Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information Direct observation of crystal defects in an organic molecular crystals of copper hexachlorophthalocyanine by STEM-EELS Mitsutaka Haruta*, Hiroki Kurata Institute for hemical Research, Kyoto University, Uji, Kyoto , Japan correspondence to: 1

2 1. Materials The crystal structure of 16 -upc is illustrated schematically in Fig. S1(a). The molecules are packed in a base-centered monoclinic structure, with unit-cell dimensions of a = 1.96 nm, b = 2.61 nm, c = nm, and = The molecules are arranged in a herringbone structure where the molecular plane in every second column is parallel to the substrate surface, while the molecular plane in the other columns is tilted 26.5 away from the substrate as shown in Fig. S1(b) 1. High-resolution images were observed along the c-axis by inclining the specimen with respect to the incident electron beam. Therefore, the molecular plane is not perpendicular to the electron beam but tilted at an angle of On the other hand, for molecules observed at the grain boundary, the molecular plane, as indicated by the blue lines, lies parallel to the electron beam. 2

3 N N N N N N N u N N N u N N N N N N N N N N u N a N N N N N N N N N N u N N u N N N N N N N b a Electron beam c Substrate b 26.5 a Figure S1. Schematic illustrations showing (a) molecular arrangement in the a b plane of the monoclinic structure and (b) incident electron direction at the monoclinic 16 -upc crystallite. The plane of the green molecules is parallel to the substrate surface, while that of the blue molecules is parallel to the electron beam direction. The molecular images are obtained with the beam transmitting along the c-axis. 3

4 2. Advantage of LAADF-STEM for organic crystals Figure S2(a) shows schematic ray diagrams of ADF-STEM. Generally, the inner detection angle (θ min ) for HAADF imaging is selected to be more than 50 mrad for inorganic crystal to avoid the elastic scattering electrons. The elastic scattering intensity I BS and thermal diffuse scattering (TDS) I TDS can be expressed respectively as I BS 2 TDS 2 f ( s) exp 2M ( s) and I f ( s) 1 exp 2M ( s) x x x x 25, where s = sin( )/, and f x (s) and exp[-2m x (s)] are the atomic structure factor for the electron and the Debye-Waller factor of each element x, respectively. When the atoms vibrate independently (Einstein model), the temperature factor can be expressed as 2 M x ( s) Bs, where the constant B is related to the lattice vibration amplitude. Figure S2(b) shows the intensity profiles of the elastic scattering and TDS for isolated, N,, u, and Si atoms assuming the Einstein model. The values of constant B for, N, u, and were assumed to be the same as those used in the multislice image simulation for halogenated upc 7 and that for Si was taken as the value for a Si crystal at room temperature 26. Generally, in the case of an atom in an inorganic crystal, the crossover point between the elastic and TDS profiles is found at a scattering angle of around 50 mrad. Therefore, the inner detection angle (θ min ) is usually set to more than 50 mrad in 4

5 order to detect mainly the TDS electrons which are scattered incoherently. On the other hand, since the temperature factor in organic materials is large compared to that in inorganic materials, the crossover point between elastic and TDS profiles is found at a scattering angle of under 20 mrad for each atom. Therefore, because of the large temperature factor in the case of organic materials, the LAADF-STEM method can be used to detect electrons scattered above 30 mrad and almost guarantee collection of only TDS signals, leading to incoherent high-resolution Z-contrast imaging. Figs. S2(c) and (d) show the microdiffraction patterns of Si [110] and 16 upc along the c-axis with a convergence semi-angle of 3.4 mrad. As the lattice constants of 16 -upc are comparatively large, elastically diffracted beams are confined to the lower angular region. Since the high-resolution LAADF-STEM experiments were performed using an electron probe with a convergence semi-angle of 23 mrad to form a fine probe, the inner detection angle was set to 39 mrad in order to avoid the contribution from first-order diffraction. The elastic component was considered to be low in the LAADF images of the 16 -upc crystal under the present experimental conditions. 5

6 Intensity a Objective lens Specimen θ min θ max ADF detector α b 4 TDS Elastic N TDS Elastic 3 TDS Elastic u TDS Elastic 2 Si TDS Elastic 1 LAADF HAADF Scattering angle (mrad) c d Diffracted disk Figure S2. (a) Schematic diagram of ADF-STEM. (b) Intensity profiles of elastic and thermal diffuse scattering (TDS) from isolated, N,, u, and Si atoms under the Einstein model. The Debye-Waller factors for, N, u, and were assumed to be the same as those used in the multislice image simulation for halogenated-upc 1 and that for Si was that for a Si crystal at room temperature 26. The microdiffraction patterns of (c) Si [110] and (d) 16 upc along the c-axis projection with a convergence semi-angle of 3.4 mrad. The inner detection angle (39 mrad) for LAADF imaging is indicated by the white circles. 6

7 3. Effect of spherical aberration corrector in STEM imaging for organic crystals In our previous research 7, only the copper atomic column in each molecular unit was observed directly in the raw image while chlorine atomic columns were visible after noise filtering. This was a critical problem in the high-resolution analysis of non-periodical structures. Increasing the signal-to-noise ratio in the LAADF image by incorporating a spherical aberration (s) corrector, however, not only allowed observation in the raw image of chlorine but also lighter elements. As discussed in our previous research, radiation damage of the specimen has also been an issue. In a previous study using STEM without a s-corrector, the clearest images were observed at 6M-fold magnification with a pixel size of 0.05 nm and a dwell time of 60 s per pixel. The probe current was set to about 5 pa, corresponding to an average electron dose of ca. 12 cm 2, which is smaller than the end-point dose (ca. 35 cm 2 ) for the 16 -upc crystal 24. At magnifications higher than 6 M, the molecular crystal was completely destroyed by electron bombardment. This was because the broad electron probe, with a full-width at half-maximum of about 0.18 nm, leads to unnecessary irradiation when the pixel size in the image was decreased at a higher magnification. In order to achieve a higher resolution in ADF-STEM imaging of organic crystals, any unnecessary irradiation should be minimized by using a finer 7

8 electron probe. The s corrector has improved the size of the electron probe so that it is 1 Å or less in diameter. This improvement in probe size enables observation of an image at a low probe current of about 1 pa, which provides a low-dose observation of about 1.1 cm -2 at 6M-fold magnification with a dwell time of 26.7 s per pixel, leading to a decrease in the unnecessary irradiation and an increase in the signal-to-noise ratio of the STEM image. Therefore, high magnification imaging could be performed even at 25M-fold magnification, corresponding to an average electron dose of ca cm 2, as shown in Figs. 1(d)-(g). The pixel size in 25M-fold magnification images was nm, i.e. the images were over-sampled with 15 pixels per the horizontal u-n atomic distance (0.18 nm) and with 11 pixel per the horizontal - atomic distance (0.14 nm) in the projected plane, which was enough to directly resolve the atomic columns in the molecular unit. In case of the high resolution LAADF image (Fig. 1 (e)), the light elements ( and N) were visible together with the heavier elements ( and u) but not atomically resolved. Fast Fourier transformation (FFT) of the LAADF image indicates that the spatial resolution of the image is 0.18 nm. On the other hands, - columns of the benzene as well as u-n columns of the porphyrin rings were clearly resolved in ABF image, which indicates a spatial resolution better than 0.14 nm. Therefore, we concluded that spatial resolutions of better than 0.18 nm 8

9 for LAADF and 0.14 nm for ABF were attained in imaging of organic crystals in the present experiment. References 1. Uyeda, N. Kobayashi, T. Ishizuka, K. & Fujiyoshi, Y. High voltage electron microscopy for image discrimination of constituent atoms in crystals and molecules. hem. Scripta. 14, ( ). 2. Kobayashi, T. in: N. Karl (Ed.), Epitaxial growth of organic thin films and characterization of their defect structures by high-resolution electron microscopy. rystal, Growth, Properties and Application, vol. 13, Springer, Berlin, Heidelberg, 1991, p Uyeda, N. Kobayashi, T. Ishizuka, K. & Fujiyoshi, Y. rystal structure of Ag TNQ. Nature. 285, (1980). 4. Maeda, T. Isoda, S. & Kobayashi, T. Epitaxial growth and defect Structure of quaterrylene studied using high resolution electron microscopy. Phys. Status Solidi (a) 191, (2002). 5. Koshino, M. Kurata, H. & Isoda, S. Study of structures at the boundary and defects in 9

10 organic thin films of perchlorocoronene by high-resolution and analytical transmission electron microscopy. Ultramicroscopy. 110, (2010). 6. Pennycook, S. J. & Jesson, D. E. High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, (1990). 7. Haruta, M. Yoshida, K. Kurata, H. & Isoda, S. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine. Ultramicroscopy. 108, (2008). 8. Haruta, M. Yoshida, K. Kurata, H. & Isoda, S. High resolution ADF-STEM imaging application for organic crystals. Mol. ryst. Liq. ryst. 492, (2008). 9. Batson, P. E. Delby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature. 418, (2002). 10. Krivanek, O. L. et al., Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature. 464, (2010). 11. Suenaga, K. & Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature. 468, (2010). 12. Findlay, S. D. et al., Direct imaging of hydrogen within a crystalline environment. Appl. Phys. Express. 3, (2010). 10

11 13. Ishikawa, R. et al., Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature mater. 10, (2011). 14. Smith, D. J. Fryer, J. R. & amps, R. A. Radiation damage and structural studies: halogenated phthalocyanines. Ultramicroscopy. 19, (1986). 15. Pennycook, S. J. & Nellist, P. D. Scanning transmission electron microscopy : imaging and analysis (2011) (Springer, New York). 16. Hashimoto, S. Isoda, S. Kurata, H. Lieser, G. & Kobayashi, T. Molecular orientation of perfluoro-vanadyl-phthalocyanine examined by electron energy loss spectroscopy. J. Porphyrins and Phthalocyanines, 3, (1999) 17. Kurata, H. Ishizuka, K. Kobayashi, T. & Uyeda, N. Orientation dependence of the carbon K-edge in the electron energy loss spectra of a potassium-benzene-graphite intercalation compound. Synthetic Metals. 22, (1988). 18. Browning, N. D. Yuan, J. & Brown, L. M. Real-space determination of anisotropic electronic structure by electron energy loss spectroscopy. Ultramicroscopy. 38, (1991). 19. Batson, P. E. & hisholm, M. F. Anisotropy in the near-edge absorption fine structure of YBa 2 u 3 O 7-σ. Phys. Rev. B37, (1988). 11

12 20. Batson, P. E. arbon 1s near-edge-absorption fine structure in Graphite. Phys. Rev. B48, (1993). 21. Tokito, S. Sakata, J. & Taga, Y. The molecular orientation in copper phthalocyanine thin films deposited on metal film surfaces. Thin Solid Films. 256, (1995). 22. Ling, M. M. Bao, Z. & Erk, P. Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors. Appl. Phys. Lett. 89, (2006). 23 Kurata, H. Isoda S. & Tomita, T. Proc. of the 16th International Microscopy ongress (IM16), Sapporo, Japan, p (2006). 24. Kurata, H. Isoda S. & Kobayashi, T. EELS study of radiation damage in chlorinated u-phthalocyanine and poly GeO-phthalocyanine. Ultramicroscopy, 41, (1992). 25. Hall,. R. & Hirsch, P. B. Effect of thermal diffuse scattering on propagation of high energy electron through crystals. Proc. Roy. Soc. A286, (1965). 26. Xu, P. Loane, R. F. & Silcox, J. Energy-filtered convergent-beam electron diffraction in STEM. Ultramicroscopy 38, (1991). 12

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI atomic chains encapsulated in DWNTs, respectively.

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary figure S1: Characterisation of the electron beam intensity profile. (a) A 3D plot of beam intensity (grey value) with position, (b) the beam

More information

Detecting strain in scanning transmission electron microscope images. Part II Thesis

Detecting strain in scanning transmission electron microscope images. Part II Thesis Detecting strain in scanning transmission electron microscope images Part II Thesis Ina M. Sørensen Mansfield College, Oxford 10th of June, 2015 1 Abstract Scanning Transmission Electron Microscopes (STEM)

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Controllable Atomic Scale Patterning of Freestanding Monolayer. Graphene at Elevated Temperature

Controllable Atomic Scale Patterning of Freestanding Monolayer. Graphene at Elevated Temperature Controllable Atomic Scale Patterning of Freestanding Monolayer Graphene at Elevated Temperature AUTHOR NAMES Qiang Xu 1, Meng-Yue Wu 1, Grégory F. Schneider 1, Lothar Houben 2, Sairam K. Malladi 1, Cees

More information

Atomic Resolved HAADF-STEM for Composition Analysis

Atomic Resolved HAADF-STEM for Composition Analysis Volume 38 Number 2 November 10, 2003 Atomic Resolved HAADF-STEM for Composition Analysis Makoto Shiojiri,, and Takashi. Yamazaki Kanazawa Medical University, Ishikawa 920-0293, Japan Kyoto Institute of

More information

a b c Supplementary Figure S1

a b c Supplementary Figure S1 a b c Supplementary Figure S1 AFM measurements of MoS 2 nanosheets prepared from the electrochemical Liintercalation and exfoliation. (a) AFM measurement of a typical MoS 2 nanosheet, deposited on Si/SiO

More information

Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy N. Shibata, S.D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, Y. Kohno, S. Otomo, R. Minato and Y. Ikuhara

More information

(Supporting Information)

(Supporting Information) Atomic and Electronic Structure of Graphene-Oxide (Supporting Information) K. Andre Mkhoyan, 1,2 * Alexander W. Contryman, 1 John Silcox, 1 Derek A. Stewart, 3 Goki Eda, 4 Cecilia Mattevi, 4 Steve Miller,

More information

SIMULATION OF TRANSMISSION AND SCANNING TRANSMISSION ELECTRON MICROSCOPIC IMAGES CONSIDERING ELASTIC AND THERMAL DIFFUSE SCATTERING

SIMULATION OF TRANSMISSION AND SCANNING TRANSMISSION ELECTRON MICROSCOPIC IMAGES CONSIDERING ELASTIC AND THERMAL DIFFUSE SCATTERING Scanning Microscopy Vol. 11, 1997 (Pages 277-286) 0891-7035/97$5.00+.25 Scanning Microscopy International, Chicago (AMF Simulation O Hare), of TEM IL 60666 and STEM USA images SIMULATION OF TRANSMISSION

More information

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes Supporting Information for Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-dependent Oxidation of Pt 3 Co Nanoparticles via in-situ Transmission Electron Microscopy Sheng

More information

Simultaneous visualization of oxygen vacancies and the accompanying cation shifts in a perovskite oxide by combining annular imaging techniques

Simultaneous visualization of oxygen vacancies and the accompanying cation shifts in a perovskite oxide by combining annular imaging techniques Simultaneous visualization of oxygen vacancies and the accompanying cation shifts in a perovskite oxide by combining annular imaging techniques Shunsuke Kobayashi 1, Scott D. Findlay 2, Naoya Shibata 3,

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

A practical approach for STEM image simulation based on the FFT multislice method

A practical approach for STEM image simulation based on the FFT multislice method Ultramicroscopy 90 (00) 71 83 A practical approach for STEM image simulation based on the FFT multislice method Kazuo Ishizuka n HREM Research Inc., 14-48 Matsukazedai, Higashimatsuyama, Saitama 355-0055,

More information

Aberration-corrected TEM studies on interface of multilayered-perovskite systems

Aberration-corrected TEM studies on interface of multilayered-perovskite systems Aberration-corrected TEM studies on interface of multilayered-perovskite systems By Lina Gunawan (0326114) Supervisor: Dr. Gianluigi Botton November 1, 2006 MSE 702(1) Presentation Outline Literature Review

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

PROBE AND OBJECT FUNCTION RECONSTRUCTION IN INCOHERENT SCANNING TRANSMISSION ELECTRON MICROSCOPE IMAGING

PROBE AND OBJECT FUNCTION RECONSTRUCTION IN INCOHERENT SCANNING TRANSMISSION ELECTRON MICROSCOPE IMAGING Scanning Microscopy Vol. 11, 1997 (Pages 81-90) 0891-7035/97$5.00+.25 Scanning Microscopy International, Chicago Probe (AMF and O Hare), object IL function 60666 reconstruction USA PROBE AND OBJECT FUNCTION

More information

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear propagation. Once a tear is identified at low magnification,

More information

Characterization of crystallographic defects in LaNiO 3 through TEM image simulations

Characterization of crystallographic defects in LaNiO 3 through TEM image simulations Characterization of crystallographic defects in LaNiO 3 through TEM image simulations Author: Joan Carles Bastons Garcia. Departament d Electrònica, Universitat de Barcelona Advisors: Sònia Estradé Albiol

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Atomic Bonding Effects in Annular Dark Field Scanning Transmission Electron Microscopy I: Computational Predictions

Atomic Bonding Effects in Annular Dark Field Scanning Transmission Electron Microscopy I: Computational Predictions Atomic Bonding Effects in Annular Dark Field Scanning Transmission Electron Microscopy I: Computational Predictions Michael L. Odlyzko 1, Burak Himmetoglu 1,2, Matteo Cococcioni 1,3, K. Andre Mkhoyan 1

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide Supporting information for Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide Jinhua Hong,, Yuhao Pan,, Zhixin Hu, Danhui Lv, Chuanhong Jin, *, Wei Ji, *, Jun Yuan,,*,

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Multiphase Nanodomains in a Strained BaTiO3 Film on a GdScO3 Substrate Shunsuke Kobayashi 1*, Kazutoshi Inoue 2, Takeharu Kato 1, Yuichi Ikuhara 1,2,3 and Takahisa Yamamoto 1, 4

More information

Transmission Electron Microscopy for metrology and characterization of semiconductor devices

Transmission Electron Microscopy for metrology and characterization of semiconductor devices Transmission Electron Microscopy for metrology and characterization of semiconductor devices Bert Freitag, Laurens Kwakman, Ivan Lazic and Frank de Jong FEI / ThermoFisher Scientific, Achtseweg Noord 5,

More information

IMAGING DIFFRACTION SPECTROSCOPY

IMAGING DIFFRACTION SPECTROSCOPY TEM Techniques TEM/STEM IMAGING DIFFRACTION SPECTROSCOPY Amplitude contrast (diffracion contrast) Phase contrast (highresolution imaging) Selected area diffraction Energy dispersive X-ray spectroscopy

More information

Energy-Filtering. Transmission. Electron Microscopy

Energy-Filtering. Transmission. Electron Microscopy Part 3 Energy-Filtering Transmission Electron Microscopy 92 Energy-Filtering TEM Principle of EFTEM expose specimen to mono-energetic electron radiation inelastic scattering in the specimen poly-energetic

More information

Dislocation networks in graphite

Dislocation networks in graphite Dislocation networks in graphite High Resolution Microscop With Reference to Lattice Fringe Imaging in a TEM f f r Real space Specimen Reciprocal space hr Point spread function Diffraction pattern Back

More information

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K 0.5 Na 0.5 NbO 3 Thin films Deposited on SrTiO 3 Chao Li 1, Lingyan Wang 1*, Zhao Wang 2, Yaodong Yang 2, Wei Ren 1 and Guang Yang 1

More information

Weak-Beam Dark-Field Technique

Weak-Beam Dark-Field Technique Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 Weak-Beam Dark-Field Technique near the dislocation core, some planes curved to s = 0 ) strong Bragg reflection

More information

Supplementary Figure 1. Crystal packing of pentacene.

Supplementary Figure 1. Crystal packing of pentacene. t 3 t 4 t 1 t 2 Supplementary Figure 1. Crystal packing of pentacene. The largestholecharge transfer integrals are shown in red:t 1 = 75 mev, t 2 = 32 mev, t 3 = 20 mev, t 4 = 6 mev. Note that IRactive

More information

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials Brent Fultz James Howe Transmission Electron Microscopy and Diffractometry of Materials Fourth Edition ~Springer 1 1 Diffraction and the X-Ray Powder Diffractometer 1 1.1 Diffraction... 1 1.1.1 Introduction

More information

Phonon scattering: how does it a ect the image contrast in high-resolution transmission electron microscopy?

Phonon scattering: how does it a ect the image contrast in high-resolution transmission electron microscopy? PHILOSOPHICAL MAGAZINE B, 1999, VOL. 79, NO. 1, 37± 48 Phonon scattering: how does it a ect the image contrast in high-resolution transmission electron microscopy? Z. L. Wang² School of Materials Science

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

M any functional properties observed in perovskite oxides, ABO3, exhibit close couplings to slight structural

M any functional properties observed in perovskite oxides, ABO3, exhibit close couplings to slight structural OPEN SUBJECT AREAS: STRUCTURAL PROPERTIES TRANSMISSION ELECTRON MICROSCOPY CERAMICS CHARACTERIZATION AND ANALYTICAL TECHNIQUES Atomic level observation of octahedral distortions at the perovskite oxide

More information

Characterisation of Nanoparticle Structure by High Resolution Electron Microscopy

Characterisation of Nanoparticle Structure by High Resolution Electron Microscopy Journal of Physics: Conference Series OPEN ACCESS Characterisation of Nanoparticle Structure by High Resolution Electron Microscopy To cite this article: Robert D Boyd et al 2014 J. Phys.: Conf. Ser. 522

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes Ryosuke Senga 1, Hannu-Pekka Komsa 2, Zheng Liu 1, Kaori Hirose-Takai 1, Arkady V. Krasheninnikov 2

More information

Lithium Atom Microscopy at Sub-50pm Resolution by R005

Lithium Atom Microscopy at Sub-50pm Resolution by R005 Volume 45 Number 1 July, 2010 Lithium Atom Microscopy at Sub-50pm Resolution by R005 Contents Lithium Atom Microscopy at Sub-50pm Resolution by R005............... 2 Atomic-Resolution Elemental Mapping

More information

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS 302 ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS M. Song 1, K. Mitsuishi 1, M. Takeguchi 1, K. Furuya 1, R. C. Birtcher 2 1 High Voltage Electron Microscopy Station, National

More information

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite RESULTS AND DISCUSSION 4.1. Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite 4.1.1. Scanning electron microscopy analysis (SEM) SEM images of prepared CaO are shown in Fig. 4.1 (a and b). CaO

More information

Supplementary Figure 1: Example non-overlapping, binary probe functions P1 (~q) and P2 (~q), that add to form a top hat function A(~q).

Supplementary Figure 1: Example non-overlapping, binary probe functions P1 (~q) and P2 (~q), that add to form a top hat function A(~q). Supplementary Figures P(q) A(q) + Function Value P(q) qmax = Supplementary Figure : Example non-overlapping, binary probe functions P (~q) and P (~q), that add to form a top hat function A(~q). qprobe

More information

Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure

Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure Supplementary Material for Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure Kwanpyo Kim 1,2,3, Sinisa Coh 1,3, Liang Z. Tan 1,3, William

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

Resolution of coherent and incoherent imaging systems reconsidered - Classical criteria and a statistical alternative

Resolution of coherent and incoherent imaging systems reconsidered - Classical criteria and a statistical alternative Resolution of coherent and incoherent imaging systems reconsidered - Classical criteria and a statistical alternative Sandra Van Aert and Dirk Van Dyck University of Antwerp, Department of Physics, Groenenborgerlaan

More information

These authors contributed equally to this work. 1. Structural analysis of as-deposited PbS quantum dots by Atomic Layer Deposition (ALD)

These authors contributed equally to this work. 1. Structural analysis of as-deposited PbS quantum dots by Atomic Layer Deposition (ALD) Supporting information for: Atomic Layer Deposition of Lead Sulfide Quantum Dots on Nanowire Surfaces Neil P. Dasgupta 1,*,, Hee Joon Jung 2,, Orlando Trejo 1, Matthew T. McDowell 2, Aaron Hryciw 3, Mark

More information

Supporting Information. Polar Second-Harmonic Imaging to Resolve Pure. and Mixed Crystal Phases along GaAs Nanowires.

Supporting Information. Polar Second-Harmonic Imaging to Resolve Pure. and Mixed Crystal Phases along GaAs Nanowires. Supporting Information Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires. Maria Timofeeva,,*, Alexei Bouravleuv,, George Cirlin,,, Igor Shtrom,, Ilya Soshnikov,

More information

Supplementary information

Supplementary information Supplementary information Identification of Active Zr-WO x Clusters on a ZrO 2 Support for Solid Acid Catalysts Wu Zhou 1, Elizabeth I. Ross-Medgaarden 2, William V. Knowles 3, Michael S. Wong 3, Israel

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays

3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays 3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays David A. Muller Lena Fitting Kourkoutis, Megan Holtz, Robert Hovden, Qingyun Mao, Julia Mundy,

More information

The ideal fiber pattern exhibits 4-quadrant symmetry. In the ideal pattern the fiber axis is called the meridian, the perpendicular direction is

The ideal fiber pattern exhibits 4-quadrant symmetry. In the ideal pattern the fiber axis is called the meridian, the perpendicular direction is Fiber diffraction is a method used to determine the structural information of a molecule by using scattering data from X-rays. Rosalind Franklin used this technique in discovering structural information

More information

A menu of electron probes for optimising information from Scanning Transmission Electron Microscopy

A menu of electron probes for optimising information from Scanning Transmission Electron Microscopy This is the preprint. The Published Journal Article can be found at https://doi.org/10.1016/j.ultramic.2017.08.020 2018. This manuscript version is made available under the CC-BY-NCND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0

More information

Microscopy: Principles

Microscopy: Principles Low Voltage Electron Microscopy: Principles and Applications Edited by David C. Bell Harvard University, USA and Natasha Erdman JEOL USA Inc., USA Published in association with the Royal Microscopical

More information

Everhart-Thornley detector

Everhart-Thornley detector SEI Detector Everhart-Thornley detector Microscope chamber wall Faraday cage Scintillator Electrons in Light pipe Photomultiplier Electrical signal out Screen Quartz window +200 V +10 kv Always contains

More information

Chapter 4 Imaging Lecture 24

Chapter 4 Imaging Lecture 24 Chapter 4 Imaging Lecture 4 d (110) Final Exam Notice Time and Date: :30 4:30 PM, Wednesday, Dec. 10, 08. Place: Classroom CHEM-10 Coverage: All contents after midterm Open note Term project is due today

More information

Supporting Information for. Structural and Chemical Dynamics of Pyridinic Nitrogen. Defects in Graphene

Supporting Information for. Structural and Chemical Dynamics of Pyridinic Nitrogen. Defects in Graphene Supporting Information for Structural and Chemical Dynamics of Pyridinic Nitrogen Defects in Graphene Yung-Chang Lin, 1* Po-Yuan Teng, 2 Chao-Hui Yeh, 2 Masanori Koshino, 1 Po-Wen Chiu, 2 Kazu Suenaga

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion.

Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion. Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion. Supplementary Figure 2: SE spectra from blend films. a) and b) compare

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

Development of 2-Dimentional Imaging XAFS System at BL-4

Development of 2-Dimentional Imaging XAFS System at BL-4 Development of 2-Dimentional Imaging XAFS System at BL-4 Koichi Sumiwaka 1, Misaki Katayama 2, Yasuhiro Inada 2 1) Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan, University,

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

High-Resolution Electron Microscopy: From Imaging Toward Measuring

High-Resolution Electron Microscopy: From Imaging Toward Measuring IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 51, NO. 4, AUGUST 2002 611 High-Resolution Electron Microscopy: From Imaging Toward Measuring Sandra Van Aert, Arnold J. den Dekker, Adriaan van

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD 73 SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD Atsuo Iida 1), Yoichi Takanishi 2) 1)Photon Factory, Institute of Materials Structure Science, High Energy

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy

Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy 26 March 2013 Unusual Molecular Material formed through Irreversible Transformation and Revealed by 4D Electron Microscopy Renske M. van der Veen, Antoine Tissot, Andreas Hauser, Ahmed H. Zewail Physical

More information

CHEM-E5225 :Electron Microscopy Imaging

CHEM-E5225 :Electron Microscopy Imaging CHEM-E5225 :Electron Microscopy Imaging 2016.10 Yanling Ge Outline Planar Defects Image strain field WBDF microscopy HRTEM information theory Discuss of question homework? Planar Defects - Internal Interface

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN 156 Copper Nanoparticles: Green Synthesis Characterization Y.Suresh*1, S.Annapurna*2, G.Bhikshamaiah*3, A.K.Singh#4 Abstract Present work describes the synthesis nanoparticles using papaya extract as a

More information

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin

More information

Structural Characterization of Nanoparticles

Structural Characterization of Nanoparticles Structural Characterization of Nanoparticles Nicola Pinna Max Planck Institute of Colloids and Interfaces e-mail: pinna@mpikg-golm.mpg.de - http://www.pinna.cx Plan 1. Transmission Electron Microscopy

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Scanning transmission electron microscopy

Scanning transmission electron microscopy Scanning transmission electron microscopy L. Brown To cite this version: L. Brown. Scanning transmission electron microscopy. Journal de Physique IV Colloque, 1993, 03 (C7), pp.c7-2073-c7-2080. .

More information

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). S1 Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). The combined SAXS/XANES measurements were carried out at the µspot beamline at BESSY II (Berlin, Germany). The beamline

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

MICROSTRUCTURAL CHARACTERIZATION OF ACTIVATED CARBON FIBERS USING ABERRATION CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPY.

MICROSTRUCTURAL CHARACTERIZATION OF ACTIVATED CARBON FIBERS USING ABERRATION CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPY. MICROSTRUCTURAL CHARACTERIZATION OF ACTIVATED CARBON FIBERS USING ABERRATION CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPY Klaus van Benthem, Cristian I. Contescu, Nidia C. Gallego, Stephen J. Pennycook,

More information

Experimental Section

Experimental Section Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supplementary Material (ESI) for Chemical Communications Modification of Ga 2 O 3 by Ag Cr Core

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Methods and supplementary materials Materials and sample preparation Bulk hexagonal boron nitride (h-bn) powders were provided by Saint-Gobain Advanced Ceramics Lauf GmbH. The stated chemical composition

More information

Energy-Filtered High-Resolution Electron Microscopy for Quantitative Solid State Structure Determination

Energy-Filtered High-Resolution Electron Microscopy for Quantitative Solid State Structure Determination [J. Res. Natl. Inst. Stand. Technol. 102, 1 (1997)] Energy-Filtered High-Resolution Electron Microscopy for Quantitative Solid State Structure Determination Volume 102 Number 1 January February 1997 Z.

More information

April 10th-12th, 2017

April 10th-12th, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Introduction: Basics of Transmission Electron Microscopy (TEM) TEM Doctoral Course MS-637 April 10th-12th, 2017 Outline 1. What is microcopy?

More information

EELS Electron Energy Loss Spectroscopy

EELS Electron Energy Loss Spectroscopy EELS Electron Energy Loss Spectroscopy (Thanks to Steve Pennycook, Quan Li, Charlie Lyman, Ondre Krivenak, David Muller, David Bell, Natasha Erdman, Nestor Zaluzec and many others) Nestor Zaluzec,

More information

Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy

Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy Supplementary information Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy Nabeel Ahmad, 1,2 Guillaume Wang, 1 Jaysen Nelayah, 1 Christian Ricolleau,

More information

The Principles of STEM Imaging

The Principles of STEM Imaging 2 The Principles of STEM Imaging Peter D. Nellist 2.1 Introduction The purpose of this chapter is to review the principles underlying imaging in the scanning transmission electron microscope (STEM). Consideration

More information

Supporting information:

Supporting information: Epitaxially Integrating Ferromagnetic Fe 1.3 Ge Nanowire Arrays on Few-Layer Graphene Hana Yoon, Taejoon Kang, Jung Min Lee, Si-in Kim, Kwanyong Seo, Jaemyung Kim, Won Il Park, and Bongsoo Kim,* Department

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Introductory experiments ualism of wave and particle L Physics Leaflets P6.1.5.1 iffraction of electrons in a polycrystalline lattice (ebye-scherrer diffraction) Objects of the

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information