Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property

Size: px
Start display at page:

Download "Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property"

Transcription

1 Appled Mthemtcs 4: -5 DOI: 59/m4 Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety N Sthumoothy K Pydhs Rmu Isttute fo Advced study Mthemtcs Uvesty of Mds Che 6 5 Id Astct I ths ppe complete clssfct os of ll BKM Le supelges wth f te ode fte ode Ct mtces possessg Stctly Imgy Popety e gve These clssfctos lso clude ptcul the Moste BKM Le supelge Keywods Bo cheds Kc-Moody Le Supelges Stctly Imgy Roots Puely Imgy Roots Itoducto I[4] the theoy of Le supelges ws gve [5] theoy of Kc- Moody Le supelges ws desced Bocheds[] tted the study of geelzed Kc-Moody lgesgkm lges Wmoto[9] toduced BKM supelgesbkm Le supelges The exstece of specl mgy oots fo Kc-Moody lgeskm lges wee show [] the cocept of specl mgy oots ws exteded fom KM lges to GKM lges [7] I[] so me popetes of oots of GKM lges wee studed [][4] specl mgy oots of these clsses wee foud out flly [5] complete clssfct o of GKM lges possessg specl mgy oots ws foud out The oto of specl mgy oots of BKM lges ws geelzed to BKM supelges [6] cet clsses of BKM Le supelges possessg specl mgy oots wee foud out [6] I [8] complete clssfcto of BKM Le supelges possessg specl mgy oots ws gve The cocept of stctly mgy oots fo KM lges ws toduced y Kc[5][6] Cspeso[] gve complete clssfcto of KM lges possessg stctly mgy popety The cocept of puely mgy oots fo KM lges ws toduced [] thee the KM lges possessg puely mgy p opety wee completely clssfed Ag [] the cocept of puely mgy oots fom KM lges to GKM ws exteded the GKM lges possessg puely mgy popety wee completely clssfed I[4] the popetes of stctly mgy oots puely mg y oots of GKM lges wee comped Coespodg utho: sthu@yhoocomnsthumoothy Pulshed ole t Copyght Scetfc & Acdemc Pulshg All Rghts Reseved usg the clssfcto of GKM lges possessg puely mgy popety the lges whose puely mgy oots e stct ly mgy oots wee foud Co mplete clssfcto of GKM lges possessg specl mgy oots stctly mgy popety wee gve [5] The cocepts of stctly mgy oots puely mgy oots of Bocheds Kc-Moody lgesbkm lges wee exteded to BKM supelges [7] A complete clssfcto of those BKM supelges wth puely le mgy popety puely mgy popety wee gve [7] Moeove the popetes of stctly mgy oots puely mgy oots of BKM supelges wee comped the BKM supelges whose puely mgy oots e lso stctly mgy wee foud out [7] Am of ths ppe s to g ve complete clssfcto of BKM Le supelges possessg stctly mgy popety Pelmes Bsc Deftos I ths secto we efly ecll the fudmetl deftos egdg BKM Le supelges the Weyl goups oot systems s gve [9] Fo the def to of Geelzed Geelzed Ct mtxggcm oe c see[9] Defto :[9] Let I { } e fte dex set let A e el mtx Let ψ e suset I of I If A stsfes the followg codtos the A ψ s clled BKM supe mtx c ~ o

2 Appled Mthemtcs 4: -5 I c ~ c ~ c ~ 4 f the Z fo ll c ~ 5 f ψ Z fo ll Defe e e susets I m } I m > I { I Let { I the m I of I y } m Z e collecto of postve teges such tht chge of A Also ψ e : { ψ : ψ : { ψ e m fo ll I We cll m } I } ψ e ψ : { ψ m ψ : { ψ } ψ ψ Rems: } set If ψ s e mpty set the the BKM supe mtx cocdes wth the coespodg BKM mtx o GKM mtx Fo descpto of the qus- Dy dg m qdy A oe c efe to[9] A Geelzed Geelzed Ct Mtx s clled decomposle f t cot e educed to loc dgol fo m y shufflg ows colums[8] Fo the se of completeess we epet the followg fudmetls ledy exp led [7] Defto :[6] Let I e dex set A ψ e decomposle BKM supe mtx whee A ψ I I The oe oly oe of the followg thee possltes holds fo A F det A thee exsts u > such tht Au > Au u > o u Aff Co thee exsts u > such tht Au Au Au Id det A thee exsts u > such tht Au Au > u > u Refeg to the ove thee cses we sy tht A s of f te ffe o defte type espectvely wte A F A Aff o Id A espectvely Defto :[8] We sy tht BKM supe mtx A ψ s of hypeolc type f t s defte type evey pcpl sumtx of A s ethe f te o ffe type BKM supe mtx Defto 4[9]: If BKM supe mtx A decomposes s A DB whee D δ : ε dgol mtx B s symmetc mtx the A s sd to e symmetzle If A s symmetz le BKM supemtx the tg the dgol mtx D stsfyg ε ε ε > y ε we hve fo ll ψ We ssume tht A s symmetzle decomposle BKM supemtx Defto 5:[9] Fo y BKM supemtx A ψ whee A we hve t p le h Π Π Π { I} Π { I} whee stsfyg the followg elt os: h s fte dmesol co mple x vecto spce such tht dmh A Π { } h s lely depedet Π h I { h s lely depedet whee Hom } I C h C whee deotes dulty pg etwee h h Ths tple Π Π elzto of A h s clled Cll elemet of Π espectvely Π fudmetl oot o smp le oot espectvely fudmetl cooot o smp le cooot e e Moeove set { } Π I m m Π { I } We cll elemet of m Π Also dvde Π s Π : { I \ ψ } e Π esp el smp le oot esp mgy smple oot eve Π the set of ll eve smple oots : { } the set of ll odd smp le oots Let odd ψ Z s the esdue clss g mod wth elemets Defto 6:[9] A Z -gded vecto spce g g opeto clled the cet poduct g possessg the le mp []: g g x y [ x y] g s clled Le supelge f t stsfes the followg codtos:

3 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety [ g g ] g Z x y [ y x] [ x y] x y [ x [ y z ] [ y[ x z]] [[ x y] z] fo ll x y z g Defto 7:[9] The Bocheds Kc-Moody Le supelge evted ~ s BKM Le supelge o BKM supelge g A ssocted to symmetzle BKM supe mtx A ψ s the Le supelge geeted y the vecto spce h the elemets e f I stsfyg the followg elt os: ' ' [ h ] h fo h h h [ h e ] h e fo h h [ h f ] h f fo h h [ e f ] δ fo 4 e 5 f I I the d d e e 6 f I the [ f f ] ψ the e e ] [ f f ] f [ f e [ e ] 7 f Rems: As we e ssumg tht the mtx A ψ s ~ symmetzle the ssocted BKM supelge g A s smp le fo poof oe c see[6] lso[9] whch we wll deote y g A So fo BKM supemtx A ψ g A s clled BKM Le supelge o BKM supelge ssocted to A ψ I[5] Dy dgms wee defed fo Le supelges Dy dgms wee ledy exteded fom KM lges to GKM lges [] the exteded to BKM Le supelges [7] whch e g g ve elow Defto 8:[7] To evey BKM supe mtx A ψ whee A ψ I the dex set I s ssocted I wth Dy dgm S A defed s follo ws: S A hs vetces vetces e coected y mx{ } ume of les f 4 thee s ow potg towds f > If > 4 e coected y old fced edge equpped wth the odeed p Moeove f ψ the -th vetex wll e deoted y whte ccle f ψ the -th vetex wll e deoted y whte ccle wth od wtte wth petheses elow the ccle to deote the vetex coespodg to odd smp le oot th s cse f ψ the -th vetex wll e deoted y cossed ccle 4 f ψ the -th vetex wll e deoted y cossed ccle wth od wtte wth petheses elow the ccle to deote the vetex coespodg to odd smp le oot th s cse 5 f > ψ the -th vetex wll e deoted y whte ccle wth wtte wth petheses ove the ccle 6 f > ψ the -th vetex wll e deoted y whte ccle wth wtte wth petheses ove the ccle wth od wtte wth petheses elow the ccle to deote the vetex coespodg to odd smple oot ths cse Wth these deftos the Dy dgms of ll BKM supelges c e dw Some exmples of Dy dgms of BKM supelges wee dw [7] A BKM Le supelge g le KM o BKM lge hs the follo wg tul oot spce decomposto: g g whee g { X g [ h X ] h X h h} s clled the oot spce ssocted to A elemet Q s clled oot f g The ume mu lt dm g s clled the mu ltplcty of the oot A oot of g A c e expessed s m m Z whee m 's e ll ll Coespodg to whethe m 's e ll o o ll s clled postve oot o egtve oot espectvely Also m s clled the heght of s deoted y ht We deote y the set of ll oots postve oots egtve oots espectvely Also ote tht g Ce Defto 9:[9] g Cf

4 Appled Mthemtcs 4: -5 Let G e BKM Le supelge Set te suspce '' h of h stsfyg Defe the symmetc le fom follows: h : ε h h h ' h C ' '' h h h o h s '' '' '' '' '' h h : fo h h h The s o-degeete o h ths duces the le somophsm : ν h h h v ths mp ν We completely detfy h omt the symol ν the followg esults The poofs of these esults e [9] Lemm :[9] oe hs the followg: Fo ε ε ε 4If the λ λ λ h ptcul f the λ λ λ h Rem: Fo m I tems of e I poduct Π { I we hve e Π { > } } m Defto :[7] e Fo ech I h y we defe the smp le eflecto λ λ λ λ h A The Weyl goup W of g s the sugoup of e GL h geeted y the 's I Note tht e W { I } s coxete system So fo el oot e w w W Π we defe the eflecto of whee Note tht h wth espect to y λ λ λ λ h w h s the dul el oot of w w W Lemm :[9] The le fom ude the cto of the Weyl goup o h h s vt I ptcul we hve ε fo Defto :[7] The set of ll el oots of BKM Le supelge s defed s e W Π e e W { ψ } m e The the set of ll mgy oots s \ We e e m m hve Defto 4:[9] Let Q Z Q Z Q Q s clled the oot lttce the we hve Q s clled the postve oot lttcethe oot lttce Q ecomes ptlly odeed set y puttg β β Q fo β Q Now fo m Q suppot of s defed s supp { I m } If supp s coected A we sy tht supp suset of the Dy dgm of s coected Defto 5:[9] Imgy oots of BKM supelges e sclly of two types domestc-type le-type Do mestc-type mgy oot: A mgy oot whch s cougte to fudmetl oot ude the cto of the Weyl goup s clled om m d domestc-type mgy oot We deote y the set of ll do mestc-type mgy oots Ale-type mgy oot: A mgy oot whch s ot cougte to fudmetl oot ude the cto of the Weyl goup s clled l m le-type mgy oot We deote y the set of ll le-type mgy oots Sce mgy oot s ethe cougte o ot cougte to fudmetl oot ude the cto of Weyl goup ech mgy oot s ethe domestc mgy o le mgy m dom m l m We hve Lemm 6:[9] m s vt ude the cto of the Weyl goup m If the thee exsts w W stsfyg w C Fo m Theoem 7:[9] Fo symmetzle BKM supemtx A ψ f we set e : W Π e e W { ψ }

5 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety 4 dom m the coceg m : W ±Π l m e : \ m W { ± ψ } : m m \ l m dom m w W we hve the followg l m esults: W K w K m m W K W Π W { ψ } whee K { Q > supp s coected } { K supp } K ' Also y otto R R C C h R ' e { h h h I } R { h ' h R Lemm 8:[9] Fo h > I e } e I oe hs the followg: { Z s fte set Let p The set } e the mmum coted ths set let q e the mxmum ths set The p q { Z } { Z p q} c the sequece { mult } s ltelly p q symmetc the left hlf of ths sequece s mootoe odecesg Nmely p q mult mult p q p mult mult > / 4 / Stctly domestc type mgy oots stctly le type mgy oots stctly mgy oots puely mgy oots puely domestc type mgy oots puely le mgy oot wee ledy expled [7] We epet the followg deftos whch we eed hee Defto 9:[`7] A domestc-type mgy oot BKM supe lge s sd to e stctly domestc-type mgy f fo e evey ethe o s oot Let s dom m deote the set of ll stct ly s dom m s dom m domestc-type mgy oots postve egtve stctly domestc-type mgy oots espectvely Defto :[7] A le-type mgy oot BKM supe lge s sd to e stctly le-type mgy f fo evey e ethe o s oot Let s l m s l m s l m deote the set of ll stct ly le-type mgy oots postve egtve stctly le-type mgy oots espectvely Defto :[7] A mgy oot BKM supe lge s sd to e e stctly mgy f fo evey ethe o s oot The set of ll stctly mgy oots s sm sm sm sm deoted y Let deote the set of ll stctly mgy oots postve egtve stctly mgy oots espectvely Rem: As t ws otced [5] sm m m If β the β sm s semgoup Defto :[7] A BKM supe mtx A ψ s sd to hve stctly mgy popety f A sm m A If BKM supemtx stsfes stctly mgy popety we sy tht coespodg BKM Le supelge stsfes stctly mgy popety Puely le mgy oots puely domestc mgy oots wee ledy expled Sthumoothy et l9 Defto :[7] we sy tht s puely mgy f Let m fo y m m β β We sy tht the BKM supe lge g A hs the puely mgy popety f A ψ stsfes ths popety We hve m dom m l m m Smlly we sy tht egtve oot s puely mgy f s puely mgy oot Deote y pm pm A { pm A pm m { m s s The the set of ll puely mgy oots s pm pm pm puely mgy} puelymgy} We omt the poof of the followg theoem fo BKM Le supelges whch c e dectly vefed usg the poof fo KM lges ledy poved [] Theoem 4:[7]

6 5 Appled Mthemtcs 4: -5 Fo BKM Le supelges the followg esults e tue: e fo ll I the If If c If s l m s l m l m e fo ll the slm e fo ll I β fo ll β s l m l m l m β the β the d If e s semgoup slm I ddto to the ove esults we pove the followg esults fo BKM Le supelges Theoem 5: supp s dom m If \{ } m coected the dom m If \{ } e / fo ll s l m the Poof: Let dom m \{ } supp e coected The sm dom m \{ If / So y le mm 8 Let } fo ll e the > / > / > >> o So y le mm 8 we hve o Hece s stctly mgy oot Rem: Fo m the popety d of the Theoem 4 we hve sm m m Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety Rem: I[7] complete clssfct o of BKM Le supelges possessg puely mgy popety ws gve Fst we G ve the followg Results fom[] Defto :[] We sy tht the geelzed Ct mtx A hs the popety SIMmoe efly: A SIM f sm m A A Defto :[] A s sd to stsfy NC f thee exsts o susets S T { } such tht A S s ffe o def te A S T s decomposle type The followg theoem poved y Cspeso 994 s fo the defte Kc-Moody lges possessg stctly mgy popety Cspeso 994 gve complete clssfcto of Kc-Moody lges possessg stctly mgy popety Theoem :[] A GCM les SIM f oly f t stsfes the codto NC hs o pcpl sumtx coted the followg lst: The mtces of the fom 4 o wth The mtces of the followg Dy dgms of twsted ffe type: The stctly hypeolc mtces ssocted wth the Dy dgms of the fom: 4 The hypeolc 4 4 mtces ssocted wth the Dy d g ms of the fom: Fo m[] we c coclude the followg fo ffe Kc-Moody lges: 5 If lge s ffe we hve tht sm δ hece { Z \ {}} m sm \ { δ Z \ Z} whee δ s the uque mml postve mgy oot s the ode of the dgm utomophsm used to costuct the lge

7 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety 6 Ag fo the cse of mtces the fo llo wg theoem gves complete clssfcto of the o-stctly mgy oots: Theoem 4:[] Suppose fo the GCM Z A tht Γ A { K A : ± / A} The ethe Γ A 4 A { A { } Γ A Coolly 5:[] The GCM } o whee > 4 s ot SIM f oly f 4 ethe o Poposto 6:[] A GCM of ffe type s meme of SIM f oly f t s of o-twsted ffe type Rems: Fo m[7] the set of ll stct ly mgy oots of y BKM supelge s suset of set of ll puely mgy pm sm oots tht s \ my e empty set o o-empty set depedg upo the lges So fo the BKM supelges possessg puely mgy popety pm sm we vefy whethe the set \ s e mpty o ot I the pm sm pm sm cse whee \ ll puely sm pm mgy oots e stctly mgy s s lwys tue BKM supelges whch stsfy the codto pm sm \ wll e the clss of BKM lges possessg stctly mgy popetyhece the codto pm sm s equvlet to sm m whch s equvlet to SIM popety As the Cses of Specl Ad Puely Imgy Roots We Dvde The Clsses of BKM Supe lge s Ito Two Ctegoes We Dvde these BKM Le Supe lge s to Two Ctegoes Ctegoy : BKM Le supelges wthout odd ootsgkm lges oly Ctegoy : BKM Le supelges wth o-e mpty set of odd oots: We dscuss ctegoy elow Ctegoy : BKM Le supelges wthout odd oot:gkm lges oly Co mplete clssfct o of GKM lges possessg Stct ly mgy popety ws ledy gve [7] Ctegoy : BKM Le supe lge s wth o-e mpty set of odd oots: We dvde ths ctegoy to two clsses whch e Ctegoy: ClssI: BKM Le supelge s of fte o de Ct mtces w th o-empty set of odd oots Ctegoy: ClssII: BKM Le supe lge s of fte o de Ct mtces wth o-empty set of odd oots We dscuss elow these two clsses septely Ctegoy :ClssI: BKM Le supelges w th o-empty set of odd oots We clssfy these BKM supelges to thee suclsses BKM supelges wth ll smp le oots eg el w th o-empty set of odd oots: These e BKM supelges whch do ot hve y mgy oot So ths set of BKM supelges do ot possess stctly mgy popety BKM supelges ll whose smple oots e mgy w th o-empty set of odd oots: These e BKM supelges whose supemtces do ot ppe s the extesos of KM mtces So ll the dgol elemets e egtve Hece thee s o el smp le oot ll the oots e mgy lso stctly mgy BKM supelges wth fte o-zeo ume of el smple oots fte o-zeo ume of mgy smp le oots wth o-empty set of odd oots: Rem: Heefte we deote y GGX Geelzed Geelzed Ct mtx BKM supe mtx o BKM mtx We pove the followg theoem fo th s cse Theoem : Let A the symmetzle GGX d d d d c c Hee c w w Z c d x GX c x e postve teges Moeove GX s KM mtx of fte ffe o defte type of ode GGX s supemtx of f te ffe o def te type wth smple mgy oots dded to tht of GX The the follo wg esults e tue fo BKM supelges wth odd oots GX s of fte type: If l W K wth e I s tue fo ll l l fo ll the the coespodg BKM supelge stsfes SIM popety

8 7 Appled Mthemtcs 4: -5 m If W Π \ ψ W ψ W{ ψ } m m ψ { ψ } ψ { ψ } d x w > s tue fo ll wth the ove GGX fo the the coespodg BKM supelge stsfes SIM popety Hee ψ ψ s the set of ll odd oots ψ m w K W Π W { ψ } s the m w W set of ll postve mgy oots GX s of utwsted ffe type: If l W K wth e I s tue fo ll l l fo ll the the coespodg BKM Le supelge stsfes SIM popety m If W Π \ ψ ψ W{ ψ } wth d x w > the ove GGX fo s tue fo ll the the coespodg BKM Le supelge stsfes SIM popety If GX s of twsted ffe type the Stctly mgy popety does ot hold 4 If GX s of defte type the Stctly mgy popety does ot lwys hold Poof: I the usul otto let I { } wth I m { } I { } Π { } s the set of ll smple oots wth m Π { } s the set of ll smple mgy e Π { oots } s the set of ll smp le el oots Igeel ψ { I { I m o { > } o } { m Z Z I e } I e } Let GX e of f te type GCM e postve mgy oot The m m w K W Π W{ ψ } Hee w W e K { Q > I supp > } We dscuss elow Cse Cse Csec septely Cse: If l W K the we hve > l > fo l > l By Theoem 4 t s cle tht f l m the Stctly mgy popety holds W Π ψ ψ the c e m Cse: If \ wtte s Flly m fo ll Π Hee We dvde ths cse to Cse Cse CseCse Cse septely m Cse: Let We hve Sce e ε fo I ' s e lwys egtve teges s ε e lwys postve y theoem 5 t s cle tht sm Cse:Let Cse: Let wth /

9 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety 8 If y the theoem sm 5 / O the coty f The As o s el smp le oot / Ths s lso ot tue ecuse e egtve teges So y theoem sm 5 Cse: Let wth The But o Hee / ecuse s smp le el oot / fo e ψ wth Z / So / / > Hece y theoem 5 > Cse:Let We hve wth sm f > / As ll the ' s e egtve teges y theoem 5 sm W{ ψ the c e Csec: If } wtte s Hee fo ll ψ Flly We dscuss elow Csec Csec Cse septely Csec m Csec: Let We hve Sce e ε fo I ' s e lwys egtve teges s ε e lwys postve y theoem 5 t s cle tht sm Csec: Let Csec:Let wth / If the We hve But sm / o

10 9 Appled Mthemtcs 4: -5 As s el smple oot wth / Ths s ot tue ecuse e egtve teges So y theoem sm 5 Csec: Let wth The But 4 4 e o / Hee ecuse s smp le el oot / fo e ψ wth Z / So / / wth sm > f > By theoem 5 Csec:Let > We hve / As ll the ' s e egtve teges y theoem 5 Let GX e of utwsted ffe type Fo KM lges of utwsted ffe type SIM popety holds s pe Cspeso994 Fo BKM lges wth odd oots whch we get s extesos of KM lges utwsted ffe type the poof s exctly sme to cse hece SIM popety holds Let GX e of twsted ffe type As pe Cspeso994 metoed ove SIM popety does ot hold fo KM lges the sme s tue fo BKM Le supelges whch ppe s exteso of KM lges of twsted ffe type Hece SIM popety does ot hold 4Let GX e of defte type As f s defte BKM Le supelges e coceed exteso of fte sm utwsted ffe type of KM lges wll hold SIM popety whee s othe lges do ot hold The followg exmple wll llustte the ove theoem Exmple: Exteso of fte type Let A the symmetzle GGX Ths s BKM supemtx of defte type deoted y SBGA wh ch s exteso of fte type A If > > 4 the the Dy d gm c e dw s follows: F gue Dy dgm of SBGA The Weyl goup fo coespodg BKM Le supelge s W { } Hee m m W K W Π W{ w W w W W K ψ } p q p q o o o o o wth W Π m p q p q o o o o o

11 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety o o o q p q p W } { ψ o o Cse: W K The followg elt os v c e dectly vefed If wth the > > If wth the > > If wth the > > vif wth the > > vif wth the > > vif wth the > > By Theoem 4 fo m the ove esults v v v t s cle tht f tht s f geel l l the sm fo ll W K Cse : Let m W Π The follo wg elt os v c e esly vefed If m we get By Theoem 5 f > the / / whch mples sm If m we get If m we get v If m we get v If m we get d v If m we get Fo m the ove esults v v v wth > t s cle tht / fo v v v Hece y Theoem 5 SIM p opety holds I geel f > the sm fo m W Π

12 Appled Mthemtcs 4: -5 Csec: Let W{ ψ } The followg eltos v c e dect ly vefed m If we get By Theoem 5 f > the / / wh ch mp les sm m If we get m If we get m v If we get m vif we get get m v If we Fo m the ove esults v v v wth / fo t s cle tht Z v v v Hece y theoem 5 SIM p opety holds I geel fo W ψ } SIM popety holds f > { Exmple: Exteso of utwsted ffe type Let A the symmetzle GGX defte type deoted y SBGA Ths s BKM supemtx of whch s exteso of utwsted ffe type A If > 4 > 4 the the Dy dgm c e dw s fo llo ws: F gue Dy dgm of SBGA The Weyl goup of the coespodg BKM Le supelge s W { The Z m m W K W Π W{ ψ } Hee w W w W W K { o o p q p q o } o wth W Π m p q p q o o o o o o o 6 o 6 o 8 o }

13 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety 4 6 o W{ ψ } p q p q o o o o o } o o 6 o 6 o 8 o 4 6 o Cse:Let w W w K The follo wg elt os v c e esly vefed If wth the > > } If wth the > > If wth the v If > > wth v If > > wth vif the > the > 4 4 wth > > the Smlly we c fd > fo dffeet m Hece y Theoem 4 y the ove esults v othes t s cle tht sm fo ll f w W w K l l SIM p opety holds W Π W Tht s f ψ m Cse: Let { } The followg eltos v c e esly vefed m If we get > / / By Theoem 5 f the sm whch mples m If we get m If we get vif we get m Smlly we c fd fo I e 7 7 m Hece y Theoem 5 y the ove esults othes wth > t s cle tht / fo m > m W Π I geel f W Π we get sm fo

14 Appled Mthemtcs 4: -5 CseC: If W ψ } The followg { eltos v c e esly vefed m If we get By Theoem 5 f > / / the whch mples sm m If we get m If we get vif get m Smlly we c fd fo I e 7 6 we m Hece y Theoem 5 y the ove esults v othes wth > t s cle tht m W Π > we get W ψ } / fo I geel f { sm fo ClssII: BKM Le supelges of fte ode wth f te o-empty set of odd oots We dvde ths clss to thee suclsses All smple oots e mgyodd o eve Oe smple el ootodd o eve fte ume of mgy ootsodd o eve Fte ume of smple el oots fte ume of mgy oots We dscuss these cses elow All smple oots e mgyodd o eve: Fo ths clss ll the oots e mgy So these lges stsfy stctly mgy popety Oe smple el ootodd o eve fte ume of mgy ootsodd o eve: We pove the followg theoem fo ths cse Theoem : Let GGX d d c A Hee Z c the symmetzle c c d e postve teges GGX s the BKM supemtx wth oe el smp le oot fte ume of mgy oots If wth l l s tue fo ll l the the coespodg BKM Le supelge stsfes Stct ly mgy popety Poof: I the usul otto {} e I wth I {} I m { I } Π { } wth e m m Π { } Π { I } We defe N ψ ψ {} o ψ { I ψ {} { I Let 4 l m } β m } o The y Theoem > l > l > l l l whch s sme s If l the Stctly mgy popety holds Rem: Fo BKM supelges whch ppe s exteso of twsted ffe typecse exteso of defte typecse 4 exmples wee gve sm \ pm ull [7] setsecto 4 Cse sucse Rems: We hve see ove tht the cse of BKM Le supelges of fte ode wth oe smp le el oot odd o eve fte ume of mgy oots odd o eve m fo ψ { I } SIM p opety holds oly whe e ll gete th oe As coute exmple we cosde Moste Le supelge wth oe smp le el oot fte ume of smp le mgy ootsodd o eve Cosde wth l

15 N Sthumoothy et l: Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety 4 l l fo c c: mu lt plcty of the oot coespodg to - As c the coespodg BKM Le supelge does ot stsfy SIM popety We pove ths elow Cosde Moste Le supelge whch hs the followg supemtx s defed elo w: Let I { } { } e dex set cosde the Bocheds-Ct supe mtx A wth chge m c I I whee c e the coeffcets of the ellptc modul fucto q 744 q 96884q 4976q Hee c q A I 4 s the BKM supemtx I { } { } We defe ψ { I } s the el oot coespodg to the dgol elemet e the mgy oots c coespodg to the dgol elemet - We cosde y fo c the > Ths mp les does ot stsfy the stctly mgy popety fo c Hece Stctly mgy popety does ot hold fo Moste Le supelge Fte umetlest two of smple el oots fte ume of mgy oots: We pove the followg theoem fo ths cse Theoem : Let A the symmetzle GGX d ' ' d d d d c d d c c c c Z c d c d Hee e postve teges GGX s the BKM supemtx wth el smp le oots fte ume of mgy oots If wth l l l s tue fo ll the the coespodg BKM Le supelge stsfes Stctly mgy popety Poof: I the usul ottos I {} wth I e { } I m { } { } e { m { Hee Π the set of ll smple oots wth Π } the set of smp le el oot Π the set of ll smp le mgy } oots We defe ψ N ψ { I ψ { I Let e e } o ψ { I } { I m } m } o e } Π l As ll > { l > l I / e egtve teges Hece > we hve l e SIM popety holds Rems: As the cse of Moste Le supelge wth oe smp le el oot fte ume of mgy smp le oots wth the codto we c cosde BKM Le supelges wth two smp le el oots fte ume of mgy smp le oots wth the codto fo some fo I ths cse s > fo ll I m fo some I sml to Moste Le supelge s theoem SIM popety does ot hold Hece we udest tht fo the fte ode cse the SIM popety depeds o the o-dgol o-zeo etes of the coespodg BKM supemtx 4 Coclusos I ths ppe complete clssfcto of Bocheds Kc-Moody Le supelges possessg stctly mgy popety s gve Fo m ths clssfcto oe c udest tht stctly mgy popety depeds m ly o the coeffcets of the coespodg BKM supemtx Wth these fdgs dffeet complete clssfctos of Bocheds Kc-Moody Le supelges possessg specl mgy oots puely mgy oots stctly mgy oots wee septely foud out dffeet e

16 5 Appled Mthemtcs 4: -5 esech ppes I fct these clssfctos wll e vey much helpful to the eseches to exted these clsses of oot systems to othe types of f te fte dmesol Le supelges Moeove othe chctestcs of these clsses of Bocheds Kc-Moody Le supelges possessg these oot systems c lso e studed These fdgs my lso led to my othe pplctos ACKNOWLEDGEMENTS The esech hs ee fclly suppoted y the Uvesty Gts Co mmsso UGC Govt of Id though the Mo esech Poect FNo6-7/8SR The uthos NSthumoothy Pcpl Ivestgto of the Poect KPydhsPoect Fello w fo the Poect e thful to the UGC fo the sme REFERENCES [] Beett C Imgy Roots of Kc-Moody lge whose eflectos peseve oot multplctes J Alge vol 58 pp [] Bocheds RE Geelzed Kc-Moody lges J Alge vol5 pp [] Cspeso D Stctly mgy oots of Kc-Moody lges J Alge vol 68pp [4] Kc VG Le supelges AdvMth vol6 pp [5] Kc VG Ifte dmesol lges Deded's η - fucto clsscl Mous fucto the vey stge fomul Adv Mth vol pp [6] Kc VG Ifte dmesol Le lge d ed Cmdge Uvesty Pess Cmdge 99 [7] LZ-H JY-D BR-P Reltoshp etwee eflectos detemed y mgy oots the Weyl goup fo specl GKM lge J Mth Res Exp Vol9 pp [8] Mott V Sco A Relzto of Bocheds lges It J Mod Phys A vol7 pp [9] Stosh N Kzhd - Lusztg coectue fo geelzed Kc- Moody lges II Poof of the coectue Ts Ame Mth Soc vol 47 pp [] Sthumoothy N Um Mhesw A Puely mgy oots of Kc-Moody lges Comm Alge vol 4 pp [] Sthumoothy N Llly PL O the oot system of geelzed Kc-Moody lges JMds Uvesty WMY- Specl Issue Secto B : Sceces vol 5 pp 8- [] Sthumoothy N Llly PL Specl mgy oots of geelzed Kc-Moody lges Comm Alge vol pp [] Sthumoothy N Llly PL A ote o puely mgy oots of geelzed Kc-Moody lges Comm Alge vol pp [4] Sthumoothy N Llly PLO some clssess of oot systems of geelzed Kc-Moody lges Cotempoy MthemtcsAMS vol4 pp 89-4 [5] SthumoothyN LllyPL Complete clssfctos of geelzed Kc-Moody lges possessg specl mgy oots stctly mgy popety Comm Alge vol 5 pp [6] SthumoothyN LllyPL Nzee BshA Specl mgy oots of BKM Le supelges Ite Jou Pue ppled Mths vol 84 pp [7] SthumoothyN LllyPL Nzee BshAStctly mgy oots puely mgy oots of BKM Le supelgescomm Alge vol 77 pp [8] SthumoothyNPydhsK Complete clssfcto of BKM Le supelges possessg specl mgy ootsccepted fo pulcto Comm AlgeUSA6 pges- to ppe [9] MWmoto Ifte dmesol Le lges Oglly pulshed Jpese y Iwm Pulshes Toyo 999 Tslted fom the Jpese y Ke Ioh

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Spectral Continuity: (p, r) - Α P And (p, k) - Q

Spectral Continuity: (p, r) - Α P And (p, k) - Q IOSR Joul of Mthemtcs (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 11, Issue 1 Ve 1 (J - Feb 215), PP 13-18 wwwosjoulsog Spectl Cotuty: (p, ) - Α P Ad (p, k) - Q D Sethl Kum 1 d P Mhesw Nk 2 1

More information

On The Circulant K Fibonacci Matrices

On The Circulant K Fibonacci Matrices IOSR Jou of Mthetcs (IOSR-JM) e-issn: 78-578 p-issn: 39-765X. Voue 3 Issue Ve. II (M. - Ap. 07) PP 38-4 www.osous.og O he Ccut K bocc Mtces Sego co (Deptet of Mthetcs Uvesty of Ls Ps de G C Sp) Abstct:

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu Itetol Joul of Resech (IJR) e-issn: 2348-6848, - ISSN: 2348-795X Volume 3, Issue 5, Mch 26 Avlble t htt://tetoljoulofesechog Studyg the Poblems of Multle Itegls wth Mle Ch-Hue Yu Detmet of Ifomto Techology,

More information

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane. CBSE CBSE SET- SECTION. Gv tht d W d to fd 7 7 Hc, 7 7 7. Lt,. W ow tht.. Thus,. Cosd th vcto quto of th pl.. z. - + z = - + z = Thus th Cts quto of th pl s - + z = Lt d th dstc tw th pot,, - to th pl.

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

A convex hull characterization

A convex hull characterization Pue d ppled Mthets Joul 4; (: 4-48 Pulshed ole My 4 (http://www.seepulshggoup.o//p do:.648/.p.4. ove hull htezto Fo Fesh Gov Qut Deptet DISG Uvesty of Se Itly El ddess: fesh@us.t (F. Fesh qut@us.t (G.

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Transmuted Generalized Lindley Distribution

Transmuted Generalized Lindley Distribution Itetol Joul of Memtcs Teds d Techology- olume9 Numbe Juy 06 Tsmuted Geelzed Ldley Dstbuto M. Elghy, M.Rshed d A.W.Shwk 3, Buydh colleges, Deptmet of Memtcl Sttstcs, KSA.,, 3 Isttute of Sttstcl Studes d

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS RNDOM SYSTEMS WTH COMPETE CONNECTONS ND THE GUSS PROBEM FOR THE REGUR CONTNUED FRCTONS BSTRCT Da ascu o Coltescu Naval cademy Mcea cel Bata Costata lascuda@gmalcom coltescu@yahoocom Ths pape peset the

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Chapter #2 EEE State Space Analysis and Controller Design

Chapter #2 EEE State Space Analysis and Controller Design Chpte EEE8- Chpte # EEE8- Stte Spce Al d Cotolle Deg Itodcto to tte pce Obevblt/Cotollblt Modle ede: D D Go - d.go@cl.c.k /4 Chpte EEE8-. Itodcto Ae tht we hve th ode te: f, ', '',.... Ve dffclt to td

More information

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials Poceedgs of The Natoa Cofeece O Udegaduate Reseach (NCUR) 00 The Uvesty of Noth Caoa at Asheve Asheve, Noth Caoa Ap -, 00 Pemutatos that Decompose Cyces of Legth ad ae Gve y Moomas Lous J Cuz Depatmet

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Equidistribution in Sharing Games

Equidistribution in Sharing Games Ope Joul of Dscete Mthemtcs, 4, 4, 9-8 Publshed Ole Juy 4 (http://wwwscpog/oul/odm http://dxdoog/436/odm443 Equdstbuto Shg Gmes Clos D Ade, Emlo Gómez Deptmet d Àlgeb Geomet, Uvestt de Bcelo, Bcelo, Sp

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find BSE SMLE ER SOLUTONS LSS-X MTHS SET- BSE SETON Gv tht d W d to fd 7 7 Hc, 7 7 7 Lt, W ow tht Thus, osd th vcto quto of th pl z - + z = - + z = Thus th ts quto of th pl s - + z = Lt d th dstc tw th pot,,

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Moments of Generalized Order Statistics from a General Class of Distributions

Moments of Generalized Order Statistics from a General Class of Distributions ISSN 684-843 Jol of Sttt Vole 5 28. 36-43 Moet of Geelzed Ode Sttt fo Geel l of Dtto Att Mhd Fz d Hee Ath Ode ttt eod le d eel othe odel of odeed do le e ewed el e of geelzed ode ttt go K 995. I th e exlt

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER

GREEN S FUNCTION FOR HEAT CONDUCTION PROBLEMS IN A MULTI-LAYERED HOLLOW CYLINDER Joual of ppled Mathematcs ad Computatoal Mechacs 4, 3(3), 5- GREE S FUCTIO FOR HET CODUCTIO PROBLEMS I MULTI-LYERED HOLLOW CYLIDER Stasław Kukla, Uszula Sedlecka Isttute of Mathematcs, Czestochowa Uvesty

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE Jou of Eee d Ntu Scece Mühed e Fe Be De S 5/4 SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A EYL SPACE N KOFOĞLU M S Güze St Üete, Fe-Edeyt Füte, Mtet Böüü, Beştş-İSTANBUL Geş/Receed:..4 Ku/Accepted:

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh) Joual of Qualty Measuemet ad Aalyss JQMA 3(), 07, 5-34 Jual Pegukua Kualt da Aalss FULLY IGHT PUE GOUP INGS (Gelaggag Kumpula Tule Kaa Peuh) MIKHLED ALSAAHEAD & MOHAMED KHEI AHMAD ABSTACT I ths pape, we

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

Lattice planes. Lattice planes are usually specified by giving their Miller indices in parentheses: (h,k,l)

Lattice planes. Lattice planes are usually specified by giving their Miller indices in parentheses: (h,k,l) Ltte ples Se the epol ltte of smple u ltte s g smple u ltte d the Mlle des e the oodtes of eto oml to the ples, the use s ey smple lttes wth u symmety. Ltte ples e usully spefed y gg the Mlle des petheses:

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Theory of Finsler spaces with ( λβ, ) Metric

Theory of Finsler spaces with ( λβ, ) Metric Theoy of Fsle sces wth ( λβ ) Metc Dhed Thu Kll Multle us Thuv Uvesty Kll DhdhNel E-l: dhedthuc@lco ABTRAT The of ths e s to toduce d study the cocet of ( ) theoes hve ee woout fo ( ) etc whee (x)y s oe

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS VOL. 5 NO. JULY ISSN 89-8 RN Joul of Egeeg d ppled Sceces - s Resech ulshg Netok RN. ll ghts eseved..pouls.com SETIC -SLINE COLLOCTION METHOD FOR SIXTH ORDER OUNDRY VLUE ROLEMS K.N.S. Ks Vsdhm d. Mul Ksh

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

On Natural Partial Orders of IC-Abundant Semigroups

On Natural Partial Orders of IC-Abundant Semigroups Intentionl Jounl of Mthemtics nd Computtionl Science Vol. No. 05 pp. 5-9 http://www.publicsciencefmewok.og/jounl/ijmcs On Ntul Ptil Odes of IC-Abundnt Semigoups Chunhu Li Bogen Xu School of Science Est

More information

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

Non-axial symmetric loading on axial symmetric. Final Report of AFEM No-axal symmetc loadg o axal symmetc body Fal Repot of AFEM Ths poject does hamoc aalyss of o-axal symmetc loadg o axal symmetc body. Shuagxg Da, Musket Kamtokat 5//009 No-axal symmetc loadg o axal symmetc

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

The Geometric Proof of the Hecke Conjecture

The Geometric Proof of the Hecke Conjecture The Geometc Poof of the Hecke Cojectue Kada Sh Depatmet of Mathematc Zhejag Ocea Uvety Zhouha Cty 6 Zhejag Povce Cha Atact Begg fom the eoluto of Dchlet fucto ug the e poduct fomula of two fte-dmeoal vecto

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information