Discrete Mathematics & Mathematical Reasoning Induction

Size: px
Start display at page:

Download "Discrete Mathematics & Mathematical Reasoning Induction"

Transcription

1 Discrete Mathematics & Mathematical Reasoning Induction Colin Stirling Informatics Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 1 / 11

2 Another proof method: Mathematical Induction n N (P(n)) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 2 / 11

3 Another proof method: Mathematical Induction BASIS STEP n N (P(n)) show P(0) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 2 / 11

4 Another proof method: Mathematical Induction BASIS STEP n N (P(n)) show P(0) INDUCTIVE STEP show P(k) P(k + 1) for all k N Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 2 / 11

5 Another proof method: Mathematical Induction BASIS STEP n N (P(n)) show P(0) INDUCTIVE STEP show P(k) P(k + 1) for all k N Assume k is arbitrary and P(k) is true. Show P(k + 1) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 2 / 11

6 Another proof method: Mathematical Induction BASIS STEP n Z + (P(n)) show P(1) INDUCTIVE STEP show P(k) P(k + 1) for all k Z + Assume k is arbitrary and P(k) is true. Show P(k + 1) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 3 / 11

7 Another proof method: Mathematical Induction BASIS STEP n m N (P(n)) show P(m) INDUCTIVE STEP show P(k) P(k + 1) for all k m N Assume k m is arbitrary and P(k) is true. Show P(k + 1) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 4 / 11

8 Another proof method: Mathematical Induction n Q + (P(n)) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 5 / 11

9 Another proof method: Mathematical Induction n Q + (P(n)) Can we use induction? Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 5 / 11

10 Another proof method: Mathematical Induction n Q + (P(n)) Can we use induction? x R + (P(x)) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 5 / 11

11 Another proof method: Mathematical Induction n Q + (P(n)) Can we use induction? x R + (P(x)) Can we use induction? Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 5 / 11

12 Another proof method: Mathematical Induction n Q + (P(n)) Can we use induction? x R + (P(x)) Can we use induction? What justifies mathematical induction? Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 5 / 11

13 Another proof method: Mathematical Induction n Q + (P(n)) Can we use induction? x R + (P(x)) Can we use induction? What justifies mathematical induction? Well ordering principle: every nonempty set S N has a least element Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 5 / 11

14 Examples n j=1 j = n(n+1) 2 Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 6 / 11

15 Examples n j=1 j = n(n+1) 2 k j=0 ar j = ar k+1 a r 1 when r 1 Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 6 / 11

16 Examples n j=1 j = n(n+1) 2 k j=0 ar j = ar k+1 a r 1 when r 1 for all n Z + (n < 2 n ) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 6 / 11

17 Examples n j=1 j = n(n+1) 2 k j=0 ar j = ar k+1 a r 1 when r 1 for all n Z + (n < 2 n ) for all integers n 4, 2 n < n! Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 6 / 11

18 Examples n j=1 j = n(n+1) 2 k j=0 ar j = ar k+1 a r 1 when r 1 for all n Z + (n < 2 n ) for all integers n 4, 2 n < n! for all n > 1(n 3 n) is divisible by 3 Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 6 / 11

19 Examples n j=1 j = n(n+1) 2 k j=0 ar j = ar k+1 a r 1 when r 1 for all n Z + (n < 2 n ) for all integers n 4, 2 n < n! for all n > 1(n 3 n) is divisible by 3 for all n N (7 n n+1 is divisible by 57) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 6 / 11

20 More examples Odd Pie Fights An odd number of people stand in a room at mutually distinct distances. At the same time each person throws a pie at their nearest neighbour and hits them. Prove that at least one person is not hit by a pie Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 7 / 11

21 More examples Odd Pie Fights An odd number of people stand in a room at mutually distinct distances. At the same time each person throws a pie at their nearest neighbour and hits them. Prove that at least one person is not hit by a pie All horses have the same colour Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 7 / 11

22 Strong Induction n N (P(n)) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 8 / 11

23 Strong Induction BASIS STEP n N (P(n)) show P(0) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 8 / 11

24 Strong Induction BASIS STEP n N (P(n)) show P(0) INDUCTIVE STEP show (P(0)... P(k)) P(k + 1) for all k N Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 8 / 11

25 Strong Induction BASIS STEP n N (P(n)) show P(0) INDUCTIVE STEP show (P(0)... P(k)) P(k + 1) for all k N Assume k is arbitrary and P(0),..., P(k) are true. Show P(k + 1) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 8 / 11

26 Strong Induction BASIS STEP n Z + (P(n)) show P(1) INDUCTIVE STEP show (P(1)... P(k)) P(k + 1) for all k Z + Assume k is arbitrary and P(1),..., P(k) are true. Show P(k + 1) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 9 / 11

27 Strong Induction BASIS STEP n m N (P(n)) show P(m) INDUCTIVE STEP show (P(m)... P(k)) P(k + 1) for all k m N Assume k m is arbitrary and P(m),..., P(k) are true. Show P(k + 1) Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 10 / 11

28 Examples If n > 1 is an integer, then n can be written as a product of primes Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 11 / 11

29 Examples If n > 1 is an integer, then n can be written as a product of primes Prove that every amount of postage of 12p or more can be formed using just 4p and 5p stamps Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 11 / 11

30 Examples If n > 1 is an integer, then n can be written as a product of primes Prove that every amount of postage of 12p or more can be formed using just 4p and 5p stamps Game of matches Two players take turns removing any positive number of matches they want from one of two piles of matches. The player who removes the last match wins the game. Show that if the two piles contain the same number of matches initially then the second player can guarantee a win Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 11 / 11

Discrete Mathematics & Mathematical Reasoning Induction

Discrete Mathematics & Mathematical Reasoning Induction Discrete Mathematics & Mathematical Reasoning Induction Colin Stirling Informatics Colin Stirling (Informatics) Discrete Mathematics (Sections 5.1 & 5.2) Today 1 / 12 Another proof method: Mathematical

More information

Section Summary. Proof by Cases Existence Proofs

Section Summary. Proof by Cases Existence Proofs Section 1.8 1 Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Uniqueness Proofs Proving Universally Quantified Assertions Proof Strategies sum up

More information

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya

Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Probability, Proof Techniques, Method of Induction Lecturer: Lale Özkahya Resources: Kenneth Rosen, Discrete

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis.

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis. Exercises Exercises 1. There are infinitely many stations on a train route. Suppose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next

More information

Chapter 2 Section 2.1: Proofs Proof Techniques. CS 130 Discrete Structures

Chapter 2 Section 2.1: Proofs Proof Techniques. CS 130 Discrete Structures Chapter 2 Section 2.1: Proofs Proof Techniques CS 130 Discrete Structures Some Terminologies Axioms: Statements that are always true. Example: Given two distinct points, there is exactly one line that

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

Exercises. Template for Proofs by Mathematical Induction

Exercises. Template for Proofs by Mathematical Induction 5. Mathematical Induction 329 Template for Proofs by Mathematical Induction. Express the statement that is to be proved in the form for all n b, P (n) forafixed integer b. 2. Write out the words Basis

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

Mathematical Induction. Rosen Chapter 4.1,4.2 (6 th edition) Rosen Ch. 5.1, 5.2 (7 th edition)

Mathematical Induction. Rosen Chapter 4.1,4.2 (6 th edition) Rosen Ch. 5.1, 5.2 (7 th edition) Mathematical Induction Rosen Chapter 4.1,4.2 (6 th edition) Rosen Ch. 5.1, 5.2 (7 th edition) Motivation Suppose we want to prove that for every value of n: 1 + 2 + + n = n(n + 1)/2. Let P(n) be the predicate

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

Announcements. Read Section 2.1 (Sets), 2.2 (Set Operations) and 5.1 (Mathematical Induction) Existence Proofs. Non-constructive

Announcements. Read Section 2.1 (Sets), 2.2 (Set Operations) and 5.1 (Mathematical Induction) Existence Proofs. Non-constructive Announcements Homework 2 Due Homework 3 Posted Due next Monday Quiz 2 on Wednesday Read Section 2.1 (Sets), 2.2 (Set Operations) and 5.1 (Mathematical Induction) Exam 1 in two weeks Monday, February 19

More information

Mathematical Induction. Section 5.1

Mathematical Induction. Section 5.1 Mathematical Induction Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction

More information

Lecture 7 Feb 4, 14. Sections 1.7 and 1.8 Some problems from Sec 1.8

Lecture 7 Feb 4, 14. Sections 1.7 and 1.8 Some problems from Sec 1.8 Lecture 7 Feb 4, 14 Sections 1.7 and 1.8 Some problems from Sec 1.8 Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness

More information

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete Mathematics

More information

CS 220: Discrete Structures and their Applications. Mathematical Induction in zybooks

CS 220: Discrete Structures and their Applications. Mathematical Induction in zybooks CS 220: Discrete Structures and their Applications Mathematical Induction 6.4 6.6 in zybooks Why induction? Prove algorithm correctness (CS320 is full of it) The inductive proof will sometimes point out

More information

Introduction to Induction (LAMC, 10/14/07)

Introduction to Induction (LAMC, 10/14/07) Introduction to Induction (LAMC, 10/14/07) Olga Radko October 1, 007 1 Definitions The Method of Mathematical Induction (MMI) is usually stated as one of the axioms of the natural numbers (so-called Peano

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 32 Proofs Proofs

More information

Sequences, their sums and Induction

Sequences, their sums and Induction Sequences, their sums and Induction Example (1) Calculate the 15th term of arithmetic progression, whose initial term is 2 and common differnce is 5. And its n-th term? Find the sum of this sequence from

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

Math Circle: Recursion and Induction

Math Circle: Recursion and Induction Math Circle: Recursion and Induction Prof. Wickerhauser 1 Recursion What can we compute, using only simple formulas and rules that everyone can understand? 1. Let us use N to denote the set of counting

More information

The candidates are advised that they must always show their working, otherwise they will not be awarded full marks for their answers.

The candidates are advised that they must always show their working, otherwise they will not be awarded full marks for their answers. MID SWEDEN UNIVERSITY TFM Examinations 2006 MAAB16 Discrete Mathematics B Duration: 5 hours Date: 7 June 2006 There are EIGHT questions on this paper and you should answer as many as you can in the time

More information

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2.

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2. MATH 55 - HOMEWORK 6 SOLUTIONS Exercise Section 5 Proof (a) P () is the statement ( ) 3 (b) P () is true since ( ) 3 (c) The inductive hypothesis is P (n): ( ) n(n + ) 3 + 3 + + n 3 (d) Assuming the inductive

More information

Discrete Math in Computer Science Solutions to Practice Problems for Midterm 2

Discrete Math in Computer Science Solutions to Practice Problems for Midterm 2 Discrete Math in Computer Science Solutions to Practice Problems for Midterm 2 CS 30, Fall 2018 by Professor Prasad Jayanti Problems 1. Let g(0) = 2, g(1) = 1, and g(n) = 2g(n 1) + g(n 2) whenever n 2.

More information

Note that r = 0 gives the simple principle of induction. Also it can be shown that the principle of strong induction follows from simple induction.

Note that r = 0 gives the simple principle of induction. Also it can be shown that the principle of strong induction follows from simple induction. Proof by mathematical induction using a strong hypothesis Occasionally a proof by mathematical induction is made easier by using a strong hypothesis: To show P(n) [a statement form that depends on variable

More information

INDUCTION AND RECURSION. Lecture 7 - Ch. 4

INDUCTION AND RECURSION. Lecture 7 - Ch. 4 INDUCTION AND RECURSION Lecture 7 - Ch. 4 4. Introduction Any mathematical statements assert that a property is true for all positive integers Examples: for every positive integer n: n!

More information

Induction and recursion. Chapter 5

Induction and recursion. Chapter 5 Induction and recursion Chapter 5 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms Mathematical Induction Section 5.1

More information

14 - PROBABILITY Page 1 ( Answers at the end of all questions )

14 - PROBABILITY Page 1 ( Answers at the end of all questions ) - PROBABILITY Page ( ) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the

More information

1.2 The Well-Ordering Principle

1.2 The Well-Ordering Principle 36 Chapter 1. The Integers Exercises 1.1 1. Prove the following theorem: Theorem. Let m and a be integers. If m a and a m, thenm = ±a. 2. Prove the following theorem: Theorem. For all integers a, b and

More information

Proof by Induction. Andreas Klappenecker

Proof by Induction. Andreas Klappenecker Proof by Induction Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties are true for all positive integers (or for all nonnegative integers, or all integers

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 8 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 8 Notes Goals for Today Counting Partitions

More information

COMP232 - Mathematics for Computer Science

COMP232 - Mathematics for Computer Science COMP232 - Mathematics for Computer Science Tutorial 9 Ali Moallemi moa ali@encs.concordia.ca Iraj Hedayati h iraj@encs.concordia.ca Concordia University, Winter 2017 Ali Moallemi, Iraj Hedayati COMP232

More information

Mathematical Reasoning Rules of Inference & Mathematical Induction. 1. Assign propositional variables to the component propositional argument.

Mathematical Reasoning Rules of Inference & Mathematical Induction. 1. Assign propositional variables to the component propositional argument. Mathematical Reasoning Rules of Inference & Mathematical Induction Example. If I take the day off it either rains or snows 2. When It rains, my basement floods 3. When the basement floods or it snows,

More information

With Question/Answer Animations

With Question/Answer Animations Chapter 5 With Question/Answer Animations Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary

More information

1 True/False. Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao

1 True/False. Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao Math 10B with Professor Stankova Worksheet, Discussion #9; Thursday, 2/15/2018 GSI name: Roy Zhao 1 True/False 1. True False When we solve a problem one way, it is not useful to try to solve it in a second

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

At the start of the term, we saw the following formula for computing the sum of the first n integers:

At the start of the term, we saw the following formula for computing the sum of the first n integers: Chapter 11 Induction This chapter covers mathematical induction. 11.1 Introduction to induction At the start of the term, we saw the following formula for computing the sum of the first n integers: Claim

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 4 1 Principle of Mathematical Induction 2 Example 3 Base Case 4 Inductive Hypothesis 5 Inductive Step When Induction Isn t Enough

More information

CHAPTER 5. Section 5.1

CHAPTER 5. Section 5.1 Answers to Odd-Numbered Exercises S-29 3 are relatively prime to 10. Therefore the sum can no longer be 0 modulo 10. 45. Working modulo 10, solve for d 9. The check digit for 11100002 is 5. 47. PLEASE

More information

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises

PUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises PUTNAM TRAINING MATHEMATICAL INDUCTION (Last updated: December 11, 017) Remark. This is a list of exercises on mathematical induction. Miguel A. Lerma 1. Prove that n! > n for all n 4. Exercises. Prove

More information

Mathematical Induction. How does discrete math help us. How does discrete math help (CS160)? How does discrete math help (CS161)?

Mathematical Induction. How does discrete math help us. How does discrete math help (CS160)? How does discrete math help (CS161)? How does discrete math help us Helps create a solution (program) Helps analyze a program How does discrete math help (CS160)? Helps create a solution (program) q Logic helps you understand conditionals

More information

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3

In Exercises 1 12, list the all of the elements of the given set. 2. The set of all positive integers whose square roots are less than or equal to 3 APPENDIX A EXERCISES In Exercises 1 12, list the all of the elements of the given set. 1. The set of all prime numbers less than 20 2. The set of all positive integers whose square roots are less than

More information

Indistinguishable objects in indistinguishable boxes

Indistinguishable objects in indistinguishable boxes Counting integer partitions 2.4 61 Indistinguishable objects in indistinguishable boxes When placing k indistinguishable objects into n indistinguishable boxes, what matters? We are partitioning the integer

More information

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 1 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 2 Section 5.1 3 Section Summary Mathematical Induction Examples of

More information

n(n + 1). 2 . If n = 3, then 1+2+3=6= 3(3+1) . If n = 2, then = 3 = 2(2+1)

n(n + 1). 2 . If n = 3, then 1+2+3=6= 3(3+1) . If n = 2, then = 3 = 2(2+1) Chapter 4 Induction In this chapter, we introduce mathematical induction, which is a proof technique that is useful for proving statements of the form (8n N)P(n), or more generally (8n Z)(n a =) P(n)),

More information

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points Introduction to Discrete Mathematics 3450:208 Test 1 1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : The inverse of E : The

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

Problems for Putnam Training

Problems for Putnam Training Problems for Putnam Training 1 Number theory Problem 1.1. Prove that for each positive integer n, the number is not prime. 10 1010n + 10 10n + 10 n 1 Problem 1.2. Show that for any positive integer n,

More information

College of Charleston Math Meet 2017 Written Test Level 3

College of Charleston Math Meet 2017 Written Test Level 3 . If x + y = 2 and y + x = y, what s x? 2 (B) + College of Charleston Math Meet 207 Written Test Level 2. If {a 0, a, a 2,...} is a sequence of numbers, if and if find the tens digit of a 0. (C) + a n+2

More information

A. Propositional Logic

A. Propositional Logic CmSc 175 Discrete Mathematics A. Propositional Logic 1. Statements (Propositions ): Statements are sentences that claim certain things. Can be either true or false, but not both. Propositional logic deals

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers Copyright

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

M381 Number Theory 2004 Page 1

M381 Number Theory 2004 Page 1 M81 Number Theory 2004 Page 1 [[ Comments are written like this. Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements. ]] Question 1 20 = 2 * 10 +

More information

3.1 Induction: An informal introduction

3.1 Induction: An informal introduction Chapter 3 Induction and Recursion 3.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes

More information

Section 4.2: Mathematical Induction 1

Section 4.2: Mathematical Induction 1 Section 4.: Mathematical Induction 1 Over the next couple of sections, we shall consider a method of proof called mathematical induction. Induction is fairly complicated, but a very useful proof technique,

More information

MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking

MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking MADHAVA MATHEMATICS COMPETITION, December 05 Solutions and Scheme of Marking NB: Part I carries 0 marks, Part II carries 30 marks and Part III carries 50 marks Part I NB Each question in Part I carries

More information

Lecture Overview. 2 Weak Induction

Lecture Overview. 2 Weak Induction COMPSCI 30: Discrete Mathematics for Computer Science February 18, 019 Lecturer: Debmalya Panigrahi Lecture 11 Scribe: Kevin Sun 1 Overview In this lecture, we study mathematical induction, which we often

More information

A guide to Proof by Induction

A guide to Proof by Induction A guide to Proof by Induction Adapted from L. R. A. Casse, A Bridging Course in Mathematics, The Mathematics Learning Centre, University of Adelaide, 1996. Inductive reasoning is where we observe of a

More information

Induction and Recursion

Induction and Recursion . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Induction and Recursion

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #24: Probability Theory Based on materials developed by Dr. Adam Lee Not all events are equally likely

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 1996 EXAMINATIONS OF THE ROAL STATISTICAL SOCIET (formerly the Examinations of the Institute of Statisticians) HIGHER CERTIFICATE IN STATISTICS, 996 Paper I : Statistical Theory Time Allowed: Three Hours Candidates

More information

Basic Proof Examples

Basic Proof Examples Basic Proof Examples Lisa Oberbroeckling Loyola University Maryland Fall 2015 Note. In this document, we use the symbol as the negation symbol. Thus p means not p. There are four basic proof techniques

More information

Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions

Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions 4.2 #77. Let s n,k denote the number of ways to seat n persons at k round tables, with at least one person at each table. (The numbers s n,k

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Let s motivate our discussion by considering an example first. What happens when we add the first n positive odd integers? The table below shows what results for the first few values

More information

Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from

Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from 1 pile (any of the two). The player who removes the

More information

Complete Induction and the Well- Ordering Principle

Complete Induction and the Well- Ordering Principle Complete Induction and the Well- Ordering Principle Complete Induction as a Rule of Inference In mathematical proofs, complete induction (PCI) is a rule of inference of the form P (a) P (a + 1) P (b) k

More information

MTH135/STA104: Probability

MTH135/STA104: Probability MTH35/STA04: Probability Homework # 3 Due: Tuesday, Sep 0, 005 Prof. Robert Wolpert. from prob 7 p. 9 You roll a fair, six-sided die and I roll a die. You win if the number showing on your die is strictly

More information

Algorithmic Problem Solving. Roland Backhouse January 29, 2004

Algorithmic Problem Solving. Roland Backhouse January 29, 2004 1 Algorithmic Problem Solving Roland Backhouse January 29, 2004 Outline 2 Goal Introduce principles of algorithm construction Vehicle Fun problems (games, puzzles) Chocolate-bar Problem 3 How many cuts

More information

Sum of Squares. Defining Functions. Closed-Form Expression for SQ(n)

Sum of Squares. Defining Functions. Closed-Form Expression for SQ(n) CS/ENGRD 2110 Object-Oriented Programming and Data Structures Spring 2012 Thorsten Joachims Lecture 22: Induction Overview Recursion A programming strategy that solves a problem by reducing it to simpler

More information

Example: Use a direct argument to show that the sum of two even integers has to be even. Solution: Recall that an integer is even if it is a multiple

Example: Use a direct argument to show that the sum of two even integers has to be even. Solution: Recall that an integer is even if it is a multiple Use a direct argument to show that the sum of two even integers has to be even. Solution: Recall that an integer is even if it is a multiple of 2, that is, an integer x is even if x = 2y for some integer

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

4.1 Induction: An informal introduction

4.1 Induction: An informal introduction Chapter 4 Induction and Recursion 4.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes

More information

Baltic Way 2003 Riga, November 2, 2003

Baltic Way 2003 Riga, November 2, 2003 altic Way 2003 Riga, November 2, 2003 Problems and solutions. Let Q + be the set of positive rational numbers. Find all functions f : Q + Q + which for all x Q + fulfil () f ( x ) = f (x) (2) ( + x ) f

More information

2013 University of New South Wales School Mathematics Competition

2013 University of New South Wales School Mathematics Competition Parabola Volume 49, Issue (201) 201 University of New South Wales School Mathematics Competition Junior Division Problems and s Problem 1 Suppose that x, y, z are non-zero integers with no common factor

More information

Problem 1. Solve the equation 3 x + 9 x = 27 x. Solution: 3 x + 3 2x = 3 3x. Denote: y = 3 x, then. y + y 2 = y 3. y 3 y 2 y = 0. y(y 2 y 1) = 0.

Problem 1. Solve the equation 3 x + 9 x = 27 x. Solution: 3 x + 3 2x = 3 3x. Denote: y = 3 x, then. y + y 2 = y 3. y 3 y 2 y = 0. y(y 2 y 1) = 0. Problem 1. Solve the equation 3 x + 9 x = 7 x. Solution: 3 x + 3 x = 3 3x. Denote: y = 3 x, then Therefore, y + y = y 3. y 3 y y = 0. y(y y 1) = 0. y = 0 or y = 1 ± 5. i) 3 x = 0 has no solutions, ii)

More information

First Digit Tally Marks Final Count

First Digit Tally Marks Final Count Benford Test () Imagine that you are a forensic accountant, presented with the two data sets on this sheet of paper (front and back). Which of the two sets should be investigated further? Why? () () ()

More information

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring Mathematical Induction EECS 203: Discrete Mathematics Lecture 11 Spring 2016 1 Climbing the Ladder We want to show that n 1 P(n) is true. Think of the positive integers as a ladder. 1, 2, 3, 4, 5, 6,...

More information

Intermediate Math Circles March 11, 2009 Sequences and Series

Intermediate Math Circles March 11, 2009 Sequences and Series 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Intermediate Math Circles March 11, 009 Sequences and Series Tower of Hanoi The Tower of Hanoi is a game

More information

Heaps Induction. Heaps. Heaps. Tirgul 6

Heaps Induction. Heaps. Heaps. Tirgul 6 Tirgul 6 Induction A binary heap is a nearly complete binary tree stored in an array object In a max heap, the value of each node that of its children (In a min heap, the value of each node that of its

More information

Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali TAs: Kim, Woo Young: Deeparnab Chakrabarty:

Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali TAs: Kim, Woo Young: Deeparnab Chakrabarty: Course: CS1050c (Fall '03) Homework2 Solutions Instructor: Prasad Tetali TAs: Kim, Woo Young: wooyoung@cc.gatech.edu, Deeparn Chakrarty: deepc@cc.gatech.edu Section 3.7 Problem 10: Prove that 3p 2 is irrational

More information

Mathematical Induction. Defining Functions. Overview. Notation for recursive functions. Base case Sn(0) = 0 S(n) = S(n 1) + n for n > 0

Mathematical Induction. Defining Functions. Overview. Notation for recursive functions. Base case Sn(0) = 0 S(n) = S(n 1) + n for n > 0 Readings on induction. Mathematical Induction (a) Weiss, Sec. 7.2, page 233 (b) Course slides f lecture and notes recitation. Every criticism from a good man is of value to me. What you hint at generally

More information

CSCE 222 Discrete Structures for Computing. Proof by Induction. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Proof by Induction. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Proof by Induction Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties

More information

Summer HSSP Week 1 Homework. Lane Gunderman, Victor Lopez, James Rowan

Summer HSSP Week 1 Homework. Lane Gunderman, Victor Lopez, James Rowan Summer HSSP Week 1 Homework Lane Gunderman, Victor Lopez, James Rowan July 9, 2014 Questions 1 Chapter 1 Homework Questions These are the questions that should be turned in as homework. As mentioned in

More information

THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION ECOM Eng. Huda M.

THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION ECOM Eng. Huda M. THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION ECOM 2011 Eng. Huda M. Dawoud December, 2015 Section 1: Mathematical Induction 3. Let

More information

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Outline We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Induction P(1) ( n 2)[P(n 1) P(n)] ( n 1)[P(n)] Why Does This Work? I P(1) ( n 2)[P(n

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 2 1 Divisibility Theorems 2 DIC Example 3 Converses 4 If and only if 5 Sets 6 Other Set Examples 7 Set Operations 8 More Set Terminology

More information

High School Math Contest University of South Carolina. February 1, 2014

High School Math Contest University of South Carolina. February 1, 2014 High School Math Contest University of South Carolina February, 04. A nickel is placed flat on a table. What is the maximum number of nickels that can be placed around it, flat on the table, with each

More information

Discrete Mathematics Exam File Spring Exam #1

Discrete Mathematics Exam File Spring Exam #1 Discrete Mathematics Exam File Spring 2008 Exam #1 1.) Consider the sequence a n = 2n + 3. a.) Write out the first five terms of the sequence. b.) Determine a recursive formula for the sequence. 2.) Consider

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.6 Defining Sequences Recursively Copyright Cengage Learning. All rights reserved.

More information

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Summary Valid Arguments and Rules of Inference Proof Methods Proof Strategies Rules of Inference Section 1.6 Section Summary Valid Arguments

More information

DISCRETE MATH: FINAL REVIEW

DISCRETE MATH: FINAL REVIEW DISCRETE MATH: FINAL REVIEW DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? c. Is {3} {3}? c. Is {3} {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

EASY PUTNAM PROBLEMS

EASY PUTNAM PROBLEMS EASY PUTNAM PROBLEMS (Last updated: December 11, 2017) Remark. The problems in the Putnam Competition are usually very hard, but practically every session contains at least one problem very easy to solve

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: Rule of Inference Mathematical Induction: Conjecturing and Proving Mathematical Induction:

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 12, 2018 Outline 1 Non POMI Based s 2 Some Contradiction s 3

More information

UNC Charlotte Super Competition Comprehensive Test Test with Solutions for Sponsors

UNC Charlotte Super Competition Comprehensive Test Test with Solutions for Sponsors . The lengths of all three sides of a triangle have integer values and are all different. The area of this triangle is positive. The largest of the lengths equals 4. Find the smallest length of the sides

More information