Weak Lensing. Alan Heavens University of Edinburgh UK

Size: px
Start display at page:

Download "Weak Lensing. Alan Heavens University of Edinburgh UK"

Transcription

1 Weak Lensing Alan Heavens University of Edinburgh UK

2 Outline History Theory Observational status Systematics Prospects

3 Weak Gravitational Lensing Coherent distortion of background images Shear, Magnification, Amplification Jain & Seljak

4 Weak lensing: the Bush years 2000 First detections (Bacon et al, Kaiser et al, Wittman et al, van Waerbeke et al) Weak-lensing selected cluster catalogues (e.g. Miyazake et al, Wittman et al) Non-parametric mass distributions in clusters (e.g. Kneib et al, Clowe et al, Jee et al, Gray et al) Dark matter power spectrum (Brown et al, Heymans et al, Hoekstra et al, Semboloni et al) 2004 Bullet cluster challenge to MOND (Clowe et al) D potential reconstruction (Taylor et al, Massey et al) Evolution of structure (Bacon et al) D analyses (Heavens et al, Kitching et al, Taylor et al) sq deg surveys, with small error bars (Benjamin et al, Fu et al)

5 Physics Einstein gravity θ β Van Waerbeke & Mellier 2004 η γ 2 γ 1 e.g. Gunn 1967 (Feynman 1964); Kristian & Sachs 1966 Complex shear γ =γ 1 + i γ 2

6 E and B modes Lensing essentially produces only E modes Jain & Seljak B modes from galaxy clustering, 2 nd - order effects (both small), imperfect PSF modelling, optics systematics, intrinsic alignments of galaxies

7 Lensing potential Integrate: Lensing potential (Flat Universe) And convergence κ and shear are given by transverse derivatives of φ: Note: dependence is on gravitational potential: lensing probes the mass distribution directly. Bias is not an issue. Expected Shear is ~ 1%

8 Reconstruction of density/potential Halo profiles (Josh Frieman s talk) 2D cluster potential/density Hot Gas (X-ray) Dark Matter (Lensing) Galaxies 3D A901: Gray et al 2004 Markevitch et al 2002; Clowe et al 2004 COMBO-17: Taylor et al 2004 COSMOS: Massey et al 2007

9 Statistical analysis: 2D E.g. Shear-shear correlations on the sky Depends on how clumpy the Universe is: P(k,t) Peacock & Dodds 96; Smith et al 2003 Simulated: Jain et al 2000 How far away the galaxies are: n(z) To get n(z), best practical way is via photo-zs

10 Results: tension with WMAP? Early CFHTLS results σ 8 22 sq deg; median z=0.8 Hoekstra et al 2005; see also Semboloni et al 2005 Ω m σ 8 = at Ω m =0.26 BUT: n(z) estimated from Hubble Deep Field galaxies large sample variance

11 Reanalysis of recent data 100 square degree survey (Benjamin et al 2007) Better n(z) from photozs from same (CFHTLS deep) survey Reduced tension between lensing results and WMAP.

12 Recent results: CFHTLS E modes B modes 57 sq deg; median z=0.95 WMAP3 Fu et al 2008

13 Dark Energy: effects Distance-redshift relations r(z), D A,D L Growth rate of perturbations g(z) Z information is crucial

14 Steps to 3D: lensing in slices Dividing the source distribution improves parameter estimation Hu (1999)

15 Full 3D weak lensing Heavens 2003 Use individual photo-zs: Very noisy, point-process sampling of 3D shear field 3D shear power spectrum probes r(z) and g(z) Reduces tomography statistical errors by factor ~ 1.3

16 Shear Ratio Test The ratio of R( Ω V, Ω m, w) = shears has a γ ( z γ ( z 1 2, z, z L L ), ) purely geometric dependence R r( z = r( z 2 1 )[ r( z )[ r( z 1 2 ) ) r( z r( z L L )] )] γ 1 γ 2 Observer Galaxy cluster/lens z L Depends only on global geometry: Ω DE, Ω m and w. Apply to large signal from galaxy clusters Similar accuracy to 3D shear power spectrum (Jain & Taylor, 2003, Taylor et al 2007) z z 2 1

17 w from 3D lensing Proof of concept: COMBO-17 (0.75 square degrees) 3D shear Shear ratio w = -1.1 ± 0.6 Not a competitive error, but proof of concept for future large 3D surveys Predicted a priori Kitching et al 2007

18 Estimating shear Measure ellipticity of galaxy Estimate shear γ by averaging over many galaxies (since <e I >=0) Dispersion in e I is ~0.3 Shear is ~0.01

19 Image quality Telescope optics & atmosphere may distort images up to ~10% Use stars to correct for the Point Spread Function (PSF) distortions

20 Shape measurement Needs to be done without significant bias Examples: moments (KSB) orthogonal function decomposition (shapelets) shape fitting (im2shape, lensfit)

21 Requirements are stringent: Fit g = (1+m) g true + c Need m < 5-8 x 10-3 for shape measurement not to dominate errors on w in DUNE Lensfit (Miller et al 2007; Kitching et al 2008): m = (6 5) x 10-3 from simulated STEP (Heymans et al 2006) data Massey et al 2007

22 Astrophysical complications Lensing analysis assumed orientations of source galaxies are uncorrelated Intrinsic correlations destroy this Intrinsic alignments e I + g <e e*> = < gg*> + <e I e I *>

23 Intrinsic alignments <e e*> = < gg*> + <e I e I *> + < g e I * > + < e I g* > <e I e I *> Theory: Tidal torques Heavens, Refregier & Heymans 2000, Croft & Metzler 2000, Crittenden et al 2001 etc Brown et al 2000 Downweight/discard pairs at similar photometric redshifts (Heymans & Heavens 2002; King & Schneider 2002a,b) REMOVES EFFECT~COMPLETELY

24 Shear-intrinsic alignments < g e I * > Hirata & Seljak 2004 Tidal field contributes to weak shear (of background) Tidal field could also orient galaxies (locally) (Hirata and Seljak 2004; Mandelbaum et al 2005, Trujillo et al 2006, Yang et al 2006, Hirata et al 2007) SDSS: Mandelbaum et al 2005 Expect 5-10% contamination Simulations: Heymans et al 2006

25 Removing shear-intrinsic ellipticity contamination Expect signal to have different redshift dependence from weak lensing fl model it Heymans et al 2006; King 2006; Hirata & Seljak 2004 Hirata et al 2007

26 Photometric redshifts z true -z photometric z photometric Ú > 0.002, it is an important systematic for w for DUNE. Need to calibrate with many (~3 x 10 5 ) spectra (Abdalla et al 2007) Need good photo-zs to model and remove shear-intrinsic alignments (Bridle & King 2007) Reasonable priors suggest a degradation by a factor of ~2 in DUNE Figure of Merit (1/Dw 0 Dw a ) from systematics (Kitching et al 2008b) Abdalla et al 2007

27 Prospects w(a)=w 0 +w a (1-a) Chevallier & Polarski Ground: KIDS, Pan- STARRS 1, DES, HSC, LSST Space: DUNE,SNAP (see Anaïs Rassat s talk) Area/ sq deg Median z Gals/ sq min Start Date KIDS 1700 ~0.6 ~ PS ~0.65 > HSC 2000 > DUNE ~

28 Beyond-Einstein gravity Dynamic Dark Energy can mimic the H(z), r(z) of any modified gravity law Probing both r(z) and g(z) allows lifting of this degeneracy, at least for some classes of model (See Martin Kunz talk) Parametrise gravity by Minimal Modified Gravity law (Linder 2005) γ 0.55 (GR); γ 0.68 (Flat DGP model) Bayesian Evidence ratio 3.8 (2.8s) for Pan-STARRS 1, 63 (11s) for DUNE (Heavens et al 2007; Amendola et al 2007)

29 Conclusions Much progress since 2000: 1 Ø 10 2 Ø 10 4 sq deg Lensing in 3D is potentially very powerful: precision of ~1% on w potentially possible from ground. Needs: Large area (tens of thousands of square degrees) Depth z~1 Very small telescope distortions Good photometric redshifts Systematics: shape measurement, intrinsic alignments, photo-zs: probably reduce DUNE Figure of Merit by factor ~2 Next-generation surveys could further distinguish Dark Energy from Modified Gravity

Weak Lensing: a Probe of Dark Matter and Dark Energy. Alexandre Refregier (CEA Saclay)

Weak Lensing: a Probe of Dark Matter and Dark Energy. Alexandre Refregier (CEA Saclay) Weak Lensing: a Probe of Dark Matter and Dark Energy Alexandre Refregier (CEA Saclay) SLAC August 2004 Concordance ΛCDM Model Outstanding questions: initial conditions (inflation?) nature of the dark matter

More information

The Dark Sector ALAN HEAVENS

The Dark Sector ALAN HEAVENS The Dark Sector ALAN HEAVENS INSTITUTE FOR ASTRONOMY UNIVERSITY OF EDINBURGH AFH@ROE.AC.UK THIRD TRR33 WINTER SCHOOL PASSO DEL TONALE (ITALY) 6-11 DECEMBER 2009 Outline Dark Matter Dark Energy Dark Gravity

More information

Catherine Heymans. Observing the Dark Universe with the Canada- France Hawaii Telescope Lensing Survey

Catherine Heymans. Observing the Dark Universe with the Canada- France Hawaii Telescope Lensing Survey Observing the Dark Universe with the Canada- France Hawaii Telescope Lensing Survey Catherine Heymans Institute for Astronomy, University of Edinburgh The intervening dark matter lenses the light from

More information

Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne)

Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne) Are VISTA/4MOST surveys interesting for cosmology? Chris Blake (Swinburne) Yes! Probes of the cosmological model How fast is the Universe expanding with time? How fast are structures growing within it?

More information

What Gravitational Lensing tells us

What Gravitational Lensing tells us What Gravitational Lensing tells us Catherine Heymans Institute for Astronomy, University of Edinburgh Six Six things lensing has has told told us us about Dark Matter How How lensing works First First

More information

Weak Lensing: Status and Prospects

Weak Lensing: Status and Prospects Weak Lensing: Status and Prospects Image: David Kirkby & the LSST DESC WL working group Image: lsst.org Danielle Leonard Carnegie Mellon University Figure: DES Collaboration 2017 for LSST DESC June 25,

More information

Controlling intrinsic alignments in weak lensing statistics

Controlling intrinsic alignments in weak lensing statistics Controlling intrinsic alignments in weak lensing statistics Benjamin Joachimi, Peter Schneider joachimi@astro.uni-bonn.de Bonn University, Germany ADA6, Monastir, Tunisia May 6th 2010 Outline Intrinsic

More information

EIC Simulations. Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

EIC Simulations. Thomas Kitching, EIC Weak Lensing & Simulation Working Groups EIC Simulations Thomas Kitching A. Amara, S. Bridle, O. Boulade, B. Dobke, A. Fontana, A. Grazian, A. Heavens, A. Kiessling, M. Meneghetti, S. Paulin-Henriksson, J. Rhodes, A. Refregier, A. Taylor, R.

More information

Lensing with KIDS. 1. Weak gravitational lensing

Lensing with KIDS. 1. Weak gravitational lensing Lensing with KIDS studying dark matter and dark energy with light rays Konrad Kuijken Leiden Observatory Outline: 1. Weak lensing introduction 2. The KIDS survey 3. Galaxy-galaxy lensing (halos) 4. Cosmic

More information

Mapping the dark universe with cosmic magnification

Mapping the dark universe with cosmic magnification Mapping the dark universe with cosmic magnification 张鹏杰 Zhang, Pengjie 中科院上海天文台 Shanghai Astronomical Observatory (SHAO) Chinese Academy of Sciences All the hard works are done by my student Yang Xinjuan

More information

Gravitational lensing

Gravitational lensing Gravitational lensing Martin White UC Berkeley Collaborators: Alexandre Amblard Henk Hoekstra Masahiro Takada Shirley Ho Dragan Huterer Ludo van Waerbeke Chris Vale Outline What and why? Background and

More information

(Weak) Gravitational lensing (A review) Martin White UC Berkeley Santa Fe 2004

(Weak) Gravitational lensing (A review) Martin White UC Berkeley Santa Fe 2004 (Weak) Gravitational lensing (A review) Martin White UC Berkeley Santa Fe 2004 Overview Cosmic shear is the distortion of the shapes of background galaxies due to the bending of light by the potentials

More information

WL and BAO Surveys and Photometric Redshifts

WL and BAO Surveys and Photometric Redshifts WL and BAO Surveys and Photometric Redshifts Lloyd Knox University of California, Davis Yong-Seon Song (U Chicago) Tony Tyson (UC Davis) and Hu Zhan (UC Davis) Also: Chris Fassnacht, Vera Margoniner and

More information

An Introduction to the Dark Energy Survey

An Introduction to the Dark Energy Survey An Introduction to the Dark Energy Survey A study of the dark energy using four independent and complementary techniques Blanco 4m on Cerro Tololo Galaxy cluster surveys Weak lensing Galaxy angular power

More information

redshift surveys Kazuhiro Yamamoto T. Sato (Hiroshima) G. Huetsi (UCL) 2. Redshift-space distortion

redshift surveys Kazuhiro Yamamoto T. Sato (Hiroshima) G. Huetsi (UCL) 2. Redshift-space distortion Testing gravity with large galaxy redshift surveys Kazuhiro Yamamoto Hiroshima University T. Sato Hiroshima G. Huetsi UCL 1. Introduction. Redshift-space distortion 3. Measurement of quadrupole 4. Constraint

More information

Shape Measurement: An introduction to KSB

Shape Measurement: An introduction to KSB Shape Measurement: An introduction to KSB Catherine Heymans Institute for Astronomy, University of Edinburgh, UK DUEL Weak Lensing School September 2009 at the end of the week you ll be able to... Use

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

Diving into precision cosmology and the role of cosmic magnification

Diving into precision cosmology and the role of cosmic magnification Diving into precision cosmology and the role of cosmic magnification Jose Luis Bernal Institute of Cosmos Science - Barcelona University ICC Winter Meeting 2017 06/02/2017 Jose Luis Bernal (ICCUB) ICC

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005

Weak Gravitational Lensing. Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005 Weak Gravitational Lensing Gary Bernstein, University of Pennsylvania KICP Inaugural Symposium December 10, 2005 astrophysics is on the 4th floor... President Amy Gutmann 215 898 7221 Physics Chair Tom

More information

Cosmic shear and cosmology

Cosmic shear and cosmology Cosmic shear and cosmology Overview Second-order cosmic shear statistics Shear tomography (2 1/2 D lensing) Third-order cosmic shear statistics 3D lensing Peak statistics Shear-ratio geometry test (Flexion)

More information

EUCLID galaxy clustering and weak lensing at high redshift

EUCLID galaxy clustering and weak lensing at high redshift EUCLID galaxy clustering and weak lensing at high redshift Luca Amendola INAF/Osservatorio Astronomico di Roma Observations are converging to an unexpected universe The dark energy problem F g μν 1 R μν

More information

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004 NeoClassical Probes in of the Dark Energy Wayne Hu COSMO04 Toronto, September 2004 Structural Fidelity Dark matter simulations approaching the accuracy of CMB calculations WMAP Kravtsov et al (2003) Equation

More information

Weak Lensing (and other) Measurements from Ground and Space Observatories

Weak Lensing (and other) Measurements from Ground and Space Observatories Weak Lensing (and other) Measurements from Ground and Space Observatories Gary Bernstein CfCP Workshop 12/16/01 1. Present State of the Art: New Results from the CTIO Weak Lensing Survey. Mike Jarvis GMB,

More information

Large Imaging Surveys for Cosmology:

Large Imaging Surveys for Cosmology: Large Imaging Surveys for Cosmology: cosmic magnification AND photometric calibration Alexandre Boucaud Thesis work realized at APC under the supervision of James G. BARTLETT and Michel CRÉZÉ Outline Introduction

More information

The shapes of faint galaxies: A window unto mass in the universe

The shapes of faint galaxies: A window unto mass in the universe Lecture 15 The shapes of faint galaxies: A window unto mass in the universe Intensity weighted second moments Optimal filtering Weak gravitational lensing Shear components Shear detection Inverse problem:

More information

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14 Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering Roland de Pu+er JPL/Caltech COSMO- 14 Galaxy Clustering: - 3D maps of galaxies - > 3D power spectrum P(k,mu) - BOSS: V = 4.4 (h-

More information

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case!

CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! CMB Lensing Combined with! Large Scale Structure:! Overview / Science Case! X Blake D. Sherwin Einstein Fellow, LBNL Outline! I. Brief Introduction: CMB lensing + LSS as probes of growth of structure II.

More information

arxiv:astro-ph/ v1 24 Jun 2005

arxiv:astro-ph/ v1 24 Jun 2005 Draft version June 24, 2005 Preprint typeset using L A TEX style emulateapj v. 6/22/04 EFFECTS OF PHOTOMETRIC REDSHIFT UNCERTAINTIES ON WEAK LENSING TOMOGRAPHY Zhaoming Ma, Wayne Hu and Dragan Huterer

More information

Refining Photometric Redshift Distributions with Cross-Correlations

Refining Photometric Redshift Distributions with Cross-Correlations Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White Introduction Talk Overview Weak lensing tomography can improve

More information

arxiv: v1 [astro-ph.co] 7 Mar 2013

arxiv: v1 [astro-ph.co] 7 Mar 2013 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 8 March 2013 (MN LATEX style file v2.2) arxiv:1303.1808v1 [astro-ph.co] 7 Mar 2013 CFHTLenS tomographic weak lensing cosmological parameter constraints:

More information

Clusters, lensing and CFHT reprocessing

Clusters, lensing and CFHT reprocessing Clusters, lensing and CFHT reprocessing R. Ansari - French LSST meeting December 2015 1 Clusters as cosmological probes Clusters: characteristics and properties Basics of lensing Weighting the Giants Clusters

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

Cosmic shear analysis of archival HST/ACS data

Cosmic shear analysis of archival HST/ACS data 1 Patrick Simon 2,1 Thomas Erben 1 Peter Schneider 1 Jan Hartlap 1 Catherine Heymans 3 Phil Marshall 4,5 Chris Fassnacht 6 Eric Morganson 4 Marusa Bradac 4,5 Hendrik Hildebrandt 1 Marco Hetterscheidt 1

More information

(Weak) Gravitational lensing (A review) Martin White UC Berkeley Santa Fe 2004

(Weak) Gravitational lensing (A review) Martin White UC Berkeley Santa Fe 2004 (Weak) Gravitational lensing (A review) Martin White UC Berkeley Santa Fe 2004 Overview Cosmic shear is the distortion of the shapes of background galaxies due to the bending of light by the potentials

More information

arxiv:astro-ph/ v1 31 Aug 2005

arxiv:astro-ph/ v1 31 Aug 2005 Spurious Shear from the Atmosphere in Ground-Based Weak Lensing Observations D. Wittman 1 arxiv:astro-ph/0509003v1 31 Aug 2005 ABSTRACT Weak lensing observations have the potential to be even more powerful

More information

Shear Power of Weak Lensing. Wayne Hu U. Chicago

Shear Power of Weak Lensing. Wayne Hu U. Chicago Shear Power of Weak Lensing 10 3 N-body Shear 300 Sampling errors l(l+1)c l /2π εε 10 4 10 5 Error estimate Shot Noise θ y (arcmin) 200 100 10 6 100 1000 l 100 200 300 θ x (arcmin) Wayne Hu U. Chicago

More information

arxiv:astro-ph/ v2 12 Aug 2005

arxiv:astro-ph/ v2 12 Aug 2005 Draft version February 2, 2008 Preprint typeset using L A TEX style emulateapj v. 6/22/04 EFFECTS OF PHOTOMETRIC REDSHIFT UNCERTAINTIES ON WEAK LENSING TOMOGRAPHY Zhaoming Ma, Wayne Hu and Dragan Huterer

More information

arxiv:astro-ph/ v2 22 Aug 2007

arxiv:astro-ph/ v2 22 Aug 2007 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 5 September 2018 (MN LATEX style file v2.2) Cosmological Constraints From the 100 Square Degree Weak Lensing Survey arxiv:astro-ph/0703570v2 22 Aug

More information

arxiv:astro-ph/ v1 11 Oct 2002

arxiv:astro-ph/ v1 11 Oct 2002 DRAFT VERSION MARCH 5, 2008 Preprint typeset using L A TEX style emulateapj v. 14/09/00 THE THREE-POINT CORRELATION FUNCTION FOR SPIN-2 FIELDS MASAHIRO TAKADA AND BHUVNESH JAIN Department of Physics and

More information

EUCLID Cosmology Probes

EUCLID Cosmology Probes EUCLID Cosmology Probes Henk Hoekstra & Will Percival on behalf of the EUCLID The presented document is Proprietary information of the. This document shall be used and disclosed by the receiving Party

More information

Approximate Bayesian computation: an application to weak-lensing peak counts

Approximate Bayesian computation: an application to weak-lensing peak counts STATISTICAL CHALLENGES IN MODERN ASTRONOMY VI Approximate Bayesian computation: an application to weak-lensing peak counts Chieh-An Lin & Martin Kilbinger SAp, CEA Saclay Carnegie Mellon University, Pittsburgh

More information

Martin Kunz. University of Sussex. in collaborations with: Domenico Sapone and Luca Amendola

Martin Kunz. University of Sussex. in collaborations with: Domenico Sapone and Luca Amendola some dark things energy you would like prefer to know not to about orknow the about dark energy modified the dark but gravity? never energywill Martin Kunz University of Sussex in collaborations with:

More information

arxiv:astro-ph/ v1 10 Oct 2006

arxiv:astro-ph/ v1 10 Oct 2006 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 5 April 2008 (MN LATEX style file v1.4) Cosmological constraints from COMBO-17 using 3D weak lensing arxiv:astro-ph/0610284v1 10 Oct 2006 T. D. Kitching

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

Toward Understanding the Anisotropic Point Spread Function of Suprime-Cam and Its Impact on Cosmic Shear Measurement

Toward Understanding the Anisotropic Point Spread Function of Suprime-Cam and Its Impact on Cosmic Shear Measurement PASJ: Publ. Astron. Soc. Japan 65, 104, 2013 October 25 c 2013. Astronomical Society of Japan. Toward Understanding the Anisotropic Point Spread Function of Suprime-Cam and Its Impact on Cosmic Shear Measurement

More information

Understanding the Properties of Dark Energy in the Universe p.1/37

Understanding the Properties of Dark Energy in the Universe p.1/37 Understanding the Properties of Dark Energy in the Universe Dragan Huterer Case Western Reserve University Understanding the Properties of Dark Energy in the Universe p.1/37 The Cosmic Food Pyramid?? Radiation

More information

Cosmology and Large Scale Structure

Cosmology and Large Scale Structure Cosmology and Large Scale Structure Alexandre Refregier PASCOS13 Taipei 11.22.2013 Matter Baryons Dark Matter Radiation Inflation Dark Energy Gravity Measuring the Dark Universe Geometry Growth of structure

More information

A COMPARISON OF WEAK-LENSING MEASUREMENTS FROM GROUND- AND SPACE-BASED FACILITIES

A COMPARISON OF WEAK-LENSING MEASUREMENTS FROM GROUND- AND SPACE-BASED FACILITIES The Astrophysical Journal, 684:34 45, 2008 September 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. A A COMPARISON OF WEAK-LENSING MEASUREMENTS FROM GROUND- AND SPACE-BASED

More information

Some issues in cluster cosmology

Some issues in cluster cosmology Some issues in cluster cosmology Tim McKay University of Michigan Department of Physics 1/30/2002 CFCP Dark Energy Workshop 1 An outline Cluster counting in theory Cluster counting in practice General

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

Science from overlapping lensing / spec-z surveys. Chris Blake (Swinburne)

Science from overlapping lensing / spec-z surveys. Chris Blake (Swinburne) Science from overlapping lensing / spec-z surveys Chris Blake (Swinburne) Probes of the cosmological model How fast is the Universe expanding with time? How fast are structures growing within it? Redshift-space

More information

Weak lensing measurements of Dark Matter Halos around galaxies

Weak lensing measurements of Dark Matter Halos around galaxies Weak lensing measurements of Dark Matter Halos around galaxies Rachel Mandelbaum Carnegie Mellon University 1 Image credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team 2 Image credit: ESA/Planck 3 The

More information

Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration

Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration Mon. Not. R. Astron. Soc. 366, 11 114 (26) doi:1.1111/j.1365-2966.25.9782.x Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration Dragan Huterer, 1 Masahiro

More information

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015 Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015 Why is the expansion of the Universe accelerating? Dark energy? Modified gravity? What is the nature of the primordial Universe?

More information

Measuring Neutrino Masses and Dark Energy

Measuring Neutrino Masses and Dark Energy Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June 5-10 2007 In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

More information

arxiv: v1 [astro-ph.co] 5 Jul 2017

arxiv: v1 [astro-ph.co] 5 Jul 2017 Astronomy & Astrophysics manuscript no. shear_ c ESO 2018 April 29, 2018 Shear measurement : dependencies on methods, simulation parameters and measured parameters Arnau Pujol 1, Florent Sureau 1, Jerome

More information

arxiv: v1 [astro-ph.ga] 21 Apr 2015

arxiv: v1 [astro-ph.ga] 21 Apr 2015 Galaxy alignments: Observations and impact on cosmology arxiv:1504.05465v1 [astro-ph.ga] 21 Apr 2015 Donnacha Kirk 1, Michael L. Brown 2, Henk Hoekstra 3, Benjamin Joachimi 1, Thomas D. Kitching 4, Rachel

More information

Weak Gravitational Lensing

Weak Gravitational Lensing Weak Gravitational Lensing Sofia Sivertsson October 2006 1 General properties of weak lensing. Gravitational lensing is due to the fact that light bends in a gravitational field, in the same fashion as

More information

arxiv:astro-ph/ v2 12 Mar 2004

arxiv:astro-ph/ v2 12 Mar 2004 Weak Lensing from Space II: Dark Matter Mapping arxiv:astro-ph/0304418v2 12 Mar 2004 Richard Massey Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, U.K. rjm@ast.cam.ac.uk Alexandre Refregier

More information

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501.

CONSTRAINTS AND TENSIONS IN MG CFHTLENS AND OTHER DATA SETS PARAMETERS FROM PLANCK, INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS. arxiv:1501. CONSTRAINTS AND TENSIONS IN MG PARAMETERS FROM PLANCK, CFHTLENS AND OTHER DATA SETS INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS arxiv:1501.03119 1 Mustapha Ishak The University of Texas at Dallas Jason

More information

Imaging the Dark Universe with Euclid

Imaging the Dark Universe with Euclid Imaging the Dark Universe with Simon Lilly (ETH Zurich) on behalf of Alexandre Refregier (CEA Saclay) for the Imaging Consortium Conference ESTEC 17/11/09 1 Science Objectives Outstanding questions in

More information

Mapping Baryonic & Dark Matter in the Universe

Mapping Baryonic & Dark Matter in the Universe Mapping Baryonic & Dark Matter in the Universe Jean-Paul KNEIB Laboratoire d Astrophysique de Marseille, France A. Leauthaud, R. Massey, J. Rhodes, the COSMOS team, and many others Outline Motivation Basics

More information

WEAK LENSING FROM SPACE II: DARK MATTER MAPPING

WEAK LENSING FROM SPACE II: DARK MATTER MAPPING WEAK LENSING FROM SPACE II: DARK MATTER MAPPING Richard Massey 1,2, Jason Rhodes 2,3, Alexandre Refregier 1,2,4,JustinAlbert 2, David Bacon 5,GaryBernstein 6, Richard Ellis 2, Bhuvnesh Jain 6, Tim McKay

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK Recent BAO observations and plans for the future David Parkinson University of Sussex, UK Baryon Acoustic Oscillations SDSS GALAXIES CMB Comparing BAO with the CMB CREDIT: WMAP & SDSS websites FLAT GEOMETRY

More information

Gravitational Lensing: Strong, Weak and Micro

Gravitational Lensing: Strong, Weak and Micro P. Schneider C. Kochanek J. Wambsganss Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33 Swiss Society for Astrophysics and Astronomy Edited by G. Meylan, P. Jetzer and P. North

More information

A FIGURE OF MERIT ANALYSIS OF CURRENT CONSTRAINTS ON TESTING GENERAL RELATIVITY USING THE LATEST COSMOLOGICAL DATA SETS.

A FIGURE OF MERIT ANALYSIS OF CURRENT CONSTRAINTS ON TESTING GENERAL RELATIVITY USING THE LATEST COSMOLOGICAL DATA SETS. A FIGURE OF MERIT ANALYSIS OF CURRENT CONSTRAINTS ON TESTING GENERAL RELATIVITY USING THE LATEST COSMOLOGICAL DATA SETS. Jason Dossett OUTLINE Motivations Ways to Test Gravity Growth Equations Modified

More information

Cosmology with weak-lensing peak counts

Cosmology with weak-lensing peak counts Durham-Edinburgh extragalactic Workshop XIV IfA Edinburgh Cosmology with weak-lensing peak counts Chieh-An Lin January 8 th, 2018 Durham University, UK Outline Motivation Why do we study WL peaks? Problems

More information

Studying the Dark Side of the Universe with. Tim Schrabback. Leiden Observatory Dresden, February 12th, 2009

Studying the Dark Side of the Universe with. Tim Schrabback. Leiden Observatory Dresden, February 12th, 2009 Studying the Dark Side of the Universe with Tim Schrabback Leiden Observatory Dresden, February 12th, 2009 Roadmap 1. Cosmology: Our changing view of the dark Universe 2. Seeing the invisible with gravitational

More information

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models

Modified gravity as an alternative to dark energy. Lecture 3. Observational tests of MG models Modified gravity as an alternative to dark energy Lecture 3. Observational tests of MG models Observational tests Assume that we manage to construct a model How well can we test the model and distinguish

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS

Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS Astronomy & Astrophysics manuscript no. schrabback cosmos c ESO 2010 March 23, 2010 Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS Tim Schrabback 1,2, Jan

More information

arxiv:astro-ph/ v2 17 May 2007

arxiv:astro-ph/ v2 17 May 2007 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 22 July 2018 (MN LATEX style file v1.4) Cosmological constraints from COMBO-17 using 3D weak lensing arxiv:astro-ph/0610284v2 17 May 2007 T. D. Kitching

More information

arxiv: v2 [astro-ph] 10 Mar 2009

arxiv: v2 [astro-ph] 10 Mar 2009 Astronomy & Astrophysics manuscript no. HiHaWhSAc8 c ESO 29 March 1, 29 arxiv:89.535v2 [astro-ph] 1 Mar 29 Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic

More information

Fresh approaches to density maps. David Bacon (ICG Portsmouth)

Fresh approaches to density maps. David Bacon (ICG Portsmouth) Fresh approaches to density maps David Bacon (ICG Portsmouth) Contributors: Chihway Chang (ETH Zurich) Bhuvnesh Jain (UPenn) Donnacha Kirk (UCL) Florent Leclercq (ICG) Peter Melchior (Ohio) Alkistis Pourtsidou

More information

Statistics and Prediction. Tom

Statistics and Prediction. Tom Statistics and Prediction Tom Kitching tdk@roe.ac.uk @tom_kitching David Tom David Tom photon What do we want to measure How do we measure Statistics of measurement Cosmological Parameter Extraction Understanding

More information

Observational evidence for Dark energy

Observational evidence for Dark energy Observational evidence for Dark energy ICSW-07 (Jun 2-9, 2007) Tarun Souradeep I.U.C.A.A, Pune, India Email: tarun@iucaa.ernet.in Observational evidence for DE poses a major challenge for theoretical cosmology.

More information

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth

RADIO-OPTICAL-cmb SYNERGIES. Alkistis Pourtsidou ICG Portsmouth RADIO-OPTICAL-cmb SYNERGIES Alkistis Pourtsidou ICG Portsmouth Image credit: Hayden Planetarium, 2014 New Frontiers in Observational Cosmology [Planck 2015] 95% of our Universe is very strange - new physics!

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

Cosmology with the ESA Euclid Mission

Cosmology with the ESA Euclid Mission Cosmology with the ESA Euclid Mission Andrea Cimatti Università di Bologna Dipartimento di Astronomia On behalf of the Euclid Italy Team ESA Cosmic Vision 2015-2025 M-class Mission Candidate Selected in

More information

The WiggleZ Dark Energy Survey: direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

The WiggleZ Dark Energy Survey: direct constraints on blue galaxy intrinsic alignments at intermediate redshifts Mon. Not. R. Astron. Soc. 410, 844 859 (2011) doi:10.1111/j.1365-2966.2010.17485.x The WiggleZ Dark Energy Survey: direct constraints on blue galaxy intrinsic alignments at intermediate redshifts Rachel

More information

Measurements of Dark Energy

Measurements of Dark Energy Measurements of Dark Energy Lecture 3: Concordance with the Growth of Structure Phil Marshall UCSB SLAC Summer Institute August 2009 Recap of Lecture 2 Expansion history now constrained by CMB, SNe, cluster

More information

Weighing the Giants:

Weighing the Giants: Weighing the Giants: Accurate Weak Lensing Mass Measurements for Cosmological Cluster Surveys Anja von der Linden Tycho Brahe Fellow DARK Copenhagen + KIPAC, Stanford IACHEC, May 14, 2014 1 Hello! Copenhagen

More information

Direct empirical proof of dark matter?

Direct empirical proof of dark matter? Direct empirical proof of dark matter? Masaki Mori Reference: D. Clowe et al., astro-ph/0608407 J.W. Moffat, astro-ph/0608675 ICRR CANGAROO Group Internal Seminar, 05-OCT-2006 Bergstroem and Goobar, Cosmology

More information

Supernovae with Euclid

Supernovae with Euclid Supernovae with Euclid Isobel Hook University of Oxford and INAF (Obs. Roma) Thanks to R. Nichol, M. Della Valle, F. Mannucci, A. Goobar, P. Astier, B. Leibundgut, A. Ealet Euclid Conference 17 18 Nov

More information

Aspects of large-scale structure. John Peacock UniverseNet Mytilene Sept 2007

Aspects of large-scale structure. John Peacock UniverseNet Mytilene Sept 2007 Aspects of large-scale structure John Peacock UniverseNet Mytilene Sept 2007 WMAP 2003 2dFGRS cone diagram: 4-degree wedge 220,000 redshifts 1997-2003 Simulating structure formation The Virgo consortium

More information

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002 The Silk Damping Tail of the CMB 100 T (µk) 10 10 100 1000 l Wayne Hu Oxford, December 2002 Outline Damping tail of temperature power spectrum and its use as a standard ruler Generation of polarization

More information

Weak lensing, dark matter and dark energy

Weak lensing, dark matter and dark energy Gen Relativ Gravit (2010) 42:2177 2195 DOI 10.1007/s10714-010-1051-z REVIEW ARTICLE Weak lensing, dark matter and dark energy Dragan Huterer Received: 9 January 2010 / Accepted: 8 June 2010 / Published

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford

LSST Cosmology and LSSTxCMB-S4 Synergies. Elisabeth Krause, Stanford LSST Cosmology and LSSTxCMB-S4 Synergies Elisabeth Krause, Stanford LSST Dark Energy Science Collaboration Lots of cross-wg discussions and Task Force hacks Junior involvement in talks and discussion Three

More information

Lambda or Dark Energy or Modified Gravity?

Lambda or Dark Energy or Modified Gravity? Lambda or Dark Energy or Modified Gravity? Dragan Huterer Department of Physics University of Michigan Evidence for Dark Energy Theory Model Building Which flavor of DE? Experiment Systematics control

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information

Cosmic shear analysis in 50 uncorrelated VLT fields. Implications

Cosmic shear analysis in 50 uncorrelated VLT fields. Implications A&A 368, 766 775 (2001) DOI: 10.1051/0004-6361:20010058 c ESO 2001 Astronomy & Astrophysics Cosmic shear analysis in 50 uncorrelated VLT fields. Implications for Ω 0, σ 8 R. Maoli 1,2,3,L.VanWaerbeke 1,4,

More information

Science with large imaging surveys

Science with large imaging surveys Science with large imaging surveys Hiranya V. Peiris University College London Science from LSS surveys: A case study of SDSS quasars Boris Leistedt (UCL) with Daniel Mortlock (Imperial) Aurelien Benoit-Levy

More information

Secondary Polarization

Secondary Polarization Secondary Polarization z i =25 0.4 Transfer function 0.2 0 z=1 z i =8 10 100 l Reionization and Gravitational Lensing Wayne Hu Minnesota, March 2003 Outline Reionization Bump Model independent treatment

More information

Cosmology with weak lensing surveys

Cosmology with weak lensing surveys Physics Reports 462 (2008) 67 121 Contents lists available at ScienceDirect Physics Reports journal homepage: www.elsevier.com/locate/physrep Cosmology with weak lensing surveys Dipak Munshi a,b,, Patrick

More information

Gravitational Lensing. A Brief History, Theory, and Applications

Gravitational Lensing. A Brief History, Theory, and Applications Gravitational Lensing A Brief History, Theory, and Applications A Brief History Einstein (1915): light deflection by point mass M due to bending of space-time = 2x Newtonian light tangentially grazing

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer The Effects of Calibration on the Bias of Shear Measurements Citation for published version: Gillis, B & Taylor, A 218, 'The Effects of Calibration on the Bias of Shear Measurements'

More information

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe

Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Baryon Acoustic Oscillations and Beyond: Galaxy Clustering as Dark Energy Probe Yun Wang Univ. of Oklahoma II Jayme Tiomno School of Cosmology August 6-10, 2012 Plan of the Lectures Lecture I: Overview

More information