Some issues in cluster cosmology

Size: px
Start display at page:

Download "Some issues in cluster cosmology"

Transcription

1 Some issues in cluster cosmology Tim McKay University of Michigan Department of Physics 1/30/2002 CFCP Dark Energy Workshop 1

2 An outline Cluster counting in theory Cluster counting in practice General considerations Optical cluster selection Weak lensing cluster surveys Imagining the future 1/30/2002 CFCP Dark Energy Workshop 2

3 Cluster counting constraints on the expansion history Probing growth of linear perturbations by measuring the space density of the largest peaks Theorist s cluster = mass peak to R 200 Counts, mass spectrum of halos Analytic theory and N-body simulations predict dn/dm as a function of z Cosmology comes from comparison of observed dn/dm vs. z to theory 1/30/2002 CFCP Dark Energy Workshop 3

4 Cluster detection methods How do we measure mass peaks in 3D? We don t 1/30/2002 CFCP Dark Energy Workshop 4

5 What s a cluster made of? Large peak in matter density Dark matter clump (~75% of mass) Many luminous galaxies (~2.5%: 10% of baryons) BCG and red sequence Additional galaxies Diffuse light Hot gas (~22.5%: 90% of baryons) Emits X-rays Causes SZ decrement in microwave background 1/30/2002 CFCP Dark Energy Workshop 5

6 What s are the cluster observables? Cluster detection measures something other than mass: some observables like SZe, X-ray flux, X- ray temperature, galaxy richness, galaxy σ v, shear.. To approach dn/dm vs. z we need to know: M(observables,z) Efficiency(observables, z) The mass function is very steep! 1/30/2002 CFCP Dark Energy Workshop 6

7 Relating cluster counts to the predicted dn/dm Usually this relation is written: dn dωdz = dv dωdz M zlim dn dvdm dm In reality this should be something like: dn dωdz = dv dωdz z b ( ) ( ),, 0 dn dvdm z dm do zemozdo g 1/30/2002 CFCP Dark Energy Workshop 7

8 Cluster detection methods: observer s clusters Clusters of galaxies: 2D, 2.5D, 3D Clusters of hot gas: X-ray, Sunyaev- Zeldovitch Clusters of projected mass: 2D, 2.1D? In every case we must learn the astrophysics to constrain M=f(observable) 1/30/2002 CFCP Dark Energy Workshop 8

9 Analogy to SNe For SNe, we want to know luminosity: measure spectrum, stretch, rise time, extinction, peak to tail ratio etc. For clusters, we want to know mass: measure SZe, F x, T x, σ gal, lensing, N gal, etc. We need to count all clusters: absolute efficiency required fundamentally a Poisson limited process (cosmic variance) 1/30/2002 CFCP Dark Energy Workshop 9

10 How will we learn what we need to know? Study clusters through all these methods Add extensions of structure formation modeling Couple both through observations of scaling relations Once we constrain clusters, we still need to understand observational effects K-corrections, angular resolution effects, projection, sensitivity vs. z, noise correlations 1/30/2002 CFCP Dark Energy Workshop 10

11 Finding clusters of galaxies in 2D optical data In the common wisdom this is plagued by projection New methods rely on uniform colors of cluster ellipticals (they are all old) Color <=> redshift: find clusters of objects with tightly clustered colors Provides good redshifts and projection is not an issue 1/30/2002 CFCP Dark Energy Workshop 11

12 1/30/2002 CFCP Dark Energy Workshop 12

13 SDSS maxbcg cluster catalog Jim Annis (FNAL) An example cluster at z=0.15 E/S0 ridgeline 1/30/2002 CFCP Dark Energy Workshop 13

14 SDSS maxbcg cluster catalog Jim Annis (FNAL) Redshift estimates tested by > 10 4 spectra 1/30/2002 CFCP Dark Energy Workshop 14

15 How do we compare maxbcg to clusters of mass? Do all clusters of mass have red sequence ellipticals? => Galaxy evolution vs. environment The observables are N gals, z, and a luminosity. How do these relate to mass? Uncertainties here affect both efficiency and mass estimation 1/30/2002 CFCP Dark Energy Workshop 15

16 Mass calibration for maxbcg clusters Calibration of mass (σ v ) from weak lensing vs. N gals Distribution of N gals (M)? 1/30/2002 CFCP Dark Energy Workshop 16

17 Finding clusters in the projected mass distribution The weak lensing observable is shear, related to projected mass by a geometric filter Weak lensing signal is independent of evolution in the baryons 1/30/2002 CFCP Dark Energy Workshop 17

18 How to find masses from lensing: Tangential shear is related to density contrast γ θ Σ = Σ < θ Σ θ T af crit a f af Σ crit is the surface mass density for multiple lensing Measure γ T and Σ crit and you have the surface mass density contrast. Deriving a mass from this still requires model fitting. 1/30/2002 CFCP Dark Energy Workshop 18

19 How to measure shear? Intrinsic shapes are elliptical and unknown (ε mean 0.3) => how to determine distortion? Strong lensing: distortions larger than intrinsic ellipticity Weak lensing: distortions smaller than intrinsic ellipticity Statistical measurement: many source galaxies required Must be able to measure the shape of each galaxy to use it Shear measurement requires correction of instrumental PSF and distortion effects. For stable PSFs new methods will allow this to arbitrary precision (Gary Bernstein later ) 1/30/2002 CFCP Dark Energy Workshop 19

20 Size magnitude relation 25 th magnitude Ground: >0.3 half light radius Space: >0.05 half light radius Gardner & Satyapal: Sizes from STIS HDF south images 1/30/2002 CFCP Dark Energy Workshop 20

21 Σ critical : Important geometry dependence D s Source α θ ξ α Observer Lens β Σ critical c D ds D d D F 2 s = = 035. G DD d ds cm H G 2 4π g D 1Gpc I KJ 1 1/30/2002 CFCP Dark Energy Workshop 21

22 Some model lensing data sets 1. Ground based R=25 (size limited) 2. Space based R=28 3. Space based R=30 Apply these observations to the Virgo simulation cluster catalogs from Evrard et al. 1/30/2002 CFCP Dark Energy Workshop 22

23 Basics for three surveys: why go so faint? Basic geometry is similar for the three surveys. Sensitivity changes due to source density. Lensing S/N is much higher for a deeper space based survey. Sensitivity tilted to low-z. 1/30/2002 CFCP Dark Energy Workshop 23

24 Survey to 25 th magnitude Dotted lines: Detected Dashed lines: Detected with an incorrect source z distribution! Virgo truth M>5x10 13 M sun M>1x10 14 M sun 1/30/2002 CFCP Dark Energy Workshop 24

25 Survey to 28 th magnitude Dotted lines: Detected Dashed lines: Detected with an incorrect source z distribution! M>5x10 13 M sun M>1x10 14 M sun 1/30/2002 CFCP Dark Energy Workshop 25

26 Survey to 30 th magnitude Dotted lines: Detected Dashed lines: Detected with an incorrect source z distribution! M>5x10 13 M sun M>1x10 14 M sun 1/30/2002 CFCP Dark Energy Workshop 26

27 What goes into formulating mass? Cluster redshift Source distribution (variance?) Other mass projected along line of sight Random Associated (filaments etc.) (X-ray and SZ are better.) 1/30/2002 CFCP Dark Energy Workshop 27

28 Cluster detection: peaks in the projected mass Projection effects and dark clusters : White, van Waerbeke and Mackey astro-ph/ Combined methods: find in optical, measure with lensing, understand projection? Very bad on a steeply falling spectrum! 1/30/2002 CFCP Dark Energy Workshop 28

29 Combined Foreground lens Background lens Example of projection effects from White, van Waerbeke, and Mackey 1/30/2002 CFCP Dark Energy Workshop 29

30 Virgo simulations of Evrard et al. astroph/ Shows dn/dm for 16 independent local universes (5000 square degrees to z<0.15) An additional concern: cosmic variance in cluster normalization 1/30/2002 CFCP Dark Energy Workshop 30

31 Cosmic variance and σ 8 Interpreting dn/dm for cosmology requires σ 8 constraints from local universe. Cosmic variance is about 0.06 Local counts to 6x10 14 M 1/30/2002 CFCP Dark Energy Workshop 31

32 Clusters for cosmology Clusters make great cosmological probes Very detectable Evolution is approachable Sensitive (exponential) dependence on cosmology Clusters are complex: we must understand them better to use them for cosmology Observing clusters is complex: measurements are projected 1/30/2002 CFCP Dark Energy Workshop 32

33 Clusters for cosmology Imagine having: SZe, z, F x, T x, σ gal, lensing, N gal, etc. This will allow systematic control analogous to Sne Still need to know absolute number (cosmic variance, dark clusters?) 1/30/2002 CFCP Dark Energy Workshop 33

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

Observational Cosmology

Observational Cosmology (C. Porciani / K. Basu) Lecture 7 Cosmology with galaxy clusters (Mass function, clusters surveys) Course website: http://www.astro.uni-bonn.de/~kbasu/astro845.html Outline of the two lecture Galaxy clusters

More information

Outline: Galaxy groups & clusters

Outline: Galaxy groups & clusters Outline: Galaxy groups & clusters Outline: Gravitational lensing Galaxy groups and clusters I Galaxy groups and clusters II Cluster classification Increasing rareness Intermission: What are you looking

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

Clusters, lensing and CFHT reprocessing

Clusters, lensing and CFHT reprocessing Clusters, lensing and CFHT reprocessing R. Ansari - French LSST meeting December 2015 1 Clusters as cosmological probes Clusters: characteristics and properties Basics of lensing Weighting the Giants Clusters

More information

The shapes of faint galaxies: A window unto mass in the universe

The shapes of faint galaxies: A window unto mass in the universe Lecture 15 The shapes of faint galaxies: A window unto mass in the universe Intensity weighted second moments Optimal filtering Weak gravitational lensing Shear components Shear detection Inverse problem:

More information

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich

Summer School on Cosmology July Clusters of Galaxies - Lecture 2. J. Mohr LMU, Munich 2354-23 Summer School on Cosmology 16-27 Clusters of Galaxies - Lecture 2 J. Mohr LMU, Munich SPT Outline ICTP Summer School on Cosmology, Trieste, e-rosita ESA/SRE(211)12 July 211 Galaxy Clusters and

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing Probing Dark Matter Halos with & Weak Lensing Frank C. van den Bosch (MPIA) Collaborators: Surhud More, Marcello Cacciato UMass, August 2008 Probing Dark Matter Halos - p. 1/35 Galaxy Formation in a Nutshell

More information

Clustering of galaxies

Clustering of galaxies Clustering of galaxies Notions: peculiar velocities, redshift space Correlation function: definitions and methods of estimation Power Spectrum Effects: redshift distortions Biases and biasing Observations!

More information

Gravitational Lensing. A Brief History, Theory, and Applications

Gravitational Lensing. A Brief History, Theory, and Applications Gravitational Lensing A Brief History, Theory, and Applications A Brief History Einstein (1915): light deflection by point mass M due to bending of space-time = 2x Newtonian light tangentially grazing

More information

Clusters and cosmology

Clusters and cosmology Clusters and cosmology The KICP Inaugural Symposium, Dec 12, 2005 Mike Gladders, Carnegie Observatories Clusters Outline: and cosmology Codex Aggereris Caelestise (The Book of celestial Aggregates a primer)

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More (MPIA) Kunming,

More information

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK Millennium simulation of the cosmic web MEASUREMENTS OF THE LINEAR BIAS OF RADIO GALAXIES USING CMB LENSING FROM PLANCK Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle

More information

Weak lensing measurements of Dark Matter Halos around galaxies

Weak lensing measurements of Dark Matter Halos around galaxies Weak lensing measurements of Dark Matter Halos around galaxies Rachel Mandelbaum Carnegie Mellon University 1 Image credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team 2 Image credit: ESA/Planck 3 The

More information

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering Alison Coil UCSD Talk Outline 1. Brief review of what we know about galaxy clustering from observations 2.

More information

Diving into precision cosmology and the role of cosmic magnification

Diving into precision cosmology and the role of cosmic magnification Diving into precision cosmology and the role of cosmic magnification Jose Luis Bernal Institute of Cosmos Science - Barcelona University ICC Winter Meeting 2017 06/02/2017 Jose Luis Bernal (ICCUB) ICC

More information

Weak Gravitational Lensing

Weak Gravitational Lensing Weak Gravitational Lensing Sofia Sivertsson October 2006 1 General properties of weak lensing. Gravitational lensing is due to the fact that light bends in a gravitational field, in the same fashion as

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 3 June, 2004 9 to 12 PAPER 67 PHYSICAL COSMOLOGY Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start to

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013 GALAXY CLUSTERING Emmanuel Schaan AST 542 April 10th 2013 INTRODUCTION: SCALES GALAXIES: 10kpc Milky Way: 10kpc, 10 12 Mo GALAXY GROUPS: 100kpc or «poor clusters» Local Group: ~50gal, 3Mpc, 10 13 Mo GALAXY

More information

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS BÙI VĂN TUẤN Advisors: Cyrille Rosset, Michel Crézé, James G. Bartlett ASTROPARTICLE AND COSMOLOGY LABORATORY PARIS DIDEROT UNIVERSITY

More information

Weak Lensing: a Probe of Dark Matter and Dark Energy. Alexandre Refregier (CEA Saclay)

Weak Lensing: a Probe of Dark Matter and Dark Energy. Alexandre Refregier (CEA Saclay) Weak Lensing: a Probe of Dark Matter and Dark Energy Alexandre Refregier (CEA Saclay) SLAC August 2004 Concordance ΛCDM Model Outstanding questions: initial conditions (inflation?) nature of the dark matter

More information

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

PHY323:Lecture 7 Dark Matter with Gravitational Lensing PHY323:Lecture 7 Dark Matter with Gravitational Lensing Strong Gravitational Lensing Theory of Gravitational Lensing Weak Gravitational Lensing Large Scale Structure Experimental Evidence for Dark Matter

More information

An Introduction to the Dark Energy Survey

An Introduction to the Dark Energy Survey An Introduction to the Dark Energy Survey A study of the dark energy using four independent and complementary techniques Blanco 4m on Cerro Tololo Galaxy cluster surveys Weak lensing Galaxy angular power

More information

Galaxy Cluster Mergers

Galaxy Cluster Mergers Galaxy Cluster Mergers Alexia Schulz Institute for Advanced Study Andrew Wetzel Daniel Holz Mike Warren Talk Overview! Introduction " Why are cluster mergers of interest? " Where will mergers complicate

More information

2. Lens population. 3. Lens model. 4. Cosmology. z=0.5. z=0

2. Lens population. 3. Lens model. 4. Cosmology. z=0.5. z=0 Chuck Keeton Hubble Fellow, University of Chicago ffl Lens statistics probe the volume of the universe to z ο 1 3. ffl Current constraints on Λ. ffl Systematics! ffl Prospects for equation of state (w,

More information

The State of Tension Between the CMB and LSS

The State of Tension Between the CMB and LSS The State of Tension Between the CMB and LSS Tom Charnock 1 in collaboration with Adam Moss 1 and Richard Battye 2 Phys.Rev. D91 (2015) 10, 103508 1 Particle Theory Group University of Nottingham 2 Jodrell

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on

Basic BAO methodology Pressure waves that propagate in the pre-recombination universe imprint a characteristic scale on Precision Cosmology With Large Scale Structure, Ohio State University ICTP Cosmology Summer School 2015 Lecture 3: Observational Prospects I have cut this lecture back to be mostly about BAO because I

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing 2017/7/14 13th Rencontres du Vietnam: Cosmology Ken Osato Dept. of Physics,

More information

arxiv:astro-ph/ v1 10 Nov 1999

arxiv:astro-ph/ v1 10 Nov 1999 Clustering at High Redshift ASP Conference Series, Vol., 1999 A. Mazure and O. Le Fevre, eds. Weak Lensing Observations of High-Redshift Clusters of Galaxies arxiv:astro-ph/9911169v1 10 Nov 1999 D. Clowe

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You BARYON ACOUSTIC OSCILLATIONS Cosmological Parameters and You OUTLINE OF TOPICS Definitions of Terms Big Picture (Cosmology) What is going on (History) An Acoustic Ruler(CMB) Measurements in Time and Space

More information

DES Galaxy Clusters x Planck SZ Map. ASTR 448 Kuang Wei Nov 27

DES Galaxy Clusters x Planck SZ Map. ASTR 448 Kuang Wei Nov 27 DES Galaxy Clusters x Planck SZ Map ASTR 448 Kuang Wei Nov 27 Origin of Thermal Sunyaev-Zel'dovich (tsz) Effect Inverse Compton Scattering Figure Courtesy to J. Carlstrom Observables of tsz Effect Decrease

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

Gravitational lensing

Gravitational lensing Gravitational lensing Martin White UC Berkeley Collaborators: Alexandre Amblard Henk Hoekstra Masahiro Takada Shirley Ho Dragan Huterer Ludo van Waerbeke Chris Vale Outline What and why? Background and

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

arxiv:astro-ph/ v1 2 Sep 2004

arxiv:astro-ph/ v1 2 Sep 2004 Sunyaev-Zel dovich polarization simulation Alexandre Amblard a,1, Martin White a,b,2 a Department of Astronomy, University of California, Berkeley, CA, 94720 b Department of Physics, University of California,

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 October 28, 2003 Name: Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. No

More information

Synergistic cosmology across the spectrum

Synergistic cosmology across the spectrum Synergistic cosmology across the spectrum Stefano Camera Dipartimento di Fisica, Università degli Studi di Torino, Italy Fundamental Cosmology Lion Panther She-wolf Fundamental Cosmology Dark matter Dark

More information

Dark Matter and Cosmic Structure Formation

Dark Matter and Cosmic Structure Formation Dark Matter and Cosmic Structure Formation Prof. Luke A. Corwin PHYS 792 South Dakota School of Mines & Technology Jan. 23, 2014 (W2-2) L. Corwin, PHYS 792 (SDSM&T) DM & Cosmic Structure Jan. 23, 2014

More information

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004 NeoClassical Probes in of the Dark Energy Wayne Hu COSMO04 Toronto, September 2004 Structural Fidelity Dark matter simulations approaching the accuracy of CMB calculations WMAP Kravtsov et al (2003) Equation

More information

Gravitational Lensing. Einstein deflection angle Lens equation, magnification Galaxy lenses Cluster lenses Weak lensing Time delays in lenses

Gravitational Lensing. Einstein deflection angle Lens equation, magnification Galaxy lenses Cluster lenses Weak lensing Time delays in lenses Gravitational Lensing Einstein deflection angle Lens equation, magnification Galaxy lenses Cluster lenses Weak lensing Time delays in lenses Einstein's deflection angle In General Relativity, light is

More information

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest

Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest Really, what universe do we live in? White dwarfs Supernova type Ia Accelerating universe Cosmic shear Lyman α forest White dwarf Core of solar mass star No energy from fusion or gravitational contraction

More information

Gravitational Lensing

Gravitational Lensing Gravitational Lensing Gravitational lensing, which is the deflection of light by gravitational fields and the resulting effect on images, is widely useful in cosmology and, at the same time, a source of

More information

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Probing Fundamental Physics with CMB Spectral Distortions, CERN March 12, 2018

More information

The AfterMap Wayne Hu EFI, February 2003

The AfterMap Wayne Hu EFI, February 2003 The AfterMap Wayne Hu EFI, February 2003 Connections to the Past Outline What does MAP alone add to the cosmology? What role do other anisotropy experiments still have to play? How do you use the MAP analysis

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 6; April 30 2013 Lecture 5 - Summary 1 Mass concentrations between us and a given object in the sky distort the image of that object on the sky, acting like magnifying

More information

CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS III: MASS-TO-LIGHT RATIOS

CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS III: MASS-TO-LIGHT RATIOS Last revision September 7, 2007. Preprint typeset using L A TEX style emulateapj v. 03/07/07 SLAC-PUB-12814 astro-ph/0709.1162 September 2007 CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS III:

More information

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Charles Mpho Takalana Supervisor: Prof Sergio Colafrancesco University of the Witwatersrand November 28,

More information

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Baryon acoustic oscillations A standard ruler method to constrain dark energy Baryon acoustic oscillations A standard ruler method to constrain dark energy Martin White University of California, Berkeley Lawrence Berkeley National Laboratory... with thanks to Nikhil Padmanabhan

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Mapping the dark universe with cosmic magnification

Mapping the dark universe with cosmic magnification Mapping the dark universe with cosmic magnification 张鹏杰 Zhang, Pengjie 中科院上海天文台 Shanghai Astronomical Observatory (SHAO) Chinese Academy of Sciences All the hard works are done by my student Yang Xinjuan

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it.

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it. The Next 2-3 Weeks [27.1] The Extragalactic Distance Scale. [27.2] The Expansion of the Universe. [29.1] Newtonian Cosmology [29.2] The Cosmic Microwave Background [17] General Relativity & Black Holes

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

Clusters: Context and Background

Clusters: Context and Background Clusters: Context and Background We re about to embark on a subject rather different from what we ve treated before, so it is useful to step back and think again about what we want to accomplish in this

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

Galaxies and Cosmology

Galaxies and Cosmology F. Combes P. Boisse A. Mazure A. Blanchard Galaxies and Cosmology Translated by M. Seymour With 192 Figures Springer Contents General Introduction 1 1 The Classification and Morphology of Galaxies 5 1.1

More information

1. INTRODUCTION. Received 2003 March 12; accepted 2003 May 28. Ann Arbor, MI Fermi National Accelerator Laboratory, P.O.

1. INTRODUCTION. Received 2003 March 12; accepted 2003 May 28. Ann Arbor, MI Fermi National Accelerator Laboratory, P.O. The Astrophysical Journal Supplement Series, 148:243 274, 2003 October # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. E A MERGED CATALOG OF CLUSTERS OF GALAXIES FROM

More information

Dark Energy Constratins from Lensing-Detected Galaxy Clusters

Dark Energy Constratins from Lensing-Detected Galaxy Clusters University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 6-21-26 Dark Energy Constratins from Lensing-Detected Galaxy Clusters Laura Marian University of Pennsylvania

More information

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Daisuke Nagai Yale University IPMU, July 15 th, 2010 Large-scale structure in the Universe SDSS (optical) Today δρ/ρ>>1

More information

Exploring Dark Energy

Exploring Dark Energy Lloyd Knox & Alan Peel University of California, Davis Exploring Dark Energy With Galaxy Cluster Peculiar Velocities Exploring D.E. with cluster v pec Philosophy Advertisement Cluster velocity velocity

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Gaussian Process Modeling in Cosmology: The Coyote Universe. Katrin Heitmann, ISR-1, LANL

Gaussian Process Modeling in Cosmology: The Coyote Universe. Katrin Heitmann, ISR-1, LANL 1998 2015 Gaussian Process Modeling in Cosmology: The Coyote Universe Katrin Heitmann, ISR-1, LANL In collaboration with: Jim Ahrens, Salman Habib, David Higdon, Chung Hsu, Earl Lawrence, Charlie Nakhleh,

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information

Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1

Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1 Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1 Speaker: Shuo Cao Department of Astronomy Beijing Normal University Collaborators: Giovanni

More information

Dark Energy Survey. Josh Frieman DES Project Director Fermilab and the University of Chicago

Dark Energy Survey. Josh Frieman DES Project Director Fermilab and the University of Chicago Dark Energy Survey Josh Frieman DES Project Director Fermilab and the University of Chicago Seeing the Big Picture: DECam Community Workshop Tucson, August 2011 www.darkenergysurvey.org Dark Energy What

More information

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy) OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY Marco Roncadelli INFN Pavia (Italy) ABSTRACT Assuming KNOWN physical laws, I first discuss OBSERVATIONAL evidence for dark matter in galaxies and

More information

3 The lives of galaxies

3 The lives of galaxies Discovering Astronomy : Galaxies and Cosmology 24 3 The lives of galaxies In this section, we look at how galaxies formed and evolved, and likewise how the large scale pattern of galaxies formed. But before

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

ASTR 610 Theory of Galaxy Formation

ASTR 610 Theory of Galaxy Formation ASTR 610 Theory of Galaxy Formation Lecture 13: The Halo Model & Halo Occupation Statistics Frank van den Bosch Yale University, Fall 2018 The Halo Model & Occupation Statistics In this lecture we discuss

More information

Weak Lensing. Alan Heavens University of Edinburgh UK

Weak Lensing. Alan Heavens University of Edinburgh UK Weak Lensing Alan Heavens University of Edinburgh UK Outline History Theory Observational status Systematics Prospects Weak Gravitational Lensing Coherent distortion of background images Shear, Magnification,

More information

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania

Complementarity in Dark Energy measurements. Complementarity of optical data in constraining dark energy. Licia Verde. University of Pennsylvania Complementarity in Dark Energy measurements Complementarity of optical data in constraining dark energy Licia Verde University of Pennsylvania www.physics.upenn.edu/~lverde The situation: SN 1A (Riess

More information

Lecture 7:Our Universe

Lecture 7:Our Universe Lecture 7:Our Universe 1. Traditional Cosmological tests Theta-z Galaxy counts Tolman Surface Brightness test 2. Modern tests HST Key Project (H o ) Nucleosynthesis (Ω b ) BBN+Clusters (Ω M ) SN1a (Ω M

More information

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden Outline Covers chapter 6 in Ryden Cosmological parameters I The most important ones in this course: M : Matter R : Radiation or DE : Cosmological constant or dark energy tot (or just ): Sum of the other

More information

Observational Cosmology

Observational Cosmology Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 15: Observational Cosmology 1 Outline Observational Cosmology: observations that allow us to test

More information

Hubble s Law and the Cosmic Distance Scale

Hubble s Law and the Cosmic Distance Scale Lab 7 Hubble s Law and the Cosmic Distance Scale 7.1 Overview Exercise seven is our first extragalactic exercise, highlighting the immense scale of the Universe. It addresses the challenge of determining

More information

Frontiers: Sunyaev-Zeldovich effect

Frontiers: Sunyaev-Zeldovich effect Frontiers: Sunyaev-Zeldovich effect An effect predicted more than four decades ago, the S-Z effect has come into its own as a probe of cosmological conditions, due to instrumental advances and a certain

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

DA(z) from Strong Lenses. Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Inaugural MIAPP Workshop on Extragalactic Distance Scale May 26, 2014

DA(z) from Strong Lenses. Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Inaugural MIAPP Workshop on Extragalactic Distance Scale May 26, 2014 DA(z) from Strong Lenses Eiichiro Komatsu, Max-Planck-Institut für Astrophysik Inaugural MIAPP Workshop on Extragalactic Distance Scale May 26, 2014 This presentation is based on: Measuring angular diameter

More information

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction Chapter 9 Cosmic Structures 9.1 Quantifying structures 9.1.1 Introduction We have seen before that there is a very specific prediction for the power spectrum of density fluctuations in the Universe, characterised

More information

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744 The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744 Kawamata+15, ApJ, 804, 103 Ryota Kawamata The University of Tokyo With: Masafumi Ishigaki, Kazuhiro Shimasaku, Masamune

More information

Direct empirical proof of dark matter?

Direct empirical proof of dark matter? Direct empirical proof of dark matter? Masaki Mori Reference: D. Clowe et al., astro-ph/0608407 J.W. Moffat, astro-ph/0608675 ICRR CANGAROO Group Internal Seminar, 05-OCT-2006 Bergstroem and Goobar, Cosmology

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

Where are oxygen synthesized in stars?

Where are oxygen synthesized in stars? The oxygen abundance from X-rays : methods and prospects K. Matsushita Where are oxygen synthesized in stars? Hot intracluster medium (ICM) Warm-hot intergalactic medium? Hot interstellar medium in early-type

More information

Set 1: Expansion of the Universe

Set 1: Expansion of the Universe Set 1: Expansion of the Universe Syllabus Course text book: Ryden, Introduction to Cosmology, 2nd edition Olber s paradox, expansion of the universe: Ch 2 Cosmic geometry, expansion rate, acceleration:

More information

Gravitational Lensing: Strong, Weak and Micro

Gravitational Lensing: Strong, Weak and Micro P. Schneider C. Kochanek J. Wambsganss Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33 Swiss Society for Astrophysics and Astronomy Edited by G. Meylan, P. Jetzer and P. North

More information