove that the angles P AC and QAB are equal. M.A. Volchkevich)

2 2 Solution. Denote by h M l) the distance from the point M to the straight line l. We will use the following simple Lemma 1. if three rays OL, OM and ON, are given then for all points K on the ray OM the ration h K OL)/h K ON) is the same. For the solution of the given problem it is enough to prove that h P AC)/h P AA ) = h Q AB)/h Q AA ) this equality together with equality of angles A AC and A BC means that angles P AC and QAB are equal). Using lemma we obtain h P BC)/h P AC) = h X BC)/h X AC) and h Q BC)/h Q AB) = h X BC)/h X AB), consequently since h X AC) = h X AB), because X lays on the bisector AA ) h P BC)/h P AC) = h Q BC)/h Q AB). So it is enough to prove that h P BC)/h P AA ) = h Q BC)/h Q AA ). By lemma 1 the latter is equivalent to h B BC)/h B AA ) = h C BC)/h C AA ). Denote BAC = 2α. Observe that h B AB)/h B AA ) = sin 2α/ sin α = h C AC)/hC AA ). Now it is enough to prove that h B BC)/h B AB) = h C BC)/h C AC). Applying lemma again this transforms into h X BC)/h X AB) = h X BC)/h X AC), which is evident since h X AC) = h X AB)). The proof is finished. 5. Prove that there exist infinitely many pairs of integers with the following property: in the decimal representation of each integer, each digit is greater or equal to 7, and the product of the two integers in the pair is also an integer whose decimal representation has no digits less than 7. S.I.Tokarev) Solution 1. All the pairs , ) where in the first and second numbers amounts of the digits are equal are right for this problem. Their product it can be shown using multiplication in column ) is equal to there are n 3 eights at the beginning, then 7888, and then n 3 sevens). Solution 2. Consider numbers k-1 sevens) and k-3 nines), their product is equal to the k 4 nines and k 2 eights). 6. Twelve grasshoppers sit on a circle in 12 pairwise distinct points. These points split the circle into 12 arcs. When a signal is given, the grasshoppers jump simultaneously; each one jumps clockwise, from the endpoint of his arc to its midpoint. Thus 12 news are formed; then the signal is repeated, and so on. Is it possible that at least one grasshopper returns to his original position after he does a) 12 jumps? b) 13 jumps? Answer: a), b) No, it is not. A.K.Tolpygo) a) Solution 1. Let us call 12 simultaneous jumps of grasshoppers turn. Assume that one of the grasshoppers call him first) returned to the starting point denote it by A) after 12 turns. Observe that order of the grasshoppers on the circle doesnt change. Thus the remaining 11 grasshoppers have jump over the point A at least once) before the first grasshopper returns

3 3 there. But in one turn not more than one grasshopper jumps over the point A, while in the first turn no grasshoppers jump over the point A! Consequently in 12 turns no more than 11 grasshoppers can jump over the point A, and the first one is not able to come back. a) Solution 2. Observe that our situation is equivalent to the following one: we arrange the infinite amount of grasshoppers along the ray OM at the beginning placing 12 grasshoppers, just unrolling the circle into a segment by cutting it at the starting point of the grasshopper #1 assume that clockwise bypass of the circle coincides with positive direction of the axis Ox). Then we think that the first grasshopper starts only at the left end of the segment point 0). And attach to the right end the same segment with grasshoppers at the same points and so on we obtained the ray with marked points A 1, A 2,... ). In this new model grasshoppers jump in positive direction into the midpoint of the segment, connecting this and next grasshopper. Now we want to prove that after 12 jumps the first grasshopper is to the left from the point A 13. Let us prove using induction that after n jumps the i-th grasshopper is at the centre of mass of the system Ai, C0, n)g), A i+1, C1, n)g),..., A i+n, Cn, n)g) ) the first factor is the position of object, second is its mass, Ck, n) = n!/k! n k)!)). It is obvious that after first jump this proposition is true. Assume that after n jumps the i-th grasshopper is at the centre of mass of the system Ai, C0, n)g), A i+1, C1, n)g),..., A i+n, Cn, n)g) ) and the i + 1)-th at the centre of mass of Ai+1, C0, n)g), A i+2, C1, n)g),..., A i+n+1, Cn, n)g) ). Then the midpoint of the segment connecting them has the same coordinates as the centre of mass of the system C. of M. A i, C0, n)g), A i+1, C1, n)g),..., A i+n, Cn, n)g) ), C. of M. A i+1, C0, n)g), A i+2, C1, n)g),..., A i+n+1, Cn, n)g) )) which is the same the centre of mass of Ai, C0, n)g), A i+1, C1, n) + C0, n))g),..., A i+n, Cn, n) + Cn 1, n))g)), A i+n+1, Cn, n)g) ), and this is the centre of mass of the system A i, C0, n+1)g),... A i +n+1, Cn+1, n+1)g). Proposition is proved. The proved proposition means that after 12 jumps the first grasshopper is in the centre of mass of the system A 1, C0, 12)g),..., A 13, C12, 12)g). It is obvious that this point is inside the segment [A 1, A 13 ]. b). In this case after 13 jumps the first grasshopper is in the centre if mass of the system A 1, C0, 13)g),..., A 14, C13, 13)g). But the same point can be represented as the centre of mass of two points with some masses in them: the first one is C. of M. A 2, C1, 13)g),..., A 13, C12, 13)g),

4 4 and the second one is C. of M. A 1, C0, 13)g), A 14, C13, 13)g). It is evident that the first point is inside the segment [A 1, A 1 3]. Also C0, 13) = C13, 13) and A 1 A 2 = A 13 A 14, hence the second point is inside the segment [A 1, A 13 ] too. Consequently and the centre of mass of these two points with arbitrary masses is inside the segment [A 1, A 13 ]. 7. An ant crawls along a fixed closed trajectory along the edges of a dodecahedron, never turning back. The trajectory contains each edge of the dodecahedron exactly twice. Prove that the ant passes at least one edge in the same direction both times. Reminder: a dodecahedron is a polyhedron with 20 vertices, 30 edges and 12 equal pentagonal faces; 3 faces meet at each vertex.) A.V. Shapovalov) Solution. Assume the trajectory passing through each edge in both directions exist. Consider a vertex A and three its neighbors B, C, D. Assume that at some moment of time the ant comes to the point A from the point B then after it he crawls to the point C or D. If he chose C, then at some other moment he comes from C to A and turns to D otherwise there is D A D in the trajectory, which is impossible). Similarly, when the ant comes from D to A he turns to B. Summing up, we proved that there are 2 kinds of crossroads B A C, C A D, D A B) and if at the beginning the ant choose not C but D) B A D, D A C, C A B). This two kinds of crossroads can be described using the simple rule: in the first case ant always turns left at the crossroad, and in the second one he always turns right. Now mark out for each crossroad its type. Observe that if the ant starts his movement from some vertex going along some edge, then all its trajectory can be reconstructed using only these marks. So each collection of the marks on the vertices corresponds to some collection of closed and non-intersecting by an edge, passing in the same direction) trajectories although, we do not clam that this collection of trajectories is unique, we do not need this). We assume that at the beginning there is one such closed trajectory passing through each edges two times. Now by turns change the marks on the vertices with the rule turn to the left to the marks turn to the right. It is possible that after the very first operation our big trajectory splat into multiple. But it is evident that some closed trajectories that we obtain are unambiguously defined. Let us study how the amount of the trajectories can change when we change the marks. We want to prove that it remains odd. Suppose we have a crossroad B A C, C A D, D A B). Consider different cases of the trajectories passing through A configurations: a) We have 3 different closed trajectories B A C B), C A D C), and D A B D), then after the mark is changed we obtain C A B D A C B A D C), so in this case total amount decreased by two and remained odd. b) We have 2 closed trajectories B A C... B) and C A D D A B C), after the mark change we obtain C A B C) and B A D D A C B), total amount does not change. c) We have one closed trajectory B A C C A D D A B B) then after change we obtain B A D D A C C A B B). Total amount does not change again.

5 5 Three more cases can be obtained by reversing the considered ones. And all other cases are just the same after the replacement of the notation. We proved that total amount of trajectories remains odd. But when all crossroads have marks turn to the left on them, the only way to divide the dodecahedron into closed trajectories is to go round each facet along its boundary i.e. each trajectory consists of 5 edges and goes round one facet). It is evident that in this case we have 12 trajectories. We obtained the contradiction with oddity of their amount.

Hanoi Open Mathematical Competition 2017

Hanoi Open Mathematical Competition 2017 Hanoi Open Mathematical Competition 2017 Junior Section Saturday, 4 March 2017 08h30-11h30 Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice

More information

1 Hanoi Open Mathematical Competition 2017

1 Hanoi Open Mathematical Competition 2017 1 Hanoi Open Mathematical Competition 017 1.1 Junior Section Question 1. Suppose x 1, x, x 3 are the roots of polynomial P (x) = x 3 6x + 5x + 1. The sum x 1 + x + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E):

More information

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice questions, stick only the letters (A, B, C, D or E) of your choice. No calculator is allowed.

More information

45-th Moldova Mathematical Olympiad 2001

45-th Moldova Mathematical Olympiad 2001 45-th Moldova Mathematical Olympiad 200 Final Round Chişinǎu, March 2 Grade 7. Prove that y 3 2x+ x 3 2y x 2 + y 2 for any numbers x,y [, 2 3 ]. When does equality occur? 2. Let S(n) denote the sum of

More information

2013 Sharygin Geometry Olympiad

2013 Sharygin Geometry Olympiad Sharygin Geometry Olympiad 2013 First Round 1 Let ABC be an isosceles triangle with AB = BC. Point E lies on the side AB, and ED is the perpendicular from E to BC. It is known that AE = DE. Find DAC. 2

More information

International Mathematics TOURNAMENT OF THE TOWNS. Solutions to Seniors A-Level Paper Fall 2009

International Mathematics TOURNAMENT OF THE TOWNS. Solutions to Seniors A-Level Paper Fall 2009 International Mathematics TOURNAMENT OF THE TOWNS Solutions to Seniors A-Level Paper Fall 2009 1. A pirate who owes money is put in group A, and the others are put in group B. Each pirate in group A puts

More information

International Mathematics TOURNAMENT OF TOWNS. Senior A-Level Paper Fall 2012.

International Mathematics TOURNAMENT OF TOWNS. Senior A-Level Paper Fall 2012. 5 International Mathematics TOURNAMENT OF TOWNS Senior A-Level Paper Fall 2012. 1. Given an infinite sequence of numbers a 1,a 2,a 3,... For each positive integer k there exists a positive integer t =

More information

4 a b 1 1 c 1 d 3 e 2 f g 6 h i j k 7 l m n o 3 p q 5 r 2 s 4 t 3 3 u v 2

4 a b 1 1 c 1 d 3 e 2 f g 6 h i j k 7 l m n o 3 p q 5 r 2 s 4 t 3 3 u v 2 Round Solutions Year 25 Academic Year 201 201 1//25. In the hexagonal grid shown, fill in each space with a number. After the grid is completely filled in, the number in each space must be equal to the

More information

The Pigeonhole Principle

The Pigeonhole Principle The Pigeonhole Principle 2 2.1 The Pigeonhole Principle The pigeonhole principle is one of the most used tools in combinatorics, and one of the simplest ones. It is applied frequently in graph theory,

More information

12-neighbour packings of unit balls in E 3

12-neighbour packings of unit balls in E 3 12-neighbour packings of unit balls in E 3 Károly Böröczky Department of Geometry Eötvös Loránd University Pázmány Péter sétány 1/c H-1117 Budapest Hungary László Szabó Institute of Informatics and Economics

More information

37th United States of America Mathematical Olympiad

37th United States of America Mathematical Olympiad 37th United States of America Mathematical Olympiad 1. Prove that for each positive integer n, there are pairwise relatively prime integers k 0, k 1,..., k n, all strictly greater than 1, such that k 0

More information

Australian Intermediate Mathematics Olympiad 2016

Australian Intermediate Mathematics Olympiad 2016 Australian Intermediate Mathematics Olympiad 06 Questions. Find the smallest positive integer x such that x = 5y, where y is a positive integer. [ marks]. A 3-digit number in base 7 is also a 3-digit number

More information

Written test, 25 problems / 90 minutes

Written test, 25 problems / 90 minutes Sponsored by: UGA Math Department and UGA Math Club Written test, 5 problems / 90 minutes October, 06 WITH SOLUTIONS Problem. Let a represent a digit from to 9. Which a gives a! aa + a = 06? Here aa indicates

More information

Olimpiada Matemática de Centroamérica y el Caribe

Olimpiada Matemática de Centroamérica y el Caribe Olimpiada Matemática de Centroamérica y el Caribe 1st Centromerican 1999 Problem A1 A, B, C, D, E each has a unique piece of news. They make a series of phone calls to each other. In each call, the caller

More information

HMMT November 2015 November 14, 2015

HMMT November 2015 November 14, 2015 HMMT November 05 November, 05 Guts round. [5] Farmer Yang has a 05 05 square grid of corn plants. One day, the plant in the very center of the grid becomes diseased. Every day, every plant adjacent to

More information

Team Solutions. November 19, qr = (m + 2)(m 2)

Team Solutions. November 19, qr = (m + 2)(m 2) Team s November 19, 2017 1. Let p, q, r, and s be four distinct primes such that p + q + r + s is prime, and the numbers p 2 + qr and p 2 + qs are both perfect squares. What is the value of p + q + r +

More information

HANOI OPEN MATHEMATICAL COMPETITON PROBLEMS

HANOI OPEN MATHEMATICAL COMPETITON PROBLEMS HANOI MATHEMATICAL SOCIETY NGUYEN VAN MAU HANOI OPEN MATHEMATICAL COMPETITON PROBLEMS HANOI - 2013 Contents 1 Hanoi Open Mathematical Competition 3 1.1 Hanoi Open Mathematical Competition 2006... 3 1.1.1

More information

15 th Annual Harvard-MIT Mathematics Tournament Saturday 11 February 2012

15 th Annual Harvard-MIT Mathematics Tournament Saturday 11 February 2012 1 th Annual Harvard-MIT Mathematics Tournament Saturday 11 February 01 1. Let f be the function such that f(x) = { x if x 1 x if x > 1 What is the total length of the graph of f(f(...f(x)...)) from x =

More information

Unofficial Solutions

Unofficial Solutions Canadian Open Mathematics Challenge 2016 Unofficial Solutions COMC exams from other years, with or without the solutions included, are free to download online. Please visit http://comc.math.ca/2016/practice.html

More information

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT

CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT CLASS-IX MATHEMATICS For Pre-Foundation Course CAREER POINT CONTENTS S. No. CHAPTERS PAGE NO. 0. Number System... 0 3 0. Polynomials... 39 53 03. Co-ordinate Geometry... 54 04. Introduction to Euclid's

More information

41st International Mathematical Olympiad

41st International Mathematical Olympiad 41st International Mathematical Olympiad Taejon, Korea, July 2000 1 Two circles Γ 1 and Γ 2 intersect at M and N Let l be the common tangent to Γ 1 and Γ 2 so that M is closer to l than N is Let l touch

More information

MeritPath.com. Problems and Solutions, INMO-2011

MeritPath.com. Problems and Solutions, INMO-2011 Problems and Solutions, INMO-011 1. Let,, be points on the sides,, respectively of a triangle such that and. Prove that is equilateral. Solution 1: c ka kc b kb a Let ;. Note that +, and hence. Similarly,

More information

34 th United States of America Mathematical Olympiad

34 th United States of America Mathematical Olympiad 34 th United States of America Mathematical Olympiad 1. Determine all composite positive integers n for which it is possible to arrange all divisors of n that are greater than 1 in a circle so that no

More information

2016 EF Exam Texas A&M High School Students Contest Solutions October 22, 2016

2016 EF Exam Texas A&M High School Students Contest Solutions October 22, 2016 6 EF Exam Texas A&M High School Students Contest Solutions October, 6. Assume that p and q are real numbers such that the polynomial x + is divisible by x + px + q. Find q. p Answer Solution (without knowledge

More information

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints view.php3 (JPEG Image, 840x888 pixels) - Scaled (71%) https://mail.ateneo.net/horde/imp/view.php3?mailbox=inbox&inde... 1 of 1 11/5/2008 5:02 PM 11 th Philippine Mathematical Olympiad Questions, Answers,

More information

International Mathematical Talent Search Round 26

International Mathematical Talent Search Round 26 International Mathematical Talent Search Round 26 Problem 1/26. Assume that x, y, and z are positive real numbers that satisfy the equations given on the right. x + y + xy = 8, y + z + yz = 15, z + x +

More information

THE FIVE GROUPS OF AXIOMS.

THE FIVE GROUPS OF AXIOMS. 2 THE FIVE GROUPS OF AXIOMS. 1. THE ELEMENTS OF GEOMETRY AND THE FIVE GROUPS OF AXIOMS. Let us consider three distinct systems of things. The things composing the first system, we will call points and

More information

Australian Intermediate Mathematics Olympiad 2016

Australian Intermediate Mathematics Olympiad 2016 A u s t r a l i a n M at h e m at i c a l O ly m p i a d C o m m i t t e e a d e p a r t m e n t o f t h e a u s t r a l i a n m at h e m at i c s t r u s t Australian Intermediate Mathematics Olympiad

More information

SOLUTIONS FOR 2011 APMO PROBLEMS

SOLUTIONS FOR 2011 APMO PROBLEMS SOLUTIONS FOR 2011 APMO PROBLEMS Problem 1. Solution: Suppose all of the 3 numbers a 2 + b + c, b 2 + c + a and c 2 + a + b are perfect squares. Then from the fact that a 2 + b + c is a perfect square

More information

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 008 Euclid Contest Tuesday, April 5, 008 Solutions c 008

More information

Solutions and scoring for 1st Midterm Exam Geometry 515 Fall Oct 2 Mon 4:00-5:20 pm

Solutions and scoring for 1st Midterm Exam Geometry 515 Fall Oct 2 Mon 4:00-5:20 pm Solutions and scoring for 1st Midterm Exam Geometry 515 Fall 2017 Oct 2 Mon 4:00-5:20 pm 1. On the line AB you have the point O between the points A and B (i.e. rays OA and OB form a straight angle AOB).

More information

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST 08 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST. A right triangle has hypotenuse 9 and one leg. What is the length of the other leg?. Don is /3 of the way through his run. After running another / mile, he

More information

ALGEBRA II WITH TRIGONOMETRY EXAM

ALGEBRA II WITH TRIGONOMETRY EXAM First Round : March 7, 00 Second Round: April, 00 at The University of Alabama ALGEBRA II WITH TRIGONOMETRY EXAM Construction of this test directed by Congxiao Liu, Alabama A&M University and Alzaki Fadl

More information

Official Solutions 2014 Sun Life Financial CMO Qualifying Rêpechage 1

Official Solutions 2014 Sun Life Financial CMO Qualifying Rêpechage 1 Official s 2014 Sun Life Financial CMO Qualifying Rêpechage 1 1. Let f : Z Z + be a function, and define h : Z Z Z + by h(x, y) = gcd(f(x), f(y)). If h(x, y) is a two-variable polynomial in x and y, prove

More information

Marquette University

Marquette University Marquette University 2 0 7 C O M P E T I T I V E S C H O L A R S H I P E X A M I N A T I O N I N M A T H E M A T I C S Do not open this booklet until you are directed to do so.. Fill out completely the

More information

Year 1: Fall. Year 1: Spring. HSB Topics - 2 Year Cycle

Year 1: Fall. Year 1: Spring. HSB Topics - 2 Year Cycle Year 1: Fall Pigeonhole 1 Pigeonhole 2 Induction 1 Induction 2 Inequalities 1 (AM-GM) Geometry 1 - Triangle Area Ratio Theorem (TART) Contest (Math Battle) Geometry 2 - Inscribed Quadrilaterals, Ptolemy

More information

Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions

Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions 4.2 #77. Let s n,k denote the number of ways to seat n persons at k round tables, with at least one person at each table. (The numbers s n,k

More information

International Mathematics TOURNAMENT OF THE TOWNS

International Mathematics TOURNAMENT OF THE TOWNS International Mathematics TOURNAMENT OF THE TOWNS Senior A-Level Paper Fall 2011 1 Pete has marked at least 3 points in the plane such that all distances between them are different A pair of marked points

More information

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVIII. February 6, 2016 First Round Three Hours

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVIII. February 6, 2016 First Round Three Hours UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVIII February 6, 016 First Round Three Hours 1. Suppose there are 9 lights arranged on tic tac toe board so that one is in each square. Suppose further that there

More information

SMT 2011 General Test and Solutions February 19, F (x) + F = 1 + x. 2 = 3. Now take x = 2 2 F ( 1) = F ( 1) = 3 2 F (2)

SMT 2011 General Test and Solutions February 19, F (x) + F = 1 + x. 2 = 3. Now take x = 2 2 F ( 1) = F ( 1) = 3 2 F (2) SMT 0 General Test and Solutions February 9, 0 Let F () be a real-valued function defined for all real 0, such that ( ) F () + F = + Find F () Answer: Setting =, we find that F () + F ( ) = Now take =,

More information

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle?

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle? UNIVERSITY OF NORTH CAROLINA CHARLOTTE 999 HIGH SCHOOL MATHEMATICS CONTEST March 8, 999 The sides of a triangle are in the ratio : 5 : 9 Which of the following words best describes the triangle? (A) obtuse

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Baltic Way 2003 Riga, November 2, 2003

Baltic Way 2003 Riga, November 2, 2003 altic Way 2003 Riga, November 2, 2003 Problems and solutions. Let Q + be the set of positive rational numbers. Find all functions f : Q + Q + which for all x Q + fulfil () f ( x ) = f (x) (2) ( + x ) f

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) (e) 8 Solution: Note that xy = (x + y) (x y) = 169

More information

A sequence of thoughts on constructible angles.

A sequence of thoughts on constructible angles. A sequence of thoughts on constructible angles. Dan Franklin & Kevin Pawski Department of Mathematics, SUNY New Paltz, New Paltz, NY 12561 Nov 23, 2002 1 Introduction In classical number theory the algebraic

More information

Consider the plane containing both the axis of the cone and two opposite vertices of the cube's bottom face. The cross section of the cone and the cub

Consider the plane containing both the axis of the cone and two opposite vertices of the cube's bottom face. The cross section of the cone and the cub Solutions to the Twenty-Eighth University of Melbourne/Hewlett-Packard Mathematics Competition Senior Division, 1999 1 Two mathematicians, Walter and Hyam, are working at their respective homes on a problem

More information

2015 Joe Holbrook Memorial Math Competition 7th Grade Exam Solutions

2015 Joe Holbrook Memorial Math Competition 7th Grade Exam Solutions 05 Joe Holbrook Memorial Math Competition 7th Grade Exam Solutions The Bergen County Academies Math Team October th, 05. We have two 5 s, two 7 s, two 9 s, two s, one, and one. This simplifies to (5 +

More information

1966 IMO Shortlist. IMO Shortlist 1966

1966 IMO Shortlist. IMO Shortlist 1966 IMO Shortlist 1966 1 Given n > 3 points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) 3 of the given points and not containing any other

More information

1. (A) Factor to get (2x+3)(2x 10) = 0, so the two roots are 3/2 and 5, which sum to 7/2.

1. (A) Factor to get (2x+3)(2x 10) = 0, so the two roots are 3/2 and 5, which sum to 7/2. Solutions 00 53 rd AMC 1 A 1. (A) Factor to get (x+3)(x 10) = 0, so the two roots are 3/ and 5, which sum to 7/.. (A) Let x be the number she was given. Her calculations produce so x 9 3 = 43, x 9 = 19

More information

(A) 2S + 3 (B) 3S + 2 (C) 3S + 6 (D) 2S + 6 (E) 2S + 12

(A) 2S + 3 (B) 3S + 2 (C) 3S + 6 (D) 2S + 6 (E) 2S + 12 1 The sum of two numbers is S Suppose 3 is added to each number and then each of the resulting numbers is doubled What is the sum of the final two numbers? (A) S + 3 (B) 3S + (C) 3S + 6 (D) S + 6 (E) S

More information

2018 Best Student Exam Solutions Texas A&M High School Students Contest October 20, 2018

2018 Best Student Exam Solutions Texas A&M High School Students Contest October 20, 2018 08 Best Student Exam Solutions Texas A&M High School Students Contest October 0, 08. You purchase a stock and later sell it for $44 per share. When you do, you notice that the percent increase was the

More information

Chapter Test. Chapter Tests LM 5 4, }} MO 5 14, } LN Answers. In Exercises 4 6, use the diagram. Geometry Benchmark Tests

Chapter Test. Chapter Tests LM 5 4, }} MO 5 14, } LN Answers. In Exercises 4 6, use the diagram. Geometry Benchmark Tests Chapter Test For use after Chapter. Which of the following is not an undefined term? A. Point B. Plane C. Line D. Ray. Which of the following is an undefined term? A. Line B. Ray C. Segment D. Intersection

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

Foundations of Neutral Geometry

Foundations of Neutral Geometry C H A P T E R 12 Foundations of Neutral Geometry The play is independent of the pages on which it is printed, and pure geometries are independent of lecture rooms, or of any other detail of the physical

More information

2005 Euclid Contest. Solutions

2005 Euclid Contest. Solutions Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 2005 Euclid Contest Tuesday, April 19, 2005 Solutions c

More information

Ritangle - an A Level Maths Competition 2016

Ritangle - an A Level Maths Competition 2016 Ritangle - an A Level Maths Competition 2016 Questions and Answers - 12-12-16 A. The Taster Questions Answer: this sequence cycles. The first eight terms are, r, i, t, a, n, g, l, e, 1 while the ninth

More information

14 th Annual Harvard-MIT Mathematics Tournament Saturday 12 February 2011

14 th Annual Harvard-MIT Mathematics Tournament Saturday 12 February 2011 14 th Annual Harvard-MIT Mathematics Tournament Saturday 1 February 011 1. Let a, b, and c be positive real numbers. etermine the largest total number of real roots that the following three polynomials

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

13 = m m = (C) The symmetry of the figure implies that ABH, BCE, CDF, and DAG are congruent right triangles. So

13 = m m = (C) The symmetry of the figure implies that ABH, BCE, CDF, and DAG are congruent right triangles. So Solutions 2005 56 th AMC 2 A 2. (D It is given that 0.x = 2 and 0.2y = 2, so x = 20 and y = 0. Thus x y = 0. 2. (B Since 2x + 7 = 3 we have x = 2. Hence 2 = bx 0 = 2b 0, so 2b = 8, and b = 4. 3. (B Let

More information

+3 u2 2 v u k 2

+3 u2 2 v u k 2 International Mathematics TOURNAMENT OF THE TOWNS Senior A-Level Paper 1 Fall 003 1 Smallville is populated by unmarried men and women, some of them are mutual acquaintants The ity s two Official Matchmakers

More information

Glossary. Glossary 981. Hawkes Learning Systems. All rights reserved.

Glossary. Glossary 981. Hawkes Learning Systems. All rights reserved. A Glossary Absolute value The distance a number is from 0 on a number line Acute angle An angle whose measure is between 0 and 90 Addends The numbers being added in an addition problem Addition principle

More information

Lesson 9.1 Skills Practice

Lesson 9.1 Skills Practice Lesson 9.1 Skills Practice Name Date Earth Measure Introduction to Geometry and Geometric Constructions Vocabulary Write the term that best completes the statement. 1. means to have the same size, shape,

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

Solutions Parabola Volume 52, Issue 3 (2016)

Solutions Parabola Volume 52, Issue 3 (2016) Parabola Volume 5, Issue (06) Solutions 50 50 Q50 Find the sum of the sum of the sum of the digits for the number06 06. SOLUTION Write S(n) for the sum of the digits of a positive integer n. We wish to

More information

X- MATHS IMPORTANT FORMULAS SELF EVALUVATION 1. SETS AND FUNCTIONS. 1. Commutative property i ii. 2. Associative property i ii

X- MATHS IMPORTANT FORMULAS SELF EVALUVATION 1. SETS AND FUNCTIONS. 1. Commutative property i ii. 2. Associative property i ii X- MATHS IMPORTANT FORMULAS SELF EVALUVATION 1. SETS AND FUNCTIONS 1. Commutative property i ii 2. Associative property i ii 3. Distributive property i ii 4. De Morgan s laws i ii i ii 5. Cardinality of

More information

CO-ORDINATE GEOMETRY. 1. Find the points on the y axis whose distances from the points (6, 7) and (4,-3) are in the. ratio 1:2.

CO-ORDINATE GEOMETRY. 1. Find the points on the y axis whose distances from the points (6, 7) and (4,-3) are in the. ratio 1:2. UNIT- CO-ORDINATE GEOMETRY Mathematics is the tool specially suited for dealing with abstract concepts of any ind and there is no limit to its power in this field.. Find the points on the y axis whose

More information

CANADIAN MATHEMATICAL OLYMPIAD 2010 PROBLEMS AND SOLUTIONS

CANADIAN MATHEMATICAL OLYMPIAD 2010 PROBLEMS AND SOLUTIONS CANADIAN MATHEMATICAL OLYMPIAD 2010 PROBLEMS AND SOLUTIONS (1) For a positive integer n, an n-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second

More information

First selection test. a n = 3n + n 2 1. b n = 2( n 2 + n + n 2 n),

First selection test. a n = 3n + n 2 1. b n = 2( n 2 + n + n 2 n), First selection test Problem. Find the positive real numbers a, b, c which satisfy the inequalities 4(ab + bc + ca) a 2 + b 2 + c 2 3(a 3 + b 3 + c 3 ). Laurenţiu Panaitopol Problem 2. Consider the numbers

More information

The PRIMES 2014 problem set

The PRIMES 2014 problem set Dear PRIMES applicant! The PRIMES 24 problem set This is the PRIMES 24 problem set. Please send us your solutions as part of your PRIMES application by December, 24. For complete rules, see http://web.mit.edu/primes/apply.shtml

More information

9th Bay Area Mathematical Olympiad

9th Bay Area Mathematical Olympiad 9th Bay rea Mathematical Olympiad February 27, 2007 Problems with Solutions 1 15-inch-long stick has four marks on it, dividing it into five segments of length 1,2,3,4, and 5 inches (although not neccessarily

More information

SOLUTIONS OF 2012 MATH OLYMPICS LEVEL II T 3 T 3 1 T 4 T 4 1

SOLUTIONS OF 2012 MATH OLYMPICS LEVEL II T 3 T 3 1 T 4 T 4 1 SOLUTIONS OF 0 MATH OLYMPICS LEVEL II. If T n = + + 3 +... + n and P n = T T T 3 T 3 T 4 T 4 T n T n for n =, 3, 4,..., then P 0 is the closest to which of the following numbers? (a).9 (b).3 (c) 3. (d).6

More information

Class IX Chapter 1 Number Sustems Maths

Class IX Chapter 1 Number Sustems Maths Class IX Chapter 1 Number Sustems Maths Exercise 1.1 Question Is zero a rational number? Can you write it in the form 0? and q, where p and q are integers Yes. Zero is a rational number as it can be represented

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

One Theorem, Six Proofs

One Theorem, Six Proofs 50/ ONE THEOREM, SIX PROOFS One Theorem, Six Proofs V. Dubrovsky It is often more useful to acquaint yourself with many proofs of the same theorem rather than with similar proofs of numerous results. The

More information

The Golden Section, the Pentagon and the Dodecahedron

The Golden Section, the Pentagon and the Dodecahedron The Golden Section, the Pentagon and the Dodecahedron C. Godsalve email:seagods@hotmail.com July, 009 Contents Introduction The Golden Ratio 3 The Pentagon 3 4 The Dodecahedron 8 A few more details 4 Introduction

More information

27th Russian Mathematics Olympiad

27th Russian Mathematics Olympiad 27th Russian Mathematics Olympiad 10 April 2001 (Communicated by Fedor Petrov) 9 FORM 1. The integers from 1 to 999999 are partioned into two groups: those integers for which the nearest perfect square

More information

Grade 11 Pre-Calculus Mathematics (1999) Grade 11 Pre-Calculus Mathematics (2009)

Grade 11 Pre-Calculus Mathematics (1999) Grade 11 Pre-Calculus Mathematics (2009) Use interval notation (A-1) Plot and describe data of quadratic form using appropriate scales (A-) Determine the following characteristics of a graph of a quadratic function: y a x p q Vertex Domain and

More information

number. However, unlike , three of the digits of N are 3, 4 and 5, and N is a multiple of 6.

number. However, unlike , three of the digits of N are 3, 4 and 5, and N is a multiple of 6. C1. The positive integer N has six digits in increasing order. For example, 124 689 is such a number. However, unlike 124 689, three of the digits of N are 3, 4 and 5, and N is a multiple of 6. How many

More information

Syllabus. + + x + n 1 n. + x + 2

Syllabus. + + x + n 1 n. + x + 2 1. Special Functions This class will cover problems involving algebraic functions other than polynomials, such as square roots, the floor function, and logarithms. Example Problem: Let n be a positive

More information

HIGH SCHOOL - PROBLEMS

HIGH SCHOOL - PROBLEMS PURPLE COMET! MATH MEET April 2017 HIGH SCHOOL - PROBLEMS Copyright c Titu Andreescu and Jonathan Kane Problem 1 Paul starts at 1 and counts by threes: 1, 4, 7, 10,.... At the same time and at the same

More information

1 st Preparatory. Part (1)

1 st Preparatory. Part (1) Part (1) (1) omplete: 1) The square is a rectangle in which. 2) in a parallelogram in which m ( ) = 60, then m ( ) =. 3) The sum of measures of the angles of the quadrilateral equals. 4) The ray drawn

More information

2013 IMO Shortlist. a b c d 1

2013 IMO Shortlist. a b c d 1 IMO Shortlist 2013 Algebra A1 A2 Letnbeapositiveintegerandleta 1,...,a n 1 bearbitraryrealnumbers. Define the sequences u 0,...,u n and v 0,...,v n inductively by u 0 = u 1 = v 0 = v 1 = 1, and u k+1 =

More information

UNCC 2001 Comprehensive, Solutions

UNCC 2001 Comprehensive, Solutions UNCC 2001 Comprehensive, Solutions March 5, 2001 1 Compute the sum of the roots of x 2 5x + 6 = 0 (A) (B) 7/2 (C) 4 (D) 9/2 (E) 5 (E) The sum of the roots of the quadratic ax 2 + bx + c = 0 is b/a which,

More information

Mathematical Structures for Computer Graphics Steven J. Janke John Wiley & Sons, 2015 ISBN: Exercise Answers

Mathematical Structures for Computer Graphics Steven J. Janke John Wiley & Sons, 2015 ISBN: Exercise Answers Mathematical Structures for Computer Graphics Steven J. Janke John Wiley & Sons, 2015 ISBN: 978-1-118-71219-1 Updated /17/15 Exercise Answers Chapter 1 1. Four right-handed systems: ( i, j, k), ( i, j,

More information

PRIMES Math Problem Set

PRIMES Math Problem Set PRIMES Math Problem Set PRIMES 017 Due December 1, 01 Dear PRIMES applicant: This is the PRIMES 017 Math Problem Set. Please send us your solutions as part of your PRIMES application by December 1, 01.

More information

BHP BILLITON UNIVERSITY OF MELBOURNE SCHOOL MATHEMATICS COMPETITION, 2003: INTERMEDIATE DIVISION

BHP BILLITON UNIVERSITY OF MELBOURNE SCHOOL MATHEMATICS COMPETITION, 2003: INTERMEDIATE DIVISION BHP BILLITON UNIVERSITY OF MELBOURNE SCHOOL MATHEMATICS COMPETITION, 00: INTERMEDIATE DIVISION 1. A fraction processing machine takes a fraction f and produces a new fraction 1 f. If a fraction f = p is

More information

Sydney University Mathematical Society Problems Competition Solutions.

Sydney University Mathematical Society Problems Competition Solutions. Sydney University Mathematical Society Problems Competition 005 Solutions 1 Suppose that we look at the set X n of strings of 0 s and 1 s of length n Given a string ɛ = (ɛ 1,, ɛ n ) X n, we are allowed

More information

1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case

1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case Math 3181 Dr. Franz Rothe December 25, 2012 Name: 1 Solution of Final Figure 1: Dissection proof of the Pythagorean theorem in a special case 10 Problem 1. Given is a right triangle ABC with angle α =

More information

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples.

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples. . Two externally tangent unit circles are constructed inside square ABCD, one tangent to AB and AD, the other to BC and CD. Compute the length of AB. Answer: + Solution: Observe that the diagonal of the

More information

The Furman University Wylie Mathematics Tournament

The Furman University Wylie Mathematics Tournament The Furman University Wylie Mathematics Tournament Senior Examination 15 February 2003 Please provide the following information: Name School Code 1. Do not open this test booklet until instructed. Instructions

More information

Solutions of APMO 2017

Solutions of APMO 2017 Solutions of APMO 2017 Problem 1. We call a 5-tuple of integers arrangeable if its elements can be labeled a, b, c, d, e in some order so that a b + c d + e = 29. Determine all 2017-tuples of integers

More information

Singapore International Mathematical Olympiad 2008 Senior Team Training. Take Home Test Solutions. 15x 2 7y 2 = 9 y 2 0 (mod 3) x 0 (mod 3).

Singapore International Mathematical Olympiad 2008 Senior Team Training. Take Home Test Solutions. 15x 2 7y 2 = 9 y 2 0 (mod 3) x 0 (mod 3). Singapore International Mathematical Olympiad 2008 Senior Team Training Take Home Test Solutions. Show that the equation 5x 2 7y 2 = 9 has no solution in integers. If the equation has a solution in integer,

More information

Solutions Math is Cool HS Championships Mental Math

Solutions Math is Cool HS Championships Mental Math Mental Math 9/11 Answer Solution 1 30 There are 5 such even numbers and the formula is n(n+1)=5(6)=30. 2 3 [ways] HHT, HTH, THH. 3 6 1x60, 2x30, 3x20, 4x15, 5x12, 6x10. 4 9 37 = 3x + 10, 27 = 3x, x = 9.

More information

FROSH-SOPH 2 PERSON COMPETITION LARGE PRINT QUESTION 1 ICTM 2017 STATE DIVISION AA 1. Determine the sum of all distinct positive integers between 8 and 16 inclusive that can be expressed in one and only

More information

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

QUESTION BANK ON STRAIGHT LINE AND CIRCLE QUESTION BANK ON STRAIGHT LINE AND CIRCLE Select the correct alternative : (Only one is correct) Q. If the lines x + y + = 0 ; 4x + y + 4 = 0 and x + αy + β = 0, where α + β =, are concurrent then α =,

More information

UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1995 HIGH SCHOOL MATHEMATICS CONTEST March 13, 1995 (C) 10 3 (D) = 1011 (10 1) 9

UNIVERSITY OF NORTH CAROLINA CHARLOTTE 1995 HIGH SCHOOL MATHEMATICS CONTEST March 13, 1995 (C) 10 3 (D) = 1011 (10 1) 9 UNIVERSITY OF NORTH CAROLINA CHARLOTTE 5 HIGH SCHOOL MATHEMATICS CONTEST March, 5. 0 2 0 = (A) (B) 0 (C) 0 (D) 0 (E) 0 (E) 0 2 0 = 0 (0 ) = 0 2. If z = x, what are all the values of y for which (x + y)

More information

Example 1: Finding angle measures: I ll do one: We ll do one together: You try one: ML and MN are tangent to circle O. Find the value of x

Example 1: Finding angle measures: I ll do one: We ll do one together: You try one: ML and MN are tangent to circle O. Find the value of x Ch 1: Circles 1 1 Tangent Lines 1 Chords and Arcs 1 3 Inscribed Angles 1 4 Angle Measures and Segment Lengths 1 5 Circles in the coordinate plane 1 1 Tangent Lines Focused Learning Target: I will be able

More information

Fundamentals of Pure Mathematics - Problem Sheet

Fundamentals of Pure Mathematics - Problem Sheet Fundamentals of Pure Mathematics - Problem Sheet ( ) = Straightforward but illustrates a basic idea (*) = Harder Note: R, Z denote the real numbers, integers, etc. assumed to be real numbers. In questions

More information

Thirty-fifth Annual Columbus State Invitational Mathematics Tournament. Instructions

Thirty-fifth Annual Columbus State Invitational Mathematics Tournament. Instructions Thirty-fifth Annual Columbus State Invitational Mathematics Tournament Sponsored by Columbus State University Department of Mathematics February 8, 009 ************************* The Mathematics Department

More information