PREDICTION OF HIGH-FREQUENCY DATA: APPLICATION TO EXCHANGE RATES TIME SERIES

Size: px
Start display at page:

Download "PREDICTION OF HIGH-FREQUENCY DATA: APPLICATION TO EXCHANGE RATES TIME SERIES"

Transcription

1 PREDICTION OF HIGH-FREQUENCY DATA: APPLICATION TO EXCHANGE RATES TIME SERIES Milan Marček Medis, spol. s r.o., Pri Dobroke, 659/8, Nira, Silesian Universiy, Insiue of compuer Science, Opava, Czech Republic Dušan Marček Universiy of Žilina, Faculy of Manageme Science and Informaics, Žilina, Slovak Republic Absrac This paper considers he use of ANN mehodology for parameers esimaion of he auoregressive condiional heeroscedasic (ARCH) processes. The paper provides heurisic approach of ARCH processes modelling. This approach is ofen employed o esimae he values of financial variables as raes of reurn, exchange raes, means and variances of inflaion, sock marke reurns and price indexes and also o predic heir variances. Keywords Ekonomerics, forecasing, RF neural nework economic hypohesis ARCH/GARC models. INTRODUCTION The usual assumpions for he linear regression model are ha he noise or disurbance ermsε have mean zero [ E( ε ) = 0 ], consan bu unknown variance σ ε = V ( ε ), and ha ε s are uncorrelaed. Someimes hese assumpions are unreasonable. In his paper we will briefly consider he case when he symmeric variance - covariance marix V of ε in Ordinary Leas Squares (OLS) procedure have unequal diagonal elemens, ha is, he errors ε do no have equal (nonconsan) variances (heeroscedasiciy), while some of he off-diagonal elemens of V are zero. Heeroscedasiciy can be caused by incorrec specificaion or by he use of he wrong funcional form. To remove he heeroscedasiciy i is necessary eiher o inroduce or o eliminae some variables or o inroduce some ransformaion so ha he variance errors will be uniform across all observaions. Financial variables as raes of reurn, exchange raes, inflaion, sock marke reurns, price indexes and oher economic variable of generally high frequency, are likely o originae from low complexiy chaos and respond no only o he mean, bu also o he variance and o he higher momens of random variables. I is widely know ha high frequency economic, especially financial daa change heir variances over ime. Deecion of implausible variance behaviour in such ime series provides imporan informaion which can improve he forecasing abiliy over shor ime period. The auoregressive condiional heeroscedasic process is based on such assumpion ha he recen pas gives informaion abou he one-period forecas variance. I is assumed ha he variance of a random variable forecas y is depend on he value of he condiioning variable y ha is V( y y ). ARCH models are going widely applied o series, where hourly, daily or weekly observaions are of ineres. Over he pas en years academics of compuer science have developed new sof echniques based on laes informaion echnologies such as sof, neural and granular compuing o help predic fuure values of high frequency financial daa. A he same ime, he field of financial economerics has undergone various new developmens, especially in finance models, sochasic volailiy, and sofware availabiliy.

2 This paper discusses and compares he forecass from volailiy models which are derived from compeing saisical and Radial Basic Funcion (RBF) neural nework (NN) specificaions. Our moivaion for his comparaive sudy lies in boh he difficuly for consrucing of appropriae saisical Auoregressive/Generalised Condiionally Heeroscedasic (ARCH-GARCH) models (so called hard compuing) o forecas volailiy even in ex pos simulaions and he recenly emerging problem-solving mehods ha exploi olerance for impression o achieve low soluion coss (sof compuing). The paper is organized as follows. In Secion we briefly describe he basic ARCH-GARCH model. In Secion 3 we presen he daa, conduc some preliminary analysis of he ime series and demonsrae he forecasing abiliies of ARCH-GARCH modes of an applicaion. In Secion 4 we inroduce he archiecure of fuzzy logic RBF neural nework for ime series forecasing. Secion 5 compares boh approaches and briefly concludes. ARCH MODELS As we menioned above, he basic idea of ARCH models is o incorporae in sandard regression or economeric model an independen variable, which evaluaed or predics he variance. The sample iniial model inroduced by Engle [4] is y = ε h h = a0 + ay or in erms of ψ he informaion se avaliable a ime, using condiional densiies y ψ ~ Ν ( 0, h ) () where ε is random error componen (whie noise) wih V ( ε ) = σ and normally disribued, a0, aare unknown parameers o be esimaed and h is he variance funcion. Bollerslev [] proposed a useful exension of Engle s ARCH model known as he generalised ARCH (GARCH) model for ime sequence { y } in he following form y = ν h, m s h = α + α y h () + β 0 i i i= = Model () forms he underlying basis for analysis of many financial processes. In [6] he models of dependence of exchange rae changes for four currencies (Deusche Mark, Swiss Franc, French Franc, Japanise Yen) agains US dollar are described by using six order of he ARCH model, represened in he following form ^ ^ 6 Δlog S = ε a + a( Δlog S ) 0 τ ττ =, =,,..., N where Δ log S = y is he weekly end rae of change of he log exchange rae by aking he firs logarihmic difference, N is sample size. ARCH-GARCH models are also designed o capure cerain characerisics ha are commonly associaed wih financial ime series. They are among ohers: fa ails, volailiy clusering, persisence, mean-reversion and leverage effec. As far as fa ails, i is well know ha he disribuion of many high frequency financial ime series usually have faer ails han a normal disribuion. The phenomena of faer ails is also called excess kurosis. In addiion, financial ime series usually exhibi a characerisic known as volailiy clusering in which large changes end o follow large changes, and small changes end o follow small changes. Volailiy is ofen persisen, or has a long memory if he curren level of volailiy affecs he fuure level for more ime periods ahead. Alhough financial ime series can exhibi excessive volailiy from ime o ime, volailiy will evenually sele

3 down o a long run level. The leverage effec expresses he asymmeric impac of posiive and negaive changes in financial ime series. I means ha he negaive shocks in price influence he volailiy differenly han he posiive shocks a he same size. Anoher varians ARCH-GARCH models can be found in [9], [0], [7]. 3 AN APPLICATIONOF ARCH-GARCH MODELS We illusrae he ARCH-GARCH mehodology on he developing a forecas model for he currency SKK/CZK (Slovak crown/czech crown) during he period from January, 007 o December, 008. The lengh of he ime series is 70 observaions. The daa are available a hp:// To build a forecas model he sample period (raining daa se denoed Α ) for analysis r,..., r 670 was defined, and he ex pos forecas period (validaion daa se denoed Ε ) r 67,..., r 70 The ime plo of he daa are shown in Fig.. Figure : The evoluion of cross rae CZK/SKK using he R sysem sofware [].36 0/0/ /0/008 CZK/SKK M0 007M07 008M0 008M07 We assume ha he generaing mechanism is probabilisic. The main purpose of ime series analysis is o undersand he underlying mechanism ha generaes he observed daa and, in urn o forecas he fuures values. In order o capure variance-nonlineariy an ARMA-GARCH model of changes raes was esimaed. Te specificaion of he esimaed model () wih Gaussian error disribuion resuled ino AR(7)+GARCH(,) process wih mean equaion []. r = r r r r 7 + ε r r r and he variance equaion (3) h ε = h The fied model vs. he original daase drawn by Eviews sofware [] is shown in Figure. 5 + Figure : The esimaed ARMA(7,0)+GARCH(,) model agains he original daases on whole range. (Residuals are a he boom) ARMA(7,0)+GARCH(,) ResidualS Acual CZKSKK Fied ARMA+GARCH M07 008M0 008M07

4 4 Soaf RBF Neural worapproach In his secion we show an approach of funcion esimaion for ime series modelled by means a granular fuzzy logic RBF neural nework based on Gaussian acivaion [5]. We proposed he neural archiecure according o Figure 3. Figure 3: Sof (fuzzy logic) NN The srucure of a neural nework is defined by is archiecure (processing unis and heir inerconnecions, acivaion funcions, mehods of learning and so on). In Figure 3 each circle or node represens he neuron. This neural nework consiss an inpu layer wih inpu vecor x and an oupu layer wih he oupu value ŷ. The layer beween he inpu and oupu layers is normally referred o as he hidden layer and is neurons as RBF neurons. Here, he inpu layer is no reaed as a layer of neural processing unis. One imporan feaure of RBF neworks is he way how oupu signals are calculaed in compuaional neurons. The oupu signals of he hidden layer are o =ψ ( x w ) (4) where x is a k-dimensional neural inpu vecor, w represens he hidden layer weighs, ψ are radial basis (Gaussian) acivaion funcions. Noe ha for an RBF nework, he hidden layer weighs w represen he cenres c of acivaion funcions in he hidden layer. To find he weighs w or cenres of acivaion funcions we used he adapive (learning) version of K-means clusering algorihm for s clusers. The second parameer of he RB funcion, he sandard deviaion is esimaed as K, (K ) muliple of he mean value of quadraic disance among he paerns and heir cluser cenres. The oupu layer neuron is linear and has a scalar oupu. The RBF nework compues he oupu daa se as s s ŷ = G ( x, c, v) = v ψ ( x, c ) =, v o (5), Α = where s denoes he number of he hidden layer neurons. The hidden layer neurons receive he Euclidian disances ( x c ) and compue he scalar values o, of he Gaussian funcion ψ ( x, c ) ha form he hidden layer oupu vecor o. Finally, he single linear oupu layer neuron compues he weighed sum of he Gaussian funcions ha form he oupu value of ŷ. If he scalar oupu values o, from he hidden layer will be normalised, where he normalisaion means ha he sum of he oupus from he hidden layer is equal o, hen he RBF nework will compue he normalised oupu daa se ŷ as follows s o s ψ ( x, c ), ŷ = G( x, c, v) = v s =, v, Α (6), s = = o, ψ ( x, c ) = = The nework wih one hidden layer and normalised oupu values o, is he fuzzy logic model or he sof RBF nework. To adap he weighs of v, we use he firs-order gradien procedure. In our case, he subecs of learning are he weighs v, only. These weighs can be adaped by he error back-propagaion algorihm. In his case, he weigh updae is paricularly simple. If he esimaed oupu for he single

5 oupu neuron is ŷ, and he correc oupu should be y, hen he error e is given by e = y - ŷ and he learning rule has he form v, v, + η e, =,,..., s; Α (7) o, where he erm, η (0,) is a consan called he learning rae parameer, o, is he normalised oupu signal from he hidden layer. Typically, he updaing process is divided ino epochs. Each epoch involves updaing all he weighs for all he examples. 5 Empirical Comparison The RBF NN was rained using he variables and daa ses as each ARCH-GARCH model above. The archiecure (7--) of he nework, repored in he las column of Table, consiss of hree layers and seven neurons: five neurons in inpu layer, one in hidden and oupu layer. Model AR(7)+ Sof RBF NN GARCH(,) Disribuion Topology (7--) Gaussian η = 0.03, K=.6 λ 0 () = 0.0 Table : Ex pos forecas RMSEs for ARCH-GARCH model and sof RBF NN. See ex for deails In he fuzzy logic RBF NN, he non-linear forecasing funcion f(x) was esimaed according o he expressions (6) wih Gaussian funcion ψ ( x, c ). The forecasing abiliy of paricular neworks was measured by he RMSE (Roo Mean Square Error) crierion of ex pos forecas periods (validaion daa se ). The deailed compuaional algorihm for he forecas RMSE values and he weigh updae rule for he nework is shown [8]. The resul of his applicaion is shown in Table. A direc comparison beween saisical (ARCH-GARCH) and neural nework models shows ha he saisical approach is beer han he neural nework compeior. The achieved ex pos accuracy of RBF NN (RMSE = ), bu is sill reasonable and accepable for use in forecasing sysems ha rouinely predic values of variables imporan in decision processes. Moreover, as we could see, he sof RBF NN has such aribues as compuaional efficiency, simpliciy, and ease adusing o changes in he process being forecas. Acknowledgemens This work was suppored by Czech gran foundaion under he gran GACR No.: 40/08/00 References [] BABEL, J., MECIAROVA, Z., PANCIKOVA, L.: Saisical and Sof Compuing Mehods in Cross Raes Modeling. Proceedings of seveh IC on SC Applied in Compuer and Economic Environmens.ICSC 009, European Polyechnical Insiue Kunovice, January 3, 009, Czech Republic [] BOLLERSLEV, D.: Generalized Auoregressive Condiional Heeroscedasiciy. Journal of Economerics 3 (986) [3] DING, Z., GRANGER, C.W., and ENGLE, R F.: A Long Memory Propery of Sock Marke Reurns and a New Mode. Journal of Empirical Finance,, (993) [4] ENGLE, R.F.: Auo regressive Condiional Heeroscedas-iciy wih Esimaes of he Variance of Unied Kindom Inflaion. Economerica 50 (98) [5] KECMAN, V.: Learning and sof compuing: suppor vecor machines, neural neworks, and

6 fuzzy logic. Massachuses: The MIT Press, 00 [6] KOCENDA, E.: A Tes for idd Residuals Based on Inegraing over he Correlaion Inegral. CERGE - EI, Working Paper 0, 996 [6] LI, D., and DU, Y.: Arificial inelligence wih uncerainy. Boca Raon: Chapman & Hall/CRC, Taylor & Francis Group, 008 [7] MARCEK, D., and MARCEK, M.: Time Series Analysis, Modelling and Forecasing wih Applicaions in Economics. The Universiy Press, Zilina, 00 [8] MARCEK, M., PANCIKOVA, L. and MARCEK, D.: Economerics & Sof Compuing. The Universiy Press, Zilina, 008 [9] NELSON, D.B.: Condiional Heeroskedasiciy in Asse Reurns: a New Approach. Economerica 59 () (99) [0] ZIVOT, E., WANG, J. (005): Modeling Financial Time Series wih S-PLUS, Springer Verlag, 005 [] hp:// [] hp:// Milan Marček milan.marcek@fri.uniza.sk Dušan Marček dusan.marcek@fri.uniza.sk

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Asymmery and Leverage in Condiional Volailiy Models Michael McAleer WORKING PAPER

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

FORECASTS GENERATING FOR ARCH-GARCH PROCESSES USING THE MATLAB PROCEDURES

FORECASTS GENERATING FOR ARCH-GARCH PROCESSES USING THE MATLAB PROCEDURES FORECASS GENERAING FOR ARCH-GARCH PROCESSES USING HE MALAB PROCEDURES Dušan Marček, Insiue of Comuer Science, Faculy of Philosohy and Science, he Silesian Universiy Oava he Faculy of Managemen Science

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

Asymmetry and Leverage in Conditional Volatility Models*

Asymmetry and Leverage in Conditional Volatility Models* Asymmery and Leverage in Condiional Volailiy Models* Micael McAleer Deparmen of Quaniaive Finance Naional Tsing Hua Universiy Taiwan and Economeric Insiue Erasmus Scool of Economics Erasmus Universiy Roerdam

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Modeling the Volatility of Shanghai Composite Index

Modeling the Volatility of Shanghai Composite Index Modeling he Volailiy of Shanghai Composie Index wih GARCH Family Models Auhor: Yuchen Du Supervisor: Changli He Essay in Saisics, Advanced Level Dalarna Universiy Sweden Modeling he volailiy of Shanghai

More information

Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models

Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models Forecasing Sock Exchange Movemens Using Arificial Neural Nework Models and Hybrid Models Erkam GÜREEN and Gülgün KAYAKUTLU Isanbul Technical Universiy, Deparmen of Indusrial Engineering, Maçka, 34367 Isanbul,

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

Volatility. Many economic series, and most financial series, display conditional volatility

Volatility. Many economic series, and most financial series, display conditional volatility Volailiy Many economic series, and mos financial series, display condiional volailiy The condiional variance changes over ime There are periods of high volailiy When large changes frequenly occur And periods

More information

Tourism forecasting using conditional volatility models

Tourism forecasting using conditional volatility models Tourism forecasing using condiional volailiy models ABSTRACT Condiional volailiy models are used in ourism demand sudies o model he effecs of shocks on demand volailiy, which arise from changes in poliical,

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2 Pak. J. Sais. 017 Vol. 33(1), 1-13 BOOTSTRAP PREDICTIO ITERVAS FOR TIME SERIES MODES WITH HETROSCEDASTIC ERRORS Amjad Ali 1, Sajjad Ahmad Khan, Alamgir 3 Umair Khalil and Dos Muhammad Khan 1 Deparmen of

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation

Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation WORKING PAPER 01: Robus criical values for uni roo ess for series wih condiional heeroscedasiciy errors: An applicaion of he simple NoVaS ransformaion Panagiois Manalos ECONOMETRICS AND STATISTICS ISSN

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

ARCH IN SHORT-TERM INTEREST RATES: CASE STUDY USA

ARCH IN SHORT-TERM INTEREST RATES: CASE STUDY USA Arch in Shor-Term Ineres Raes: Case Sudy USA ARCH IN SHORT-TERM INTEREST RATES: CASE STUDY USA Adrian Ausin, Universiy of Wes Georgia Swarna (Bashu) Du, Universiy of Wes Georgia ABSTRACT We invesigae ARCH

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes WHAT IS A KALMAN FILTER An recursive analyical echnique o esimae ime dependen physical parameers in he presence of noise processes Example of a ime and frequency applicaion: Offse beween wo clocks PREDICTORS,

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013 Mahemaical Theory and Modeling ISSN -580 (Paper) ISSN 5-05 (Online) Vol, No., 0 www.iise.org The ffec of Inverse Transformaion on he Uni Mean and Consan Variance Assumpions of a Muliplicaive rror Model

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

III. Module 3. Empirical and Theoretical Techniques

III. Module 3. Empirical and Theoretical Techniques III. Module 3. Empirical and Theoreical Techniques Applied Saisical Techniques 3. Auocorrelaion Correcions Persisence affecs sandard errors. The radiional response is o rea he auocorrelaion as a echnical

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Has the Business Cycle Changed? Evidence and Explanations. Appendix

Has the Business Cycle Changed? Evidence and Explanations. Appendix Has he Business Ccle Changed? Evidence and Explanaions Appendix Augus 2003 James H. Sock Deparmen of Economics, Harvard Universi and he Naional Bureau of Economic Research and Mark W. Wason* Woodrow Wilson

More information

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix

What Ties Return Volatilities to Price Valuations and Fundamentals? On-Line Appendix Wha Ties Reurn Volailiies o Price Valuaions and Fundamenals? On-Line Appendix Alexander David Haskayne School of Business, Universiy of Calgary Piero Veronesi Universiy of Chicago Booh School of Business,

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

The Conditional Heterocedasticity on the Argentine Inflation. An Analysis for the Period from 1943 to 2013

The Conditional Heterocedasticity on the Argentine Inflation. An Analysis for the Period from 1943 to 2013 Journal of Mahemaics and Sysem Science 7 (07) 69-77 doi: 0.765/59-59/07.0.00 The Condiional Heerocedasiciy on he Argenine Inflaion. An Analysis for he Period from 943 o 03 Juan Carlos Abril and María De

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution Økonomisk Kandidaeksamen 2005(II) Economerics 2 Soluion his is he proposed soluion for he exam in Economerics 2. For compleeness he soluion gives formal answers o mos of he quesions alhough his is no always

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM Shinsuke KOBAYASHI, Shogo MURAMATSU, Hisakazu KIKUCHI, Masahiro IWAHASHI Dep. of Elecrical and Elecronic Eng., Niigaa Universiy, 8050 2-no-cho Igarashi,

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis Inernaional Economeric Review (IER) Choice of Specral Densiy Esimaor in Ng-Perron Tes: A Comparaive Analysis Muhammad Irfan Malik and Aiq-ur-Rehman Inernaional Islamic Universiy Islamabad and Inernaional

More information

Frequency independent automatic input variable selection for neural networks for forecasting

Frequency independent automatic input variable selection for neural networks for forecasting Universiä Hamburg Insiu für Wirschafsinformaik Prof. Dr. D.B. Preßmar Frequency independen auomaic inpu variable selecion for neural neworks for forecasing Nikolaos Kourenzes Sven F. Crone LUMS Deparmen

More information

Smooth Transition Autoregressive-GARCH Model in Forecasting Non-linear Economic Time Series Data

Smooth Transition Autoregressive-GARCH Model in Forecasting Non-linear Economic Time Series Data Journal of Saisical and conomeric Mehods, vol., no., 03, -9 ISSN: 05-5057 (prin version), 05-5065(online) Scienpress d, 03 Smooh Transiion Auoregressive-GARCH Model in Forecasing Non-linear conomic Time

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Granger Causality Among Pre-Crisis East Asian Exchange Rates. (Running Title: Granger Causality Among Pre-Crisis East Asian Exchange Rates)

Granger Causality Among Pre-Crisis East Asian Exchange Rates. (Running Title: Granger Causality Among Pre-Crisis East Asian Exchange Rates) Granger Causaliy Among PreCrisis Eas Asian Exchange Raes (Running Tile: Granger Causaliy Among PreCrisis Eas Asian Exchange Raes) Joseph D. ALBA and Donghyun PARK *, School of Humaniies and Social Sciences

More information

A Quantile Regression Neural Network Approach to Estimating. the Conditional Density of Multiperiod Returns. James W. Taylor. Saïd Business School

A Quantile Regression Neural Network Approach to Estimating. the Conditional Density of Multiperiod Returns. James W. Taylor. Saïd Business School A Quanile Neural Nework Approach o Esimaing he Condiional Densiy of Muliperiod Reurns James W. Taylor Saïd Business School Universiy of Oxford Journal of Forecasing, 000, Vol. 9, pp. 99-3. Address for

More information

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Inernaional Journal of Social Science and Economic Research Volume:02 Issue:0 ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Chung-ki Min Professor

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Vector autoregression VAR. Case 1

Vector autoregression VAR. Case 1 Vecor auoregression VAR So far we have focused mosl on models where deends onl on as. More generall we migh wan o consider oin models ha involve more han one variable. There are wo reasons: Firs, we migh

More information

Linear Combinations of Volatility Forecasts for the WIG20 and Polish Exchange Rates

Linear Combinations of Volatility Forecasts for the WIG20 and Polish Exchange Rates Eliza Buszkowska Universiy of Poznań, Poland Linear Combinaions of Volailiy Forecass for he WIG0 and Polish Exchange Raes Absrak. As is known forecas combinaions may be beer forecass hen forecass obained

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

Asymmetry and Leverage in Conditional Volatility Models

Asymmetry and Leverage in Conditional Volatility Models Economerics 04,, 45-50; doi:0.3390/economerics03045 OPEN ACCESS economerics ISSN 5-46 www.mdpi.com/journal/economerics Aricle Asymmery and Leverage in Condiional Volailiy Models Micael McAleer,,3,4 Deparmen

More information

Dimitri Solomatine. D.P. Solomatine. Data-driven modelling (part 2). 2

Dimitri Solomatine. D.P. Solomatine. Data-driven modelling (part 2). 2 Daa-driven modelling. Par. Daa-driven Arificial di Neural modelling. Newors Par Dimiri Solomaine Arificial neural newors D.P. Solomaine. Daa-driven modelling par. 1 Arificial neural newors ANN: main pes

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Recursive Modelling of Symmetric and Asymmetric Volatility in the Presence of Extreme Observations *

Recursive Modelling of Symmetric and Asymmetric Volatility in the Presence of Extreme Observations * Recursive Modelling of Symmeric and Asymmeric in he Presence of Exreme Observaions * Hock Guan Ng Deparmen of Accouning and Finance Universiy of Wesern Ausralia Michael McAleer Deparmen of Economics Universiy

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1)

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β+β x (11.1.1) 1 o explain household expendiure on food (y) as a funcion of household income (x).

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information