EE C245 ME C218 Introduction to MEMS Design

Size: px
Start display at page:

Download "EE C245 ME C218 Introduction to MEMS Design"

Transcription

1 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA Lecture 19: Resonance Frequency II EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 1

2 Lecture Outline Reading: Senturia, Chpt. 10 Lecture Topics: Energy Methods Virtual Work Energy Formulations Tapered p Beam Example Estimating Resonance Frequency EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 2

3 The Raleigh-Ritz Method Equate the maximum potential and maximum kinetic energies: Rearranging yields for resonance frequency: ω = resonance frequency W max = maximum potential energy ρ = density of the structural material W = beam width h = beam thickness ŷ(x) = resonance mode shape EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 3

4 Example: Folded-Beam Resonator Folded-beam suspension Derive an expression for the resonance frequency of the folded-beam d structure at left. Shuttle w/ mass M s Anchor h = thickness Folding truss w/ mass M t \2 t EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 4

5 Get Kinetic Energies Folded-beam suspension Shuttle w/ mass M s Anchor h = thickness Folding truss w/ mass M t \2 t EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 5

6 Folded-Beam Suspension Folding Truss y z x Comb-Driven Folded Beam Actuator EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 6

7 Get Kinetic Energies (cont) Folded-beam suspension Shuttle w/ mass M s Anchor h = thickness Folding truss w/ mass M t \2 t EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 7

8 Get Kinetic Energies (cont) Folded-beam suspension Shuttle w/ mass M s Anchor h = thickness Folding truss w/ mass M t \2 t EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 8

9 Get Potential Energy & Frequency Folded-beam suspension Shuttle w/ mass M s Anchor h = thickness Folding truss w/ mass M t \2 t EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 9

10 Brute Force Methods for Resonance Frequency Determination ti EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 10

11 Basic Concept: Scaling Guitar Strings Guitar String μmechanical M h i l Resonator Guitar Vib. Am mplitud e Freq. Low Q High Q 110 Hz Freq. Vibrating A String (110 Hz) Stiffness Freq. Equation: 1 kr f o = 2π m r Mass [Bannon 1996] Performance: L r =40.8μm f o =8.5MHz m r ~ kg Q vac =8,000 W r =8μm, h r =2μm Q air ~50 d=1000å, V P =5V Press.=70mTorr EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 11

12 Fixed-Fixed Beam Resonator Anchor Anchor Losses Gap Electrode Anchor Q = 300 at 70MHz Free-Free Beam Resonator Anchor Supporting Beams Elastic Wave Radiation Problem: direct anchoring to the substrate anchor radiation into the substrate lower Q Solution: support at motionless nodal points isolate resonator from anchors less energy loss higher Q L r Anchor Free-Free Beam Q = 15,000 at 92MHz EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 12

13 92 MHz Free-Free Beam μresonator Free-free beam μmechanical h l resonator with non-intrusive supports reduce anchor dissipation higher Q EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 13

14 Higher Order Modes for Higher Freq. 2 nd Mode Free-Free Beam 3 rd Mode Free Free Beam Distinct Mode Shapes Electrodes Ancho r μm Ancho r h = 2.1 μm Support Beam B] Transm mission [d -57 = ]Lr Q = 11, Frequency [MHz] EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 14 Phas se [degree

15 Flexural-Mode Beam Wave Equation y z u Transverse Displacement W= width u = ma L h x F F + F x dx Derive the wave equation for transverse vibration: EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 15

16 Example: Free-Free Beam z W h Determine the resonance frequency of the beam Specify the lumped parameter mechanical equivalent circuit Transform to a lumped parameter electrical equivalent circuit Start with the flexural-mode beam equation: 2 t u 2 = EI ρ A 4 x u 4 EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 16

17 Free-Free Beam Frequency Substitute u = u 1 e jωt into the wave equation: (1) This is a 4 th order differential equation with solution: (2) Boundary Conditions: EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 17

18 Free-Free Beam Frequency (cont) Applying B.C. s, get A=C and B=D, and (3) Setting the determinant = 0 yields Which has roots at Substituting (2) into (1) finally yields: Free-Free Beam Frequency Equation EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 18

19 Higher Order Free-Free Beam Modes More than 10x increase Fundamental Mode (n=1) 1 st Harmonic (n=2) 2 nd Harmonic (n=3) EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 19

20 Mode Shape Expression The mode shape expression can be obtained by using the fact that A=C and B=D into (2), yielding Get the amplitude ratio by expanding (3) [the matrix] and solving, which yields Then just substitute the roots for each mode to get the expression for mode shape Fundamental Mode (n=1) [Substitute ] EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 20

21 Lumped Parameter Mechanical Equivalent Circuit it EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 21

22 Equivalent Dynamic Mass Once the mode shape is known, the lumped parameter equivalent circuit can then be specified Determine the equivalent mass at a specific location x using knowledge of kinetic energy and velocity z Location x W h Maximum Kinetic Energy Density Equivalent Mass = Maximum location x Maximum Velocity Function EE C245: Introduction to MEMS Design Lecture 19 C. Nguyen 11/4/08 22

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EE C245 ME C218 Introduction to MEMS Design Fall 2012 EE C245 ME C218 Introduction to MEMS Design Fall 2012 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 20: Equivalent

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 17: Energy

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 - ME C8 Introduction to MEMS Design Fall 3 Roger Howe and Thara Srinivasan Lecture 9 Energy Methods II Today s Lecture Mechanical structures under driven harmonic motion develop analytical techniques

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 15: Beam

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 12: Mechanical

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 23: Electrical

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 ecture 15: Beam

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 22: Capacitive

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 6: Output

More information

EE C245 - ME C218. Fall 2003

EE C245 - ME C218. Fall 2003 EE C45 - E C8 Introduction to ES Design Fall Roger Howe and Thara Srinivasan ecture 9 Energy ethods II Today s ecture echanical structures under driven harmonic motion develop analytical techniques for

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 3: Input Modeling

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2016

EE C247B ME C218 Introduction to MEMS Design Spring 2016 EE C47B ME C18 Introduction to MEMS Design Spring 016 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture EE C45:

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EE C245 ME C218 Introduction to MEMS Design Fall 2012 TN 1/2/12 EE 245 ME 218 Introduction to MEMS Design Fall 212 Prof. lark T.-. Nguyen Dept. of Electrical Engineering & omputer Sciences University of alifornia at Berkeley Berkeley, A 9472 Lecture EE 245:

More information

Modeling of Resonators

Modeling of Resonators . 23 Modeling of Resonators 23 1 Chapter 23: MODELING OF RESONATORS 23 2 23.1 A GENERIC RESONATOR A second example where simplified discrete modeling has been found valuable is in the assessment of the

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 PROBLEM SET #1

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 PROBLEM SET #1 Issued: Thursday, Jan. 30, 2014 PROBLEM SET #1 Due (at 9 a.m.): Wednesday Feb. 12, 2014, in the EE C247B HW box near 125 Cory. This homework assignment is intended to give you some early practice playing

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters Issued: Wednesday, Nov. 23, 2011. PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 8, 2011, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 13: Material

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2015

EE C247B ME C218 Introduction to MEMS Design Spring 2015 EE 247B/ME 218: Introduction to MEMS Design TN 2/24/15 EE 247B ME 218 Introduction to MEMS Design Spring 215 Prof. lark T.-. Nguyen Dept. of Electrical Engineering & omputer Sciences University of alifornia

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 21: Gyros

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Deign Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Science Univerity of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t Sening

More information

Natural vibration frequency of classic MEMS structures

Natural vibration frequency of classic MEMS structures Natural vibration frequency of classic MEMS structures Zacarias E. Fabrim PGCIMAT, UFRGS, Porto Alegre, RS, Brazil Wang Chong, Manoel Martín Pérez Reimbold DeTec, UNIJUI, Ijuí, RS, Brazil Abstract This

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4 Issued: Wednesday, Mar. 5, 2014 PROBLEM SET #4 Due (at 9 a.m.): Tuesday Mar. 18, 2014, in the EE C247B HW box near 125 Cory. 1. Suppose you would like to fabricate the suspended cross beam structure below

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2017

EE C247B ME C218 Introduction to MEMS Design Spring 2017 247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T.- Reading: Senturia, Chpt. 8 Lecture Topics:

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 - ME C18 Introduction to MEMS Design Fall 003 Roger Howe and Thara Srinivasan Lecture 11 Electrostatic Actuators II Today s Lecture Linear (vs. displacement) electrostatic actuation: vary overlap

More information

20 MHz Free-Free Beam Microelectromechanical Filter with High Quality Factor

20 MHz Free-Free Beam Microelectromechanical Filter with High Quality Factor 20 MHz Free-Free Beam Microelectromechanical Filter with High Quality Factor Group 4 Yang Lu 1, Tianfeng Lu 1, Han Wang 2, Zichen Tang 2 1 Department of Material Science and Engineering 2 Department of

More information

EECS C245 ME C218 Midterm Exam

EECS C245 ME C218 Midterm Exam University of California at Berkeley College of Engineering EECS C245 ME C218 Midterm Eam Fall 2003 Prof. Roger T. Howe October 15, 2003 Dr. Thara Srinivasan Guidelines Your name: SOLUTIONS Circle your

More information

Lecture 27: Structural Dynamics - Beams.

Lecture 27: Structural Dynamics - Beams. Chapter #16: Structural Dynamics and Time Dependent Heat Transfer. Lectures #1-6 have discussed only steady systems. There has been no time dependence in any problems. We will investigate beam dynamics

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Abstract. 1 Introduction

Abstract. 1 Introduction In R. A. Adey et al., eds., Simulation and Design of Microsystems and Microstructures (Proceedings of the 1st International Conference on Simulation and Design of Microsystems and Microstructures), Computational

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Modeling and simulation of multiport RF switch

Modeling and simulation of multiport RF switch Journal of Physics: Conference Series Modeling and simulation of multiport RF switch To cite this article: J Vijay et al 006 J. Phys.: Conf. Ser. 4 715 View the article online for updates and enhancements.

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Final Exam December 11, 2017

Final Exam December 11, 2017 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage

More information

Capacitive Sensor Interfaces

Capacitive Sensor Interfaces Capacitive Sensor Interfaces Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Capacitive Sensor Interfaces 1996

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

2C9 Design for seismic and climate changes. Jiří Máca

2C9 Design for seismic and climate changes. Jiří Máca 2C9 Design for seismic and climate changes Jiří Máca List of lectures 1. Elements of seismology and seismicity I 2. Elements of seismology and seismicity II 3. Dynamic analysis of single-degree-of-freedom

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

Midterm 2 PROBLEM POINTS MAX

Midterm 2 PROBLEM POINTS MAX Midterm 2 PROBLEM POINTS MAX 1 30 2 24 3 15 4 45 5 36 1 Personally, I liked the University; they gave us money and facilities, we didn't have to produce anything. You've never been out of college. You

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Development and Characterization of High Frequency Bulk Mode Resonators

Development and Characterization of High Frequency Bulk Mode Resonators Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Development and Characterization of High Frequency Bulk Mode Resonators Hossein Pakdast 1*, Zachary James Davis 1 1 DTU Nanotech, Technical

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

Design and Analysis of dual Axis MEMS Capacitive Accelerometer

Design and Analysis of dual Axis MEMS Capacitive Accelerometer International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 5 (2017) pp. 779-790 Research India Publications http://www.ripublication.com Design and Analysis of dual Axis

More information

DESIGN AND ANALYSIS OF ROTATION RATE SENSOR. Modeling of vibratory MEMs Gyroscope

DESIGN AND ANALYSIS OF ROTATION RATE SENSOR. Modeling of vibratory MEMs Gyroscope DESIGN AND ANALYSIS OF ROTATION RATE SENSOR Modeling of vibratory MEMs Gyroscope 1 Priya.P.Shreshtha & 2 Sushas S.Mohite 1 Mechanical Department, Rajaram Bapu institute of Technology Islampur, Dist. Sangli,

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

1. Narrative Overview Questions

1. Narrative Overview Questions Homework 4 Due Nov. 16, 010 Required Reading: Text and Lecture Slides on Downloadable from Course WEB site: http://courses.washington.edu/overney/nme498.html 1. Narrative Overview Questions Question 1

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

2.72 Elements of Mechanical Design

2.72 Elements of Mechanical Design MIT OpenCourseWare http://ocw.mit.edu 2.72 Elements of Mechanical Design Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.72 Elements of

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.2, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.2, pp 678-684, 2014-2015 ICONN 2015 [4 th -6 th Feb 2015] International Conference on Nanoscience and Nanotechnology-2015

More information

EE 245: Introduction to MEMS Lecture 14m: Mechanics of Materials CTN 10/12/10. Copyright 2010 Regents of the University of California

EE 245: Introduction to MEMS Lecture 14m: Mechanics of Materials CTN 10/12/10. Copyright 2010 Regents of the University of California EE 45: Introduction to MEMS Lecture 4m: Mecanics o Materials Measure o te requency selectivity o a tuned circuit Deinition: uality Factor (or ) Total Energy Per ycle o Energy Lost Per ycle BW Example:

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 12: Mechanics

More information

Let s Review What is Sound?

Let s Review What is Sound? Mathematics of Sound Objectives: Understand the concept of sound quality and what it represents. Describe the conditions which produce standing waves in a stretched string. Be able to describe the formation

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

CHAPTER 15 Wave Motion. 1. The speed of the wave is

CHAPTER 15 Wave Motion. 1. The speed of the wave is CHAPTER 15 Wave Motion 1. The speed of the wave is v = fλ = λ/t = (9.0 m)/(4.0 s) = 2.3 m/s. 7. We find the tension from the speed of the wave: v = [F T /(m/l)] 1/2 ; (4.8 m)/(0.85 s) = {F T /[(0.40 kg)/(4.8

More information

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES Instructor: Kazumi Tolich Lecture 5 2 Reading chapter 14.2 14.3 Waves on a string Speed of waves on a string Reflections Harmonic waves Speed of waves 3 The

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

E05 Resonator Design

E05 Resonator Design POLITECNICO DI MILANO MSC COURSE - MEMS AND MICROSENSORS - 2018/2019 E05 Resonator Design Giorgio Mussi 16/10/2018 In this class we will learn how an in-plane MEMS resonator handles process variabilities,

More information

Research Article The Effects of Structure Defects on the Performance of a Micro Comb Resonator

Research Article The Effects of Structure Defects on the Performance of a Micro Comb Resonator Mathematical Problems in Engineering Volume 2010, Article ID 726843, 12 pages doi:10.1155/2010/726843 Research Article The Effects of Structure Defects on the Performance of a Micro Comb Resonator D. Guo

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Lecture Outline Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and

More information

Lecture 3: Acoustics

Lecture 3: Acoustics CSC 83060: Speech & Audio Understanding Lecture 3: Acoustics Michael Mandel mim@sci.brooklyn.cuny.edu CUNY Graduate Center, Computer Science Program http://mr-pc.org/t/csc83060 With much content from Dan

More information

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Simple Harmonic Motion Lectures 24-25 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Modeling of Thermoelastic Damping in MEMS Resonators

Modeling of Thermoelastic Damping in MEMS Resonators Modeling of Thermoelastic Damping in MEMS Resonators T. Koyama a, D. Bindel b, S. Govindjee a a Dept. of Civil Engineering b Computer Science Division 1 University of California, Berkeley MEMS Resonators

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 11: Bulk

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a What you Hear The ear converts sound energy to mechanical energy to a nerve impulse which is transmitted to the brain. The Pressure Wave sets the Ear Drum into Vibration. electroencephalogram v S

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Presented at the COMSOL Conference 2009 Milan University of Brescia Department of Electronics for Automation Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Marco Baù, VF V.

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES 2010/2 PAGES 1 8 RECEIVED 21. 9. 2009 ACCEPTED 20. 1. 2010 Y. KOLEKOVÁ, M. PETRONIJEVIĆ, G. SCHMID SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES ABSTRACT

More information

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ.

Standing Waves If the same type of waves move through a common region and their frequencies, f, are the same then so are their wavelengths, λ. Standing Waves I the same type o waves move through a common region and their requencies,, are the same then so are their wavelengths,. This ollows rom: v=. Since the waves move through a common region,

More information

ELECTROSTATICALLY-DRIVEN RESONATOR ON SOI WITH IMPROVED TEMPERATURE STABILITY

ELECTROSTATICALLY-DRIVEN RESONATOR ON SOI WITH IMPROVED TEMPERATURE STABILITY ELECTROSTATICALLY-DRIVEN RESONATOR ON SOI WITH IMPROVED TEMPERATURE STABILITY A. Giridhar, F. Verjus, F. Marty, A. Bosseboeuf, Tarik Bourouina To cite this version: A. Giridhar, F. Verjus, F. Marty, A.

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Exam 3 results Class Average - 57 (Approximate grade

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

Lorentz Contact Resonance for viscoelastic measurements of polymer blends

Lorentz Contact Resonance for viscoelastic measurements of polymer blends The world leader in nanoscale IR spectroscopy for viscoelastic measurements of polymer blends (LCR) reliably compares viscoleastic properties with nanoscale spatial resolution With no moving parts in the

More information

Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University of Bridgeport, Bridgeport, CT /08/2015

Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University of Bridgeport, Bridgeport, CT /08/2015 Design and Analysis of Three DOF Piezoelectric Vibration Energy Harvester Ravi Teja Purra Reddy, Xingguo Xiong, Junling Hu Dept. of Electrical & Computer Engineering, Dept. of Mechanical Engineering University

More information

3 THE P HYSICS PHYSICS OF SOUND

3 THE P HYSICS PHYSICS OF SOUND Chapter 3 THE PHYSICS OF SOUND Contents What is sound? What is sound wave?» Wave motion» Source & Medium How do we analyze sound?» Classifications» Fourier Analysis How do we measure sound?» Amplitude,

More information

Nonlinear vibration of an electrostatically actuated microbeam

Nonlinear vibration of an electrostatically actuated microbeam 11 (214) 534-544 Nonlinear vibration of an electrostatically actuated microbeam Abstract In this paper, we have considered a new class of critical technique that called the He s Variational Approach ()

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester

Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester Journal of Physics: Conference Series 557 (24) 24 doi:.88/742-6596/557//24 Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester C H Nguyen, D S Nguyen 2 and E Halvorsen

More information

Transducers. Today: Electrostatic Capacitive. EEL5225: Principles of MEMS Transducers (Fall 2003) Instructor: Dr. Hui-Kai Xie

Transducers. Today: Electrostatic Capacitive. EEL5225: Principles of MEMS Transducers (Fall 2003) Instructor: Dr. Hui-Kai Xie EEL55: Principles of MEMS Transducers (Fall 3) Instructor: Dr. Hui-Kai Xie Last lecture Piezoresistive Pressure sensor Transducers Today: Electrostatic Capacitive Reading: Senturia, Chapter 6, pp. 15-138

More information

ANALYSIS OF NONUNIFORM BEAMS ON ELASTIC FOUNDATIONS USING RECURSIVE DIFFERENTATION METHOD

ANALYSIS OF NONUNIFORM BEAMS ON ELASTIC FOUNDATIONS USING RECURSIVE DIFFERENTATION METHOD Engineering MECHANICS, Vol. 22, 2015, No. 2, p. 83 94 83 ANALYSIS OF NONUNIFORM BEAMS ON ELASTIC FOUNDATIONS USING RECURSIVE DIFFERENTATION METHOD Mohamed Taha Hassan*, Samir Abo Hadima* Analytical solutions

More information

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting Excerpt from the Proceedings of the COMSOL Conference 29 Milan Thickness Optimization of a Piezoelectric Converter for Energy Harvesting M. Guizzetti* 1, V. Ferrari 1, D. Marioli 1 and T. Zawada 2 1 Dept.

More information

Chap. 15: Simple Harmonic Motion

Chap. 15: Simple Harmonic Motion Chap. 15: Simple Harmonic Motion Announcements: CAPA is due next Tuesday and next Friday. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Examples of periodic motion vibrating guitar

More information

Eigenvalues, Resonance Poles, and Damping in MEMS

Eigenvalues, Resonance Poles, and Damping in MEMS Eigenvalues,, and Damping in D. Bindel Computer Science Division Department of EECS University of California, Berkeley Matrix computations seminar, 19 Apr 26 Outline 1 2 3 4 Outline 1 2 3 4 Resonating

More information

Chapter 2 Lateral Series Switches

Chapter 2 Lateral Series Switches Chapter 2 Lateral Series Switches The objective of this chapter is to study the lateral RF MEMS series switch [1 14]. The switch consists of a silicon-core (Si-core) transmission line and a cantilever

More information

Chapter 11. Vibrations and Waves

Chapter 11. Vibrations and Waves Chapter 11 Vibrations and Waves Driven Harmonic Motion and Resonance RESONANCE Resonance is the condition in which a time-dependent force can transmit large amounts of energy to an oscillating object,

More information

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223

EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 EF 152 Exam 2 - Fall, 2016 Page 1 Copy 223 Instructions Do not open the exam until instructed to do so. Do not leave if there is less than 5 minutes to go in the exam. When time is called, immediately

More information