Mining Data Streams-Estimating Frequency Moment

Size: px
Start display at page:

Download "Mining Data Streams-Estimating Frequency Moment"

Transcription

1 Mnng Data Streams-Estmatng Frequency Moment Barna Saha October 26, 2017

2 Frequency Moment Computng moments nvolves dstrbuton of frequences of dfferent elements n the stream.

3 Frequency Moment Computng moments nvolves dstrbuton of frequences of dfferent elements n the stream. Let f be the number of occurrences of the th element for any [1, n], then the kth frequency moment s F k = f k

4 Frequency Moment The 0th moment s the sum of 1 for each f > 0. Hence t counts the number of dstnct tems.

5 Frequency Moment The 0th moment s the sum of 1 for each f > 0. Hence t counts the number of dstnct tems. The 1st moment s the sum of the f s whch must be the length of the stream. Ths s easy to calculate.

6 Frequency Moment The 0th moment s the sum of 1 for each f > 0. Hence t counts the number of dstnct tems. The 1st moment s the sum of the f s whch must be the length of the stream. Ths s easy to calculate. The 2nd moment s the sum of the squares of the f s. It s sometmes called the surprse number as t measures the unevenness of the dstrbuton of elements. Suppose we have a stream of length 100. Scenaro 1: There are 10 elements each wth frequency 10. F 2 = = 1000 Scenaro 2: There are 10 elements, 1st tem has frequency 91, and rest have each frequency 1. F 2 = = 8290.

7 Computng F 2 n Small Space Alon-Matas-Szegedy: Lnear Sketchng

8 Lnear Sketch for F 2 Problem Gven a stream A 1, A 2,.., A m where elements are comng from the unverse [1, n] estmate F 2 = n =1 f 2 n small space. Output Return an estmate ˆF 2 such that ) Pr (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f 2 (1 δ) where ɛ > 0 and δ > 0 are respectvely the error and confdence parameters.

9 Lnear Sketch for F z Frequency Vector Sketch Dmenson: k x n To construct each row pck a hash func<on h:{1,n} à{+1,-1} unformly at random from a famly of 4-wse ndependent unversal hash famly. z(l,)=h l () Dmenson: n x 1 Pck k such hash func<ons ndependently: h 1, h 2,.,h k to construct The k rows. Dmenson: k x 1

10 Lnear Sketch for F z When the th element appears, smply update Z 1 =Z 1 + z 1 () update Z 2 =Z 2 + z 2 () update Z 3 =Z 3 + z 3 () : : : update Z k =Z k + z k ()

11 Lnear Sketch for F z When the th element appears, smply update Z 1 =Z 1 + z 1 () Space Requrement=klog(n) EsEmate=(Z 12 +Z Z k2 )/k update Z 2 =Z 2 + z 2 () update Z 3 =Z 3 + z 3 () : : : update Z k =Z k + z k ()

12 Estmate: ˆF 2 = 1 k k =1 Z 2 Why s ths a good estmate?

13 Estmate: ˆF 2 = 1 k k =1 Z 2 Why s ths a good estmate? Show E[ ˆF 2 ] = F 2.

14 Estmate: ˆF 2 = 1 k k =1 Z 2 Why s ths a good estmate? Show E[ ˆF 2 ] = F 2. Show Var[ ˆF 2 ] 2F 2 2 k.

15 Estmate: ˆF 2 = 1 k k =1 Z 2 Why s ths a good estmate? Show E[ ˆF 2 ] = F 2. Show Var[ ˆF 2 ] 2F 2 2 k. Apply Chebyshev. Prob ( ˆF 2 F 2 > ɛf 2 ) Var( ˆF 2 ) ɛ 2 F 2 2

16 Estmate: ˆF 2 = 1 k k =1 Z 2 Why s ths a good estmate? Show E[ ˆF 2 ] = F 2. Show Var[ ˆF 2 ] 2F 2 2 k. Apply Chebyshev. ) Prob ( ˆF 2 F 2 > ɛf 2 Var( ˆF 2 ) ɛ 2 F2 2 ) Take k = 16. Prob ( ˆF ɛ 2 2 F 2 > ɛf 2 1 8

17 Estmate: ˆF 2 = 1 k k =1 Z 2 Why s ths a good estmate? Show E[ ˆF 2 ] = F 2. Show Var[ ˆF 2 ] 2F 2 2 k. Apply Chebyshev. ) Prob ( ˆF 2 F 2 > ɛf 2 Var( ˆF 2 ) ɛ 2 F2 2 ) Take k = 16. Prob ( ˆF ɛ 2 2 F 2 > ɛf Prob (F 2 (1 ɛ) ˆF ) 2 (1 + ɛ)f 2 7 8

18 Expectaton of Z 2 s Z s Z, s = 1, 2,.., k Z = n =1 f z(), Z 2 =,j [1,n] f f j z z j

19 Expectaton of Z 2 s Z s Z, s = 1, 2,.., k Z = n =1 f z(), Z 2 =,j [1,n] f f j z z j E[Z 2 ] =,j [1,n] E[f f j z z j ] = E[f 2 z 2 ] = f 2 = F 2 snce E[z z j ] = 0 f j and E[z 2 ] = 1.

20 Expectaton of Z 2 s Z s Z, s = 1, 2,.., k Z = n =1 f z(), Z 2 =,j [1,n] f f j z z j E[Z 2 ] =,j [1,n] E[f f j z z j ] = E[f 2 z 2 ] = f 2 = F 2 snce E[z z j ] = 0 f j and E[z 2 ] = 1. E[ ˆF 2 ] = 1 k k E[Zs 2 ] = F 2 s=1

21 Varance of Z 2 s Var(Z 2 ) = E[Z 4 ] (E[Z 2 ]) 2

22 Varance of Z 2 s Var(Z 2 ) = E[Z 4 ] (E[Z 2 ]) 2 E[Z 4 ] = f 4 E[z 4 ] + = f 4,j:<j + 6,j:<j ( ) 4 f 2 fj 2 E[z 2 zj 2 ] 2 f 2 fj 2 snce E[z z j z k z l ] = 0 f < j < k < l or 3 of the terms are equal.

23 Varance of Z 2 s Var(Z 2 ) = E[Z 4 ] (E[Z 2 ]) 2 E[Z 4 ] = f 4 E[z 4 ] + = f 4,j:<j + 6,j:<j ( ) 4 f 2 fj 2 E[z 2 zj 2 ] 2 f 2 fj 2 snce E[z z j z k z l ] = 0 f < j < k < l or 3 of the terms are equal. (E[Z 2 ]) 2 = ( f 2 ) 2 = f 4 + 2,j:<j f 2 fj 2

24 Varance of Z 2 s Var(Z 2 ) = E[Z 4 ] (E[Z 2 ]) 2 E[Z 4 ] = f 4 E[z 4 ] + = f 4,j:<j + 6,j:<j ( ) 4 f 2 fj 2 E[z 2 zj 2 ] 2 f 2 fj 2 snce E[z z j z k z l ] = 0 f < j < k < l or 3 of the terms are equal. (E[Z 2 ]) 2 = ( f 2 ) 2 = Var(Z 2 ) = 4,j:<j f f 2 f 2 j 2F 2 2,j:<j f 2 fj 2

25 Varance of ˆF 2 Var( ˆF 2 ) = Var( 1 k k Zs 2 ) s=1 = 1 k k 2 Var( Zs 2 )) snce Var(aX ) = a 2 Var(X ) for any constant a = 1 k 2 k s=1 s=1 Var(Zs 2 ) 1 k 2 2kF 2 2 = 2F 2 2 k

26 Boostng Confdence by Medan We have ) Prob (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f We want ) Prob (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f 2 1 δ

27 Boostng Confdence by Medan We have ) Prob (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f We want ) Prob (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f 2 1 δ Take t ndependent estmates H 1 = ˆF 2 1, H2 = ˆF 2 2,..., Ht = ˆF 2 t

28 Boostng Confdence by Medan We have ) Prob (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f We want ) Prob (F 2 (1 ɛ) ˆF 2 (1 + ɛ)f 2 1 δ Take t ndependent estmates H 1 = ˆF 2 1, H2 = ˆF 2 2,..., Ht = ˆF 2 t Return the medan of H 1, H 2,...,H t.

29 Boostng by Medan Suppose there s an Algorthm that returns an estmate ˆF of a true estmate F such that ˆF F s small wth probablty 7 8. How can we desgn an algorthm that wll return an estmate G of F such that G F s small wth probablty 99/100? (In general 1 δ)

30 Boostng by Medan Suppose there s an Algorthm that returns an estmate ˆF of a true estmate F such that ˆF F s small wth probablty 7 8. How can we desgn an algorthm that wll return an estmate G of F such that G F s small wth probablty 99/100? (In general 1 δ) Run s = 2 log 2 δ + 1 ndependent copes of the Algorthm to obtan estmates ˆF 1, ˆF 2,..., ˆF s. Set G = medan=1 s ˆF.

31 Boostng by Medan What s the probablty that the medan s a bad estmate?

32 Boostng by Medan What s the probablty that the medan s a bad estmate? Ether all s 2 copes wth estmate below G are bad or, s 2 copes wth estmate above G are bad. That s there are log 2 δ copes that are at least bad for G to be a bad estmate.

33 Boostng by Medan What s the probablty that the medan s a bad estmate? Ether all s 2 copes wth estmate below G are bad or, s 2 copes wth estmate above G are bad. That s there are log 2 δ copes that are at least bad for G to be a bad estmate. Show that the probablty of Medan to be bad s δ

34 Frequency Moment For k > 2, the best bound known s Õ(n 1 2 k log 1 δ ) barrng poly( 1 ɛ ) factor. There s an almost matchng lower bound of Ω(n 1 2 k ). For k < 2, the best bound known s Õ( 1 ɛ 2 log 1 δ ). The algorthms use clever combnaton of sketchng and hashng

35 Sketchng as a Versatle Tool Estmatng entropy, quantles, heavy htters, fttng hstograms etc. Applcatons beyond streamng: dmensonalty reducton, nearest neghbors, anomaly detecton, statstcs over socal network. Not only useful for small-space algorthm desgn, but also for fast runnng tme, dstrbuted processng etc.

36 Sketchng as a Versatle Tool Slde from Potr Indyk s course on Streamng, Sketchng and Compressed Sensng

37 Sldng Wndow Model Only the last W tems matter where W s the wndow sze.

38 Sldng Wndow Model Only the last W tems matter where W s the wndow sze. Can you extend Bloom Flter, FM sketch n ths settng?

39 Sldng Wndow Model Only the last W tems matter where W s the wndow sze. Can you extend Bloom Flter, FM sketch n ths settng? Can you extend Count-Mn sketch or lnear sketchng technques n ths settng?

40 Decayng Wndow Model No fxed wndow sze, but older tems have less mportance.

41 Decayng Wndow Model No fxed wndow sze, but older tems have less mportance. Can you extend Bloom Flter, FM sketch n ths settng?

42 Decayng Wndow Model No fxed wndow sze, but older tems have less mportance. Can you extend Bloom Flter, FM sketch n ths settng? Can you extend Count-Mn sketch or lnear sketchng technques n ths settng?

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

Sketching Sampled Data Streams

Sketching Sampled Data Streams Sketchng Sampled Data Streams Florn Rusu and Aln Dobra CISE Department Unversty of Florda March 31, 2009 Motvaton & Goal Motvaton Multcore processors How to use all the processng power? Parallel algorthms

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorthms for Bg Data Lecture 5: Dmenson Reducton Sldes at htt://grgory.us/bg-data-class.html Grgory Yaroslavtsev htt://grgory.us Today Dmensonalty reducton AMS as dmensonalty reducton Johnson-Lndenstrauss

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/18.401J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) What data structures

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j

Stat 642, Lecture notes for 01/27/ d i = 1 t. n i t nj. n j Stat 642, Lecture notes for 01/27/05 18 Rate Standardzaton Contnued: Note that f T n t where T s the cumulatve follow-up tme and n s the number of subjects at rsk at the mdpont or nterval, and d s the

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

An introduction to chaining, and applications to sublinear algorithms

An introduction to chaining, and applications to sublinear algorithms An ntroducton to channg, and applcatons to sublnear algorthms Jelan Nelson Harvard August 28, 2015 What s ths talk about? What s ths talk about? Gven a collecton of random varables X 1, X 2,...,, we would

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

Dimensionality Reduction Notes 2

Dimensionality Reduction Notes 2 Dmensonalty Reducton Notes 2 Jelan Nelson mnlek@seas.harvard.edu August 11, 2015 1 Optmalty theorems for JL Yesterday we saw for MJL that we could acheve target dmenson m = O(ε 2 log N), and for DJL we

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

On mutual information estimation for mixed-pair random variables

On mutual information estimation for mixed-pair random variables On mutual nformaton estmaton for mxed-par random varables November 3, 218 Aleksandr Beknazaryan, Xn Dang and Haln Sang 1 Department of Mathematcs, The Unversty of Msssspp, Unversty, MS 38677, USA. E-mal:

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Lecture 2: Prelude to the big shrink

Lecture 2: Prelude to the big shrink Lecture 2: Prelude to the bg shrnk Last tme A slght detour wth vsualzaton tools (hey, t was the frst day... why not start out wth somethng pretty to look at?) Then, we consdered a smple 120a-style regresson

More information

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X

The EM Algorithm (Dempster, Laird, Rubin 1977) The missing data or incomplete data setting: ODL(φ;Y ) = [Y;φ] = [Y X,φ][X φ] = X The EM Algorthm (Dempster, Lard, Rubn 1977 The mssng data or ncomplete data settng: An Observed Data Lkelhood (ODL that s a mxture or ntegral of Complete Data Lkelhoods (CDL. (1a ODL(;Y = [Y;] = [Y,][

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

6.842 Randomness and Computation February 18, Lecture 4

6.842 Randomness and Computation February 18, Lecture 4 6.842 Randomness and Computaton February 18, 2014 Lecture 4 Lecturer: Rontt Rubnfeld Scrbe: Amartya Shankha Bswas Topcs 2-Pont Samplng Interactve Proofs Publc cons vs Prvate cons 1 Two Pont Samplng 1.1

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Lecture 3 Frequency Moments, Heavy Hitters

Lecture 3 Frequency Moments, Heavy Hitters COMS E6998-9: Algorithmic Techniques for Massive Data Sep 15, 2015 Lecture 3 Frequency Moments, Heavy Hitters Instructor: Alex Andoni Scribes: Daniel Alabi, Wangda Zhang 1 Introduction This lecture is

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

Dimension Reduction and Visualization of the Histogram Data

Dimension Reduction and Visualization of the Histogram Data The 4th Workshop n Symbolc Data Analyss (SDA 214): Tutoral Dmenson Reducton and Vsualzaton of the Hstogram Data Han-Mng Wu ( 吳漢銘 ) Department of Mathematcs Tamkang Unversty Tamsu 25137, Tawan http://www.hmwu.dv.tw

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected. ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the ch-squared dstrbuton s equal to the sum over all categores of the expected frequency

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012

Effects of Ignoring Correlations When Computing Sample Chi-Square. John W. Fowler February 26, 2012 Effects of Ignorng Correlatons When Computng Sample Ch-Square John W. Fowler February 6, 0 It can happen that ch-square must be computed for a sample whose elements are correlated to an unknown extent.

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Informaton Search and Management Probablstc Retreval Models Prof. Chrs Clfton 7 September 2018 Materal adapted from course created by Dr. Luo S, now leadng Albaba research group 14 Why probabltes

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

Stat 543 Exam 2 Spring 2016

Stat 543 Exam 2 Spring 2016 Stat 543 Exam 2 Sprng 2016 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of 11 questons. Do at least 10 of the 11 parts of the man exam.

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 45 Sprng semester 7 Lecture : Dealng wth Expermental Uncertantes Ron Refenberger Brck anotechnology Center Purdue Unversty Lecture Introductory Comments Expermental errors (really expermental uncertantes)

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Adjusted Control Lmts for U Charts Copyrght 207 by Taylor Enterprses, Inc., All Rghts Reserved. Adjusted Control Lmts for U Charts Dr. Wayne A. Taylor Abstract: U charts are used

More information

Stat 543 Exam 2 Spring 2016

Stat 543 Exam 2 Spring 2016 Stat 543 Exam 2 Sprng 206 I have nether gven nor receved unauthorzed assstance on ths exam. Name Sgned Date Name Prnted Ths Exam conssts of questons. Do at least 0 of the parts of the man exam. I wll score

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VIII LECTURE - 34 ANALYSIS OF VARIANCE IN RANDOM-EFFECTS MODEL AND MIXED-EFFECTS EFFECTS MODEL Dr Shalabh Department of Mathematcs and Statstcs Indan

More information

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li

Biostatistics. Chapter 11 Simple Linear Correlation and Regression. Jing Li Bostatstcs Chapter 11 Smple Lnear Correlaton and Regresson Jng L jng.l@sjtu.edu.cn http://cbb.sjtu.edu.cn/~jngl/courses/2018fall/b372/ Dept of Bonformatcs & Bostatstcs, SJTU Recall eat chocolate Cell 175,

More information

U-Pb Geochronology Practical: Background

U-Pb Geochronology Practical: Background U-Pb Geochronology Practcal: Background Basc Concepts: accuracy: measure of the dfference between an expermental measurement and the true value precson: measure of the reproducblty of the expermental result

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Some basic statistics and curve fitting techniques

Some basic statistics and curve fitting techniques Some basc statstcs and curve fttng technques Statstcs s the dscplne concerned wth the study of varablty, wth the study of uncertanty, and wth the study of decsonmakng n the face of uncertanty (Lndsay et

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

Lena Boneva and Oliver Linton. January 2017

Lena Boneva and Oliver Linton. January 2017 Appendx to Staff Workng Paper No. 640 A dscrete choce model for large heterogeneous panels wth nteractve fxed effects wth an applcaton to the determnants of corporate bond ssuance Lena Boneva and Olver

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

An Algorithmer s View of Sparse Approximation Problems

An Algorithmer s View of Sparse Approximation Problems An Algorthmer s Vew of Sparse Approxmaton Problems S. Muthu Muthukrshnan Google adorsms, myslceofpzza Talk Overvew The Sparse Approxmaton Problem Math vs Algorthms. Two Classcal Extremes Parseval world:

More information

Streaming Algorithms via Precision Sampling

Streaming Algorithms via Precision Sampling Streamng Algorthms va Precson Samplng Alexandr Andon Mcrosoft Research SVC Robert Krauthgamer Wezmann Insttute November 4, 2010 Krzysztof Onak CMU Abstract In STOC 05, Indyk and Woodruff ntroduced a new

More information

arxiv: v1 [cs.ds] 19 Dec 2016

arxiv: v1 [cs.ds] 19 Dec 2016 Smlarty preservng compressons of hgh dmensonal sparse data Raghav Kulkarn LnkedIn Bangalore kulraghav@gmal.com Rameshwar Pratap IIIT Bangalore rameshwar.pratap@gmal.com arxv:6.06057v cs.ds 9 Dec 06 ABSTRACT

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

18. SIMPLE LINEAR REGRESSION III

18. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III US Domestc Beers: Calores vs. % Alcohol Ftted Values and Resduals To each observed x, there corresponds a y-value on the ftted lne, y ˆ ˆ = α + x. The are called ftted values.

More information

Expectation propagation

Expectation propagation Expectaton propagaton Lloyd Ellott May 17, 2011 Suppose p(x) s a pdf and we have a factorzaton p(x) = 1 Z n f (x). (1) =1 Expectaton propagaton s an nference algorthm desgned to approxmate the factors

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 8. SIMPLE LINEAR REGRESSION III Ftted Values and Resduals US Domestc Beers: Calores vs. % Alcohol To each observed x, there corresponds a y-value on the ftted lne, y ˆ = βˆ + βˆ x. The are called ftted

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero:

# c i. INFERENCE FOR CONTRASTS (Chapter 4) It's unbiased: Recall: A contrast is a linear combination of effects with coefficients summing to zero: 1 INFERENCE FOR CONTRASTS (Chapter 4 Recall: A contrast s a lnear combnaton of effects wth coeffcents summng to zero: " where " = 0. Specfc types of contrasts of nterest nclude: Dfferences n effects Dfferences

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experments- MODULE LECTURE - 6 EXPERMENTAL DESGN MODELS Dr. Shalabh Department of Mathematcs and Statstcs ndan nsttute of Technology Kanpur Two-way classfcaton wth nteractons

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Non-uniform Sampling in Clustering and Streaming

Non-uniform Sampling in Clustering and Streaming Non-unform Samplng n Clusterng and Streamng Dssertaton zur Erlangung des Grades enes Doktors der Naturwssenschaften der Technschen Unverstät Dortmund an der Fakultät für Informatk von Morteza Monemzadeh

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information