Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions

Size: px
Start display at page:

Download "Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions"

Transcription

1 Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions 4.2 #77. Let s n,k denote the number of ways to seat n persons at k round tables, with at least one person at each table. (The numbers s n,k are called Stirling numbers of the first kind.) The ordering of the tables is not taken into account. The seating arrangement at a table is taken into account, except for rotations. (a) Show that s n,k = 0 if k > n. (b) Show that s n,n = 1 for all n 1. (c) Show that s n,1 = (n 1)! for all n 1. (d) Show that s n,n 1 = C(n,2) for all n 2. (e) Show that for all n 2. (f) Show that ( s n,2 = (n 1)! ) n 1 n s n,k = for all n 1. (g) Find a formula for s n,n 2, n 3, and prove it. Solution. (a) If k < n, there are no ways to place n people at k tables without at least one of the tables being empty. (b) There is exactly one way to place n people at n tables; each table has a single person seated at it. (c) Denote the individuals by x 1,...,x n ; we wish to seat them at a single table. Since rotations are not taken into account, given any ordering of the x i in a line with x 1 in the first position, we can associate to it a unique seating around the table; simply proceed counterclockwise around the table, starting with x 1. Clearly we can reverse this process, so that given a seating we can obtain an ordering of the x i in a line with x 1 in the first position. 1

2 But given that x 1 must be in the first position of the line, there are exactly (n 1)! ways to order the remaining elements, and hence s n,1 = (n 1)!. (d) With notation as in (c), the choice of any unordered pair {x i,x j } determines a unique seating of the n people at n 1 tables; this pair sits at a single table (there is only one way to seat them there), and each of the remaining tables has a single person seated there. So the number of possible seatings is C(n,2). (e) We determine a seating of x 1,...,x n at two tables in the following process: (1) Select a k-person subset of {x 2,...,x n } to sit at the same table with x 1. The remaining individuals will, of course, sit at the other table. (Notice that k cannot equal n 1, or else no one will be sitting at the other table.) (2) Order the people sitting at the same table as x 1. (3) Order the people at the other table. For a fixed value of k, there are C(n 1,k) ways to perform step 1. By the same argument as in (c), there are k! ways to perform step 2, and there are (n k 2)! ways to perform step 3 (note that one performs this step after already having chosen the set of people to sit at this table, so fix one of them and then use the same argument as in (c)). Summing over the possible values of k, it follows that the total number of ways to seat x 1,...,x n at two tables is given by n 2 k=0 C(n 1,k) k!(n k 2)! = n 2 k=0 = n 2 k=0 = (n 1)! (n 1)! k!(n k 2)! k!(n 1 k)! (n 1)! n k 1 ( 1 n n (f) We prove this statement by induction on n. Clearly s 1,1 = 1 = 1!, so the base case holds. Now suppose that n s n,k =, and consider the problem of seating n + 1 individuals x 1,...,x n+1 at k tables. If k = n + 1 there is clearly only one way to do this, and if k = 1 then there are ways to do this, by part (c). So suppose 2 k n, and let x 1,...,x n,x n+1 be seated at k tables. Then either (i) x n+1 is seated alone at a single table and the remaining individuals are seated at k 1 tables, or (ii) we have at least one of x 1,...,x n seated at each of the k tables. Case (i) can occur in any of s n,k 1 ways (by the definition of s n,k ). For case (ii), we can seat the individuals x 1,...,x n in any one of s n,k ways (again by the definition). Given such ). 2

3 a seating, there are n different ways to seat x n+1. [Why? Given a fixed seating of m people around a table, there are m distinct places to insert x n+1, namely between two adjacent people. Summing over the tables gives us n ways in all to seat x n+1.] So case (ii) can therefore occur in any one of ns n,k ways, and we conclude that s n+1,k = ns n,k + s n,k 1. Then we have n+1 s n+1,k = s n+1,1 + s n+1,n+1 + n s n+1,k = n (ns n,k + s n,k 1 ) = n n s n,k + n = n n s n,k + n 1 s n,k 1 s n,k by reindexing = + n n s n,k + n s n,k since s n,n = 1 = + n( s n,1 ) + by inductive assumption = + n( (n 1)!) + by (c) = 2() + n(n 1)!(n 1) = 2() + (n 1) = ()(2 + n 1) = (n + 1) = (n + 1)!. So by induction the claim is proved. (g) We claim that s n,n 2 = 2C(n,3) + 3C(n,4) for n 4 and s 3,1 = 2 (the n = 3 case). The second case was proven in (c). To see that the formula holds for n 4, observe that any seating of n people at n 2 tables falls into exactly one of two categories: (i) 3 people are seated at a single table, and the remaining individuals are seated one to a table, or (ii) 2 people are seated at each of two tables, and the remaining individuals are seated one to a table. A seating of type (i) can occur in exactly 2C(n,3) ways (choose 3 people from x 1,...,x n to sit at a single table; then there are 2 possible ways to arrange these three around the table). A seating of type (ii) can occur in exactly 3C(n,4) ways, for there are C(n,4) ways to choose the subset {x i1,x i2,x i3,x i4 } of four who will not be sitting alone, and given this subset there are exactly 3 ways to choose a partner for x i1 to sit at the same table. The claim follows. 4.6 #11. An exam has 12 problems. How many ways can (integer) points be assigned to the problems if the total of the points is 100 and each problem is worth at least five points? Solution. First note that any assignment of 100 points to 12 problems with each problem 3

4 worth at least five points corresponds uniquely to an assignment of 40 points to 12 problems with no restrictions (given any assignment of point values x 1,...,x 12 of the first type, y i = x i 5 gives an assignment y 1,...,y 12 of point values of the second type, and similarly in the other direction). So we are looking for the number of ways to assign 40 points to 12 problems. Each such assignment corresponds to an unordered selection (with replacement) of 40 elements from the set {1,...,12}, where the number of elements of type j is the point value of the jth problem. The number of such selections is C( ,12 1) = C(51,11). 4.6 #17. Suppose you are given one pile each of identical red, blue, and green balls, and each pile contains at least 10 balls. In how many ways can 10 balls be selected from the three piles if at least one red ball, at least two blue balls, and at least three green balls must be selected? Solution. Arguing just as in Exercise 11, we see that the problem reduces to finding the number of ways to select = 4 balls from a pile of red, blue or green balls, with no restrictions. This equals the number of ways to choose 4 elements, unordered and with replacement, from a set of three (the colors red, green, and blue). Hence this number is given by C( ,3 1) = C(6,2) = 15, so this is our solution. 4.6 #29. Show that that number of solutions in nonnegative integers of the inequality x 1 + x x n M, where M is a nonnegative integer, is C(M + n,n). Solution. Suppose that we define x n+1 to be M (x x n ). Then any solution of the above inequality also satisfies the equality x x n + x n+1 = M in nonnegative integers, and the reverse is true also. It follows that the number of solutions is the same as the number of ways in which one can choose M items, unordered and with replacement, from a set of n+1 distinct items (the x i s), which is C((n+1)+M 1,(n+1) 1) = C(n+M,n). 4.6 #30. How many integers between 1 and 1,000,000 have the sum of the digits equal to 15? Solution. Clearly 1,000,000 does not have the sum of its digits equal to 15, so it suffices to search among the set of integers from 1 to 999,999. All such integers can be uniquely expressed in the form x 1 x 2 x 3 x 4 x 5 x 6, where the x i are integers with 0 x i 9 (not the 4

5 product of the integers, merely a concatenation of the digits) and x 1 + x x 6 = 15. So we are looking for the number of integer solutions of the equation x 1 + x x 6 = 15, subject to the conditions 0 x 1 9,..., 0 x 6 9. Now the number of nonnegative integer solutions of the above equation is given by C( ,6 1) = C(20,5), as each solution corresponds to an unordered selection of 15 items from a set of 6 elements (x i being the number of elements of type i selected). But we need to remove the bad solutions. What is a bad solution, in this context? It is a solution (x 1,...,x 6 ) in nonnegative integers of the equation above such that at least one of the x i 10, since in this case x i cannot then represent a digit. Clearly such a bad solution will have exactly one of its x i being 10, for the sum must equal 15, and in particular be less than 20. Now the number of nonnegative integer solutions of x x 6 = 15 with x 1 10 is equal to the number of nonnegative integer solutions of y y 6 = = 5 (again, see the argument of Exercise 11), and hence this equals C( , 6 1) = C(10, 5). We conclude that the total number of bad solutions is 6 C(10,5), and therefore that the number of good solutions (i.e. the ones for which 0 x i 9 for all i) is C(20,5) 6 C(10,5). 4.6 #49. What is wrong with the following argument, which supposedly counts the number of partitions of a 10-element set into eight (nonempty) subsets? List the elements of the set with blanks between them: x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10. Every time we fill seven of the nine blanks with seven vertical bars, we obtain a partition of {x 1,...,x 10 } into eight subsets. For example, the partition {x 1 }, {x 2 }, {x 3,x 4 }, {x 5 }, {x 6 }, {x 7,x 8 }, {x 9 }, {x 10 } would be represented as Thus the solution to the problem is C(9,7). x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10. Solution. The argument does not count all possible 8-subset partitions of {x 1,...,x n }; in fact, it fails to count any partition in which at least one of the subsets consists of nonconsecutive elements. For example, the argument fails to count {x 1,x 3 }, {x 2 }, {x 4,x 6 }, {x 5 }, {x 7 }, {x 8 }, {x 9 }, {x 10 } as a valid partition. 5

6 4.7 #11. Find the number of terms in the expansion of the expression (w + x + y + z) 12. Solution. Each term in the expansion corresponds to a choice of 12 items from a set of four elements, unordered and with replacement (each of the twelve factors (w+x+y +z) contributes a term w or x or y or z). Thus the number of terms is given by C(4+12 1,4 1) = C(15,3). 4.7 #14. (a) Show that C(n,k) < C(n,k + 1) if and only if k < (n 1)/2. (b) Use part (a) to deduce that the maximum of C(n,k) for k = 0,1,...,n is C(n, n/2 ). Solution. (a) From the formula for C(n,k) we have C(n,k + 1) = (k + 1)!(n k 1)! = n k k + 1 k!(n k)! = n k k + 1 C(n,k), and so C(n,k) < C(n,k + 1) C(n,k) < n k k + 1 C(n,k) 1 < n k k + 1 k + 1 < n k, and solving the last inequality for k gives k < (n 1)/2, as desired. (b) By part (a), we see that for n even the maximum value for C(n,k) must occur at k = n/2, and for n odd the maximum value must occur at k = (n 1)/2. Since n/2 = n/2 for n even and equals (n 1)/2 for n odd, the claim follows. 4.7 #24. Prove (a + b + c) n = 0 i+j n i!j!(n i j)! ai b j c n i j. Solution. Since each term in the expanded product (before combining like terms) consists of a product of n elements, each one of which is either an a or a b or a c, we see that the expansion of (a + b + c) n must indeed consist of terms of the form a i b j c n i j. We essentially want to show that the number of times that the expression a i b j c n i j appears in this expansion is 6

7 equal to i!j!(n i j)!. To see this, we notice simply that the number of ways to rearrange the elements in a sequence of i a s, j b s, and (n i j) c s is given by i!j!(n i j)!. But each rearrangement corresponds uniquely to a term of the expanded product before combining like terms, so we are done. Note: one could also obtain this formula using the Binomial Theorem for (x + y) n, where x = a + b and y = c, and using the Binomial Theorem again on each of the x k in the sum n 0 C(n,k)xk y n k. 7

9.6 r-combinations with Repetition Allowed

9.6 r-combinations with Repetition Allowed 584 Chapter 9 Counting and Probability Exercises 32 38 refer to the sequence of Stirling numbers of the second kind. 32. Find S 3,4 by exhibiting all the partitions of {x 1, x 2, x 3, x 4, x 5 } into four

More information

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions Basic Combinatorics Math 4010, Section 01 Fall 01 Homework 8 Solutions 1.8.1 1: K n has ( n edges, each one of which can be given one of two colors; so Kn has (n -edge-colorings. 1.8.1 3: Let χ : E(K k

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya Resources: Kenneth

More information

Proof by Induction. Andreas Klappenecker

Proof by Induction. Andreas Klappenecker Proof by Induction Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties are true for all positive integers (or for all nonnegative integers, or all integers

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

The Inclusion Exclusion Principle

The Inclusion Exclusion Principle The Inclusion Exclusion Principle 1 / 29 Outline Basic Instances of The Inclusion Exclusion Principle The General Inclusion Exclusion Principle Counting Derangements Counting Functions Stirling Numbers

More information

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition.

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition. Math 231 Exam Practice Problem Solutions WARNING: This is not a sample test. Problems on the exams may or may not be similar to these problems. These problems are just intended to focus your study of the

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS.

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS. 4 Functions Before studying functions we will first quickly define a more general idea, namely the notion of a relation. A function turns out to be a special type of relation. Definition: Let S and T be

More information

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 39 Chapter Summary The Basics

More information

What you learned in Math 28. Rosa C. Orellana

What you learned in Math 28. Rosa C. Orellana What you learned in Math 28 Rosa C. Orellana Chapter 1 - Basic Counting Techniques Sum Principle If we have a partition of a finite set S, then the size of S is the sum of the sizes of the blocks of the

More information

Probability. Part 1 - Basic Counting Principles. 1. References. (1) R. Durrett, The Essentials of Probability, Duxbury.

Probability. Part 1 - Basic Counting Principles. 1. References. (1) R. Durrett, The Essentials of Probability, Duxbury. Probability Part 1 - Basic Counting Principles 1. References (1) R. Durrett, The Essentials of Probability, Duxbury. (2) L.L. Helms, Probability Theory with Contemporary Applications, Freeman. (3) J.J.

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

CS2800 Fall 2013 October 23, 2013

CS2800 Fall 2013 October 23, 2013 Discrete Structures Stirling Numbers CS2800 Fall 203 October 23, 203 The text mentions Stirling numbers briefly but does not go into them in any depth. However, they are fascinating numbers with a lot

More information

Problem Set #1 solutions

Problem Set #1 solutions Problem Set # solutions... This number trick involves your favorite three-digit number and your age. Multiply your age by 7. Subtract from the result. Multiply by. Add 8. Multiply by 3. Add your favorite

More information

Generating Functions (Revised Edition)

Generating Functions (Revised Edition) Math 700 Fall 06 Notes Generating Functions (Revised Edition What is a generating function? An ordinary generating function for a sequence (a n n 0 is the power series A(x = a nx n. The exponential generating

More information

Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections. Writing more proofs. Misha Lavrov

Warm-up Quantifiers and the harmonic series Sets Second warmup Induction Bijections. Writing more proofs. Misha Lavrov Writing more proofs Misha Lavrov ARML Practice 3/16/2014 and 3/23/2014 Warm-up Using the quantifier notation on the reference sheet, and making any further definitions you need to, write the following:

More information

CSCE 222 Discrete Structures for Computing. Proof by Induction. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Proof by Induction. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Proof by Induction Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties

More information

STAT 516 Answers Homework 2 January 23, 2008 Solutions by Mark Daniel Ward PROBLEMS. = {(a 1, a 2,...) : a i < 6 for all i}

STAT 516 Answers Homework 2 January 23, 2008 Solutions by Mark Daniel Ward PROBLEMS. = {(a 1, a 2,...) : a i < 6 for all i} STAT 56 Answers Homework 2 January 23, 2008 Solutions by Mark Daniel Ward PROBLEMS 2. We note that E n consists of rolls that end in 6, namely, experiments of the form (a, a 2,...,a n, 6 for n and a i

More information

Complete Induction and the Well- Ordering Principle

Complete Induction and the Well- Ordering Principle Complete Induction and the Well- Ordering Principle Complete Induction as a Rule of Inference In mathematical proofs, complete induction (PCI) is a rule of inference of the form P (a) P (a + 1) P (b) k

More information

Counting with Categories and Binomial Coefficients

Counting with Categories and Binomial Coefficients Counting with Categories and Binomial Coefficients CSE21 Winter 2017, Day 17 (B00), Day 12 (A00) February 22, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 When sum rule fails Rosen p. 392-394 Let A =

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

1. Determine (with proof) the number of ordered triples (A 1, A 2, A 3 ) of sets which satisfy

1. Determine (with proof) the number of ordered triples (A 1, A 2, A 3 ) of sets which satisfy UT Putnam Prep Problems, Oct 19 2016 I was very pleased that, between the whole gang of you, you solved almost every problem this week! Let me add a few comments here. 1. Determine (with proof) the number

More information

First Midterm Examination

First Midterm Examination 2015-2016 Spring Semester First Midterm Examination 1) How many numbers in the set {1000, 1001, 1002,..., 9999} have sum of digits equal to 17? 2) Let n Z +. Find the negation, converse and contrapositive

More information

MAT1000 ASSIGNMENT 1. a k 3 k. x =

MAT1000 ASSIGNMENT 1. a k 3 k. x = MAT1000 ASSIGNMENT 1 VITALY KUZNETSOV Question 1 (Exercise 2 on page 37). Tne Cantor set C can also be described in terms of ternary expansions. (a) Every number in [0, 1] has a ternary expansion x = a

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

Mathematical Induction

Mathematical Induction Lecture 6 Mathematical Induction The Mathematical Induction is a very powerful tool for proving infinitely many propositions by using only a few steps. In particular, it can be used often when the propositions

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Notes. Combinatorics. Combinatorics II. Notes. Notes. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Notes. Combinatorics. Combinatorics II. Notes. Notes. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Combinatorics Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 4.1-4.6 & 6.5-6.6 of Rosen cse235@cse.unl.edu

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Introduction to Decision Sciences Lecture 11

Introduction to Decision Sciences Lecture 11 Introduction to Decision Sciences Lecture 11 Andrew Nobel October 24, 2017 Basics of Counting Product Rule Product Rule: Suppose that the elements of a collection S can be specified by a sequence of k

More information

Math 730 Homework 6. Austin Mohr. October 14, 2009

Math 730 Homework 6. Austin Mohr. October 14, 2009 Math 730 Homework 6 Austin Mohr October 14, 2009 1 Problem 3A2 Proposition 1.1. If A X, then the family τ of all subsets of X which contain A, together with the empty set φ, is a topology on X. Proof.

More information

COMBINATORIAL COUNTING

COMBINATORIAL COUNTING COMBINATORIAL COUNTING Our main reference is [1, Section 3] 1 Basic counting: functions and subsets Theorem 11 (Arbitrary mapping Let N be an n-element set (it may also be empty and let M be an m-element

More information

Math 378 Spring 2011 Assignment 4 Solutions

Math 378 Spring 2011 Assignment 4 Solutions Math 3 Spring 2011 Assignment 4 Solutions Brualdi 6.2. The properties are P 1 : is divisible by 4. P 2 : is divisible by 6. P 3 : is divisible by. P 4 : is divisible by 10. Preparing to use inclusion-exclusion,

More information

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7

Named numbres. Ngày 25 tháng 11 năm () Named numbres Ngày 25 tháng 11 năm / 7 Named numbres Ngày 25 tháng 11 năm 2011 () Named numbres Ngày 25 tháng 11 năm 2011 1 / 7 Fibonacci, Catalan, Stirling, Euler, Bernoulli Many sequences are famous. 1 1, 2, 3, 4,... the integers. () Named

More information

Combinatorial Analysis

Combinatorial Analysis Chapter 1 Combinatorial Analysis STAT 302, Department of Statistics, UBC 1 A starting example: coin tossing Consider the following random experiment: tossing a fair coin twice There are four possible outcomes,

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

International Mathematics TOURNAMENT OF THE TOWNS

International Mathematics TOURNAMENT OF THE TOWNS 1 International Mathematics TOURNAMENT OF THE TOWNS Senior A-Level Paper Spring 2006. 1. Assume a convex polygon with 100 vertices is given. Prove that one can chose 50 points inside the polygon in such

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Algorithms: Background

Algorithms: Background Algorithms: Background Amotz Bar-Noy CUNY Amotz Bar-Noy (CUNY) Algorithms: Background 1 / 66 What is a Proof? Definition I: The cogency of evidence that compels acceptance by the mind of a truth or a fact.

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 8 Counting: Permutations and Combinations 1 Outline Definitions Permutation Combination Interesting Identities 2 Definitions Selection and arrangement of objects appear

More information

MTHSC 3190 Section 2.9 Sets a first look

MTHSC 3190 Section 2.9 Sets a first look MTHSC 3190 Section 2.9 Sets a first look Definition A set is a repetition free unordered collection of objects called elements. Definition A set is a repetition free unordered collection of objects called

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction. Combinatorial analysis 5 3. Stirling s formula 8 Preface These lecture notes are for the course Probability IA, given in Lent 09 at the University

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

On Certain Sums of Stirling Numbers with Binomial Coefficients

On Certain Sums of Stirling Numbers with Binomial Coefficients 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015, Article 15.9.6 On Certain Sums of Stirling Numbers with Binomial Coefficients H. W. Gould Department of Mathematics West Virginia University

More information

Solution: There are 30 choices for the first person to leave, 29 for the second, etc. Thus this exodus can occur in. = P (30, 8) ways.

Solution: There are 30 choices for the first person to leave, 29 for the second, etc. Thus this exodus can occur in. = P (30, 8) ways. Math-2320 Assignment 7 Solutions Problem 1: (Section 7.1 Exercise 4) There are 30 people in a class learning about permutations. One after another, eight people gradually slip out the back door. In how

More information

Mathematical Background

Mathematical Background Chapter 1 Mathematical Background When we analyze various algorithms in terms of the time and the space it takes them to run, we often need to work with math. That is why we ask you to take MA 2250 Math

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

Randomized Load Balancing:The Power of 2 Choices

Randomized Load Balancing:The Power of 2 Choices Randomized Load Balancing: The Power of 2 Choices June 3, 2010 Balls and Bins Problem We have m balls that are thrown into n bins, the location of each ball chosen independently and uniformly at random

More information

CSCE 750 Final Exam Answer Key Wednesday December 7, 2005

CSCE 750 Final Exam Answer Key Wednesday December 7, 2005 CSCE 750 Final Exam Answer Key Wednesday December 7, 2005 Do all problems. Put your answers on blank paper or in a test booklet. There are 00 points total in the exam. You have 80 minutes. Please note

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis.

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis. Exercises Exercises 1. There are infinitely many stations on a train route. Suppose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions Math 4: Principles of Analysis Fall 0 Homework Part B solutions. Let x, y, z R. Use the axioms of the real numbers to prove the following. a) If x + y = x + z then y = z. Solution. By Axiom a), there is

More information

Applications of Chromatic Polynomials Involving Stirling Numbers

Applications of Chromatic Polynomials Involving Stirling Numbers Applications of Chromatic Polynomials Involving Stirling Numbers A. Mohr and T.D. Porter Department of Mathematics Southern Illinois University Carbondale, IL 6290 tporter@math.siu.edu June 23, 2008 The

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION One of the most important tasks of mathematics is to discover and characterize regular patterns, such as those associated with processes that

More information

Some Review Problems for Exam 3: Solutions

Some Review Problems for Exam 3: Solutions Math 3355 Fall 018 Some Review Problems for Exam 3: Solutions I thought I d start by reviewing some counting formulas. Counting the Complement: Given a set U (the universe for the problem), if you want

More information

Math 3000 Section 003 Intro to Abstract Math Homework 6

Math 3000 Section 003 Intro to Abstract Math Homework 6 Math 000 Section 00 Intro to Abstract Math Homework 6 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 01 Solutions April, 01 Please note that these solutions are

More information

MAT 300 RECITATIONS WEEK 7 SOLUTIONS. Exercise #1. Use induction to prove that for every natural number n 4, n! > 2 n. 4! = 24 > 16 = 2 4 = 2 n

MAT 300 RECITATIONS WEEK 7 SOLUTIONS. Exercise #1. Use induction to prove that for every natural number n 4, n! > 2 n. 4! = 24 > 16 = 2 4 = 2 n MAT 300 RECITATIONS WEEK 7 SOLUTIONS LEADING TA: HAO LIU Exercise #1. Use induction to prove that for every natural number n 4, n! > 2 n. Proof. For any n N with n 4, let P (n) be the statement n! > 2

More information

Carleton University. Final Examination Winter DURATION: 2 HOURS No. of students: 152

Carleton University. Final Examination Winter DURATION: 2 HOURS No. of students: 152 Carleton University Final Examination Winter 2014 DURATION: 2 HOURS No. of students: 152 Department Name & Course Number: Computer Science COMP 2804B Course Instructor: Michiel Smid Authorized memoranda:

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

Combinatorics. But there are some standard techniques. That s what we ll be studying.

Combinatorics. But there are some standard techniques. That s what we ll be studying. Combinatorics Problem: How to count without counting. How do you figure out how many things there are with a certain property without actually enumerating all of them. Sometimes this requires a lot of

More information

MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM

MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM (FP1) The exclusive or operation, denoted by and sometimes known as XOR, is defined so that P Q is true iff P is true or Q is true, but not both. Prove (through

More information

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki Assignment #2 COMP 3200 Spring 2012 Prof. Stucki 1) Construct deterministic finite automata accepting each of the following languages. In (a)-(c) the alphabet is = {0,1}. In (d)-(e) the alphabet is ASCII

More information

Chapter 8 Sequences, Series, and Probability

Chapter 8 Sequences, Series, and Probability Chapter 8 Sequences, Series, and Probability Overview 8.1 Sequences and Series 8.2 Arithmetic Sequences and Partial Sums 8.3 Geometric Sequences and Partial Sums 8.5 The Binomial Theorem 8.6 Counting Principles

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

MATH 301 INTRO TO ANALYSIS FALL 2016

MATH 301 INTRO TO ANALYSIS FALL 2016 MATH 301 INTRO TO ANALYSIS FALL 016 Homework 04 Professional Problem Consider the recursive sequence defined by x 1 = 3 and +1 = 1 4 for n 1. (a) Prove that ( ) converges. (Hint: show that ( ) is decreasing

More information

Exercises. Template for Proofs by Mathematical Induction

Exercises. Template for Proofs by Mathematical Induction 5. Mathematical Induction 329 Template for Proofs by Mathematical Induction. Express the statement that is to be proved in the form for all n b, P (n) forafixed integer b. 2. Write out the words Basis

More information

Counting Strategies: Inclusion-Exclusion, Categories

Counting Strategies: Inclusion-Exclusion, Categories Counting Strategies: Inclusion-Exclusion, Categories Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ May 4, 2016 A scheduling problem In one

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

PRACTICE PROBLEMS: SET 1

PRACTICE PROBLEMS: SET 1 PRACTICE PROBLEMS: SET MATH 437/537: PROF. DRAGOS GHIOCA. Problems Problem. Let a, b N. Show that if gcd(a, b) = lcm[a, b], then a = b. Problem. Let n, k N with n. Prove that (n ) (n k ) if and only if

More information

Introduction to Decision Sciences Lecture 10

Introduction to Decision Sciences Lecture 10 Introduction to Decision Sciences Lecture 10 Andrew Nobel October 17, 2017 Mathematical Induction Given: Propositional function P (n) with domain N + Basis step: Show that P (1) is true Inductive step:

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2.

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2. MATH 55 - HOMEWORK 6 SOLUTIONS Exercise Section 5 Proof (a) P () is the statement ( ) 3 (b) P () is true since ( ) 3 (c) The inductive hypothesis is P (n): ( ) n(n + ) 3 + 3 + + n 3 (d) Assuming the inductive

More information

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof.

PGSS Discrete Math Solutions to Problem Set #4. Note: signifies the end of a problem, and signifies the end of a proof. PGSS Discrete Math Solutions to Problem Set #4 Note: signifies the end of a problem, and signifies the end of a proof. 1. Prove that for any k N, there are k consecutive composite numbers. (Hint: (k +

More information

2. (10 points) Consider the following algorithm performed on a sequence of numbers a 1, a 2,..., a n.

2. (10 points) Consider the following algorithm performed on a sequence of numbers a 1, a 2,..., a n. 1. (22 points) Below, a number is any string of digits that does not begin with a zero. (a) (2 points) How many 6-digit numbers are there? We may select the first digit in any of 9 ways (any digit from

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

MATH 10B METHODS OF MATHEMATICS: CALCULUS, STATISTICS AND COMBINATORICS

MATH 10B METHODS OF MATHEMATICS: CALCULUS, STATISTICS AND COMBINATORICS MATH 10B METHODS OF MATHEMATICS: CALCULUS, STATISTICS AND COMBINATORICS Lior Pachter and Lawrence C. Evans Department of Mathematics University of California Berkeley, CA 94720 January 21, 2013 Lior Pachter

More information

Discrete Mathematics & Mathematical Reasoning Induction

Discrete Mathematics & Mathematical Reasoning Induction Discrete Mathematics & Mathematical Reasoning Induction Colin Stirling Informatics Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 1 / 11 Another proof method: Mathematical

More information

PRIMES Math Problem Set

PRIMES Math Problem Set PRIMES Math Problem Set PRIMES 017 Due December 1, 01 Dear PRIMES applicant: This is the PRIMES 017 Math Problem Set. Please send us your solutions as part of your PRIMES application by December 1, 01.

More information

Selected Solutions to Even Problems, Part 3

Selected Solutions to Even Problems, Part 3 Selected Solutions to Even Problems, Part 3 March 14, 005 Page 77 6. If one selects 101 integers from among {1,,..., 00}, then at least two of these numbers must be consecutive, and therefore coprime (which

More information

First Midterm Examination

First Midterm Examination 2015-2016 Fall Semester First Midterm Examination 1) 6 students will sit at a round table. Anıl, Sümeyye and Tahsin are in section 1 and Bora, İpek and Efnan are in section 2. They will sit such that nobody

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 194 (015) 37 59 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: wwwelseviercom/locate/dam Loopy, Hankel, and combinatorially skew-hankel

More information

7 Mathematical Induction. For the natural numbers N a the following are equivalent:

7 Mathematical Induction. For the natural numbers N a the following are equivalent: 7 Mathematical Induction Definition: N a = {n N n a}. For the natural numbers N a the following are equivalent: 1. Ordinary axiom of induction: IfS N a such that (a) a S (b) n N a (n S n +1 S) then S =

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

1 True/False. Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao

1 True/False. Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao 1 True/False 1. True False When we solve a problem one way, it is not useful to try to solve it in a second

More information

CS 173: Induction. Madhusudan Parthasarathy University of Illinois at Urbana-Champaign. February 7, 2016

CS 173: Induction. Madhusudan Parthasarathy University of Illinois at Urbana-Champaign. February 7, 2016 CS 173: Induction Madhusudan Parthasarathy University of Illinois at Urbana-Champaign 1 Induction February 7, 016 This chapter covers mathematical induction, and is an alternative resource to the one in

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

6.854 Advanced Algorithms

6.854 Advanced Algorithms 6.854 Advanced Algorithms Homework Solutions Hashing Bashing. Solution:. O(log U ) for the first level and for each of the O(n) second level functions, giving a total of O(n log U ) 2. Suppose we are using

More information

Senior Math Circles November 19, 2008 Probability II

Senior Math Circles November 19, 2008 Probability II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 9, 2008 Probability II Probability Counting There are many situations where

More information