Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors

Size: px
Start display at page:

Download "Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors"

Transcription

1 Name: Period: Pre-Cal AB: Unit 6: Vectors Monday Tuesday Block Friday /16 PSAT/ASVAB 17 Pep Rally No School Solving Trig Equations TEST Vectors Intro /23 24 End of 9-wks Pep-Rally Operations Vectors Two Vectors Applications QUIZ 27 Start Next Unit 28 Vectors TEST Lesson #1:Vectors Introduction I can graph vectors to find the resultant vector. find the component and magnitude of a vector. I. Vectors A. Definition: Quantities that have and B. Initial Point: point (P) C. point the final point (Q). Found by D. Magnitude the length of the vector ( PQ) E. Written either as or. F. Component of a vector - a, b II. Alternate Vector Notation linear combination of i and j A. i = <1,0> and j = <0,1> B. v = < a, b > = ai + bj C. This form is called the resultant vector (v = ai + bj) D. The sum of all the forces acting on an object is called the resultant force. II. Graphing Vectors A. Vectors can move anywhere on the plane. You must only keep the (length) and (angle measure) B. When adding put the tail of the 2 nd vector on the of the first vector. Connect the original to the new. C. To subtract, go in the direction of the 2 nd vector making it to. IV. Model Problems Guided Practice On Your Own Ex1: Given u and v, find u + v, u v and 2u + 3v. Ex2: Given u and v, find u + v, u v and 2u + 3v. u v u 2 2 u = a + b v

2 Ex3: Find the component and magnitude if P = (-2, 6) and Q = (4, -3) Ex4: Find the component and magnitude if P = (0, 8) and Q = (-4, -7) Ex5: Let u = 5, 2 and v = 3,1, Find u + v by graphing. Ex6: Find the magnitude of the component vector from the left. Practice #1 Find the magnitude of the vector PQ 1) P = (2, 3) Q = ( 5, 9) 2) P = (-3, 5) Q = (7,-11) 3) P (30, 12) Q (25, 5) Copy each vector and find the indicated resultant vector. u v 15) u + v 16) 3u 17) v u 18) u v 19) - 2v 20) 2v + u

3 Lesson #2: Vector Operations I can Find the unit vector in the same direction as the original vector. - perform scalar multiplication of vectors, vector addition, and vector subtraction. - Write vectors in an alternate notation. - Find the resultant vector I. Operations Using Mathematics A. Scalar Multiplication Multiply the vector by a quantity a. B. Addition Add the x components and add the y components C. Subtraction the negative then add. II. Unit Vectors A. Unit Vector a vector with length (magnitude) 1 B: Find a unit vector 1. Find the length of the vector 2. Divide each component by the length of the vector. C. A unit vector is in the same direction as the original vector IV. Model Problems Ex1: If v = 3,1, find 3v and -2v Ex2: Let u = 5, 2 and v = 3,1, find u + v Ex3: Let u = 5, 2 and v = 3,1, find 4u 3v Ex4: Find a unit vector u with the same direction as the vector = 5,12 Ex5: Find a unit vector u with the same direction as the vector = 2,3 Ex6: Find the resultant vector if P = (-2, 6) and Q = (4, -3) Ex7: Find the resultant vector if P = (4, -3) and Q = (-5, 2) Ex8: u = 2i 6j and v = -5i + 2j Find u+v and 2u - v Ex9: u = 3i + 4j and v = -2i - 6j Find u-v and 2u +4v

4 Practice #2: Find u + v, u v, and 3u 2v. 1) u = 2, 4 v = 6,1 2) u = 4, 0 v = 1, 3 3) u = 2 2, 4 v = 2, 1 Let u = 8, 4, v = 3,1, and w = 6, 2, find: 4) u + v 5) u v 6) 3u + v 7) v + w 8) 2(v w) 9) u + ½ w 10) -2(w + 2u) 11) 7 v 2 u 6 3 Find a unit vector in the same direction as the given vector. 12) = 4, 5 13) = 7,8 14) = 5,10 15) = ) = 1,3 17) = 6 2 Find the resultant vector given the two end points. 18) = 6,5, = 3,8 19) = 2,12, = 1, 10 Given =3 7, =4 2 = Perform operations with linear combinations. 20) + 21) 22) ) ) ) +2 +5

5 Lesson #3: Two Vectors I can Find the dot product of two vectors. - Find the cross product of two vectors. - Find the angle between two vectors - Determine whether two vectors are parallel, perpendicular, or neither. I. Operation with vectors A. Dot Product: If =, and =, then = B: Cross Product: If =, and =, then = II. Properties of Dot Product If u, v, and w are vectors, and k is a real number, then: A. = B. = C. + = D. = E. 0 = II. Angle between vectors A. If is the angle between the nonzero vectors u and v, cos _ = III. Parallel, perpendicular (orthogonal) or neither A. Vectors u and v are parallel when =0 B. Vectors u and v are orthogonal when =0 IV. Model Problems Ex 1: Given = 5,3 = 2,6 Find and Ex 2: Given =4 2 = 3 Find and Ex 3: Find the angle between the vectors = 3,1 = 5,2 Ex 4: Find the angle between the vectors =4 3 = +2 Ex 5: Given = 1,3, = 1,2 and = 2, 5 Find + Ex 6: Given = 1,3, = 1,2 and = 2, 5 Find + + Ex 7: Determine whether vectors u and v are parallel, orthogonal or neither. = 2, 6 = 9,3 Ex 8: Determine whether vectors u and v are parallel, orthogonal or neither. =3 6 = 5 +3

6 Ex 9: Determine whether vectors u and v are parallel, orthogonal or neither. = 3,2 = 6, 4 Ex 10: Determine whether vectors u and v are parallel, orthogonal or neither. = 9, 3 = 3,1 Practice #3: 1 4 Find and 1. = 3,4 = 5,2 2. = 1,6 = 4, 3. =2 + = 3 4. = = Find the angle between the vectors. 5. = 2,4 = 0, 5 6. = 2, 3 = 1,0 7. =2 = =3 5 = Given = 1,3, = 1,2 and = 2, Determine whether vectors u and v are parallel, orthogonal or neither. 15. = 2,6 = 3, = 5,3 = 2,6 17. = 9, 6 = 6,4 18. = 1,2 = 2, = 2, 2 = 5,8 20. = 6, 4 = 2,3

7 Lesson #4: Vector Applications I can Find the component of the direction angle. - Write vectors in an alternate notation. - Find the resultant vector I. Components of the Direction Angle A. If v = =, then a = and b = where is the direction angle of v. B. The angle = Ex 1: Find the component form of the vector that represents the velocity of an air plane at the instant its wheels leave the ground, if the plan is going 60 miles per hour and the body of the plan makes a 7 angle with the horizontal. Ex 2: Find the direction angle of each vector u = 5i + 13j and v = -10i + 7j Ex 3: An object at the origin is acted upon by two forces. A 150-pound force makes an angle of 20 with the positive x-axis, and the other force of 100-pounds makes an angle of 70 with the positive x-axis. Find the direction and magnitude of the resultant force. Ex 4: A 200-pound box lies on a ramp that makes an angle of 24 with the horizontal. A rope is tied to the box from a post at the top of the ramp to keep it in position. Ignoring friction, how much force is being exerted on the rope by the box? Ex 5: An airplane is flying in the direction 50 with an air speed of 300 miles per hour. If there was no wind, the course of the airplane would be 50. However, there is a 35 mph wind from the direction 120. Find the course and ground speed of the plane.

8 Practice #4: Find the magnitude and direction angle of each vector. 1) = 4,4 2) =4 8 3) = ) An object at the origin is acted upon by two forces u = 30 pounds with a direction angle of 0 and v= 90 pounds with a direction angle of 60. Find the direction and magnitude of the resultant force. 5) An object at the origin is acted upon by two forces u = 6 pounds with a direction angle of 45 and v= 6 pounds with a direction angle of 120. Find the direction and magnitude of the resultant force. Find the course and ground speed of the plane under the given conditions. 6) air speed 250 miles per hour in the direction of 60 ; wind speed 40 miles per hour from the direction 330 7) air speed 400 miles per hour in the direction of 150 ; wind speed 30 miles per hour from the direction 330 8) air speed 300 miles per hour in the direction of 300 ; wind speed 50 miles per hour in the direction 30 9) A force of 500 pounds is needed to pull a cart up a ramp that makes a 15 angle with the ground. Assuming that no friction is involved, find the weight of the cart.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5)

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5) Test # Review Math 14 Name (6.5 to 6.7, 10.1 to 10.,and 10.5) Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the product of the complex

More information

Vector Supplement Part 1: Vectors

Vector Supplement Part 1: Vectors Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

11.4 Dot Product Contemporary Calculus 1

11.4 Dot Product Contemporary Calculus 1 11.4 Dot Product Contemporary Calculus 1 11.4 DOT PRODUCT In the previous sections we looked at the meaning of vectors in two and three dimensions, but the only operations we used were addition and subtraction

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

Section 10.4 Vectors

Section 10.4 Vectors 220 Section 10.4 Vectors In this section, we will define and explore the properties of vectors. Vectors can be used to represent the speed and the direction of an object, the force and direction acting

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

Pre-Calculus Vectors

Pre-Calculus Vectors Slide 1 / 159 Slide 2 / 159 Pre-Calculus Vectors 2015-03-24 www.njctl.org Slide 3 / 159 Table of Contents Intro to Vectors Converting Rectangular and Polar Forms Operations with Vectors Scalar Multiples

More information

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1

VECTORS. Section 6.3 Precalculus PreAP/Dual, Revised /11/ :41 PM 6.3: Vectors in the Plane 1 VECTORS Section 6.3 Precalculus PreAP/Dual, Revised 2017 Viet.dang@humbleisd.net 10/11/2018 11:41 PM 6.3: Vectors in the Plane 1 DEFINITIONS A. Vector is used to indicate a quantity that has both magnitude

More information

Two Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while

Two Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2 - Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

Multiple forces or velocities influencing an object, add as vectors.

Multiple forces or velocities influencing an object, add as vectors. September 23, 2018 Coming up: Mon 10/1: Exploration Topic Due! Wed 10/10: PSAT Fri 10/12: Vector Unit Exam (Ch 12 & 13) Fri 10/12: Begin Exploration writing Wed 10/31: Exploration Final Due! 1. Apply vector

More information

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =,

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =, SUPPLEMENT I 1. Vectors Definition. A vector is a quantity that has both a magnitude and a direction. A twodimensional vector is an ordered pair a = a 1, a 2 of real numbers. The numbers a 1 and a 2 are

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Math 150 Chapter 9 Fall 2014 1 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional plane.

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

Chapter 1E - Complex Numbers

Chapter 1E - Complex Numbers Fry Texas A&M University Math 150 Spring 2015 Unit 4 20 Chapter 1E - Complex Numbers 16 exists So far the largest (most inclusive) number set we have discussed and the one we have the most experience with

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC_W05D1 ConcepTests

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC_W05D1 ConcepTests Reading Question MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 IC_W05D1 ConcepTests Two objects are pushed on a frictionless surface from a starting line to a finish line with

More information

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side. Vectors EXAM review Problem 1 = 8 and = 1 a) Find the net force, assume that points North, and points East b) Find the equilibrant force 2 = 15, = 7, and the angle between and is 60 What is the magnitude

More information

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1 Introduction Law of Sines Precalculus 6.1 In this section, we will solve oblique triangles triangles that have no right angles. As standard notation, the angles of a triangle are labeled A, B, and C, and

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 1 JoungDong Kim Week 1 Vectors, The Dot Product, Vector Functions and Parametric Curves. Section 1.1 Vectors Definition. A Vector is a quantity that

More information

6.4 Vectors and Dot Products

6.4 Vectors and Dot Products 6.4 Vectors and Dot Products Copyright Cengage Learning. All rights reserved. What You Should Learn Find the dot product of two vectors and use the properties of the dot product. Find the angle between

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Day 1: Introduction to Vectors + Vector Arithmetic

Day 1: Introduction to Vectors + Vector Arithmetic Day 1: Introduction to Vectors + Vector Arithmetic A is a quantity that has magnitude but no direction. You can have signed scalar quantities as well. A is a quantity that has both magnitude and direction.

More information

Chapter 7.4: Vectors

Chapter 7.4: Vectors Chapter 7.4: Vectors In many mathematical applications, quantities are determined entirely by their magnitude. When calculating the perimeter of a rectangular field, determining the weight of a box, or

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

# x = v f + v & % ( t x = v

# x = v f + v & % ( t x = v Name: Physics Chapter 4 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: F = ma µ = F fric a = v f " v i t # x = v f

More information

Welcome to IB Math - Standard Level Year 2

Welcome to IB Math - Standard Level Year 2 Welcome to IB Math - Standard Level Year 2 Why math? Not So Some things to know: Good HW Good HW Good HW www.aleimath.blogspot.com Example 1. Lots of info at Example Example 2. HW yup. You know you love

More information

Geometric Interpretation of Vectors

Geometric Interpretation of Vectors Math 36 "Fall 08" 7.4 "Vectors" Skills Objectives: * Represent vectors geometrically and algebraically * Find the magnitude and direction of a vector * Add and subtract vectors * Perform scalar multiplication

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement Vector Supplement 1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

There are two types of multiplication that can be done with vectors: = +.

There are two types of multiplication that can be done with vectors: = +. Section 7.5: The Dot Product Multiplying Two Vectors using the Dot Product There are two types of multiplication that can be done with vectors: Scalar Multiplication Dot Product The Dot Product of two

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere 12.2 Vectors 12.1 Three Dimensional Coordinate Systems (Reiew) Equation of a sphere x a 2 + y b 2 + (z c) 2 = r 2 Center (a,b,c) radius r 12.2 Vectors Quantities like displacement, elocity, and force inole

More information

PreCalculus Notes. MAT 129 Chapter 10: Polar Coordinates; Vectors. David J. Gisch. Department of Mathematics Des Moines Area Community College

PreCalculus Notes. MAT 129 Chapter 10: Polar Coordinates; Vectors. David J. Gisch. Department of Mathematics Des Moines Area Community College PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department of Mathematics Des Moines Area Community College October 25, 2011 1 Chapter 10 Section 10.1: Polar Coordinates

More information

Pre-Calc Vectors ~1~ NJCTL.org

Pre-Calc Vectors ~1~ NJCTL.org Intro to Vectors Class Work Draw vectors to represent the scenarios. 1. A plane flies east at 300 mph. 2. A ship sails northwest at 20 knots. 3. A river flows south at 4 mph. Draw the following vector.

More information

Chapter 6. Additional Topics in Trigonometry. 6.6 Vectors. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 6. Additional Topics in Trigonometry. 6.6 Vectors. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 6 Additional Topics in Trigonometry 6.6 Vectors Copyright 2014, 2010, 2007 Pearson Education, Inc. 1 Obectives: Use magnitude and direction to show vectors are equal. Visualize scalar multiplication,

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 4 Main points of last lecture Scalars vs. Vectors Vectors A: (A x, A y ) or A & θ Addition/Subtraction Projectile Motion X-direction: a x = 0 (v x = constant)

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 370 Exam 3 Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

UNIT 9 (Chapter 7 BI) Polynomials and Factoring Name:

UNIT 9 (Chapter 7 BI) Polynomials and Factoring Name: UNIT 9 (Chapter 7 BI) Polynomials and Factoring Name: The calendar and all assignments are subject to change. Students will be notified of any changes during class, so it is their responsibility to pay

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Welcome to IB Math - Standard Level Year 2.

Welcome to IB Math - Standard Level Year 2. Welcome to IB Math - Standard Level Year 2 Why math? Some things to know: www.aleimath.blogspot.com 1. Lots of info at 2. HW yup. You know you love it! Be prepared to present. Notebook all work is in it.

More information

1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors

1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors Objectives kˆz 1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors t < 0 r 0 t > 0 ĵy 3. Determine if Two Vectors Are Parallel 4. Determine if Two Vectors Are Orthogonal 5. Decompose

More information

2-2. Warm Up. Simplify each expression. 1. ( 7)(2.8) ( 9)( 9)

2-2. Warm Up. Simplify each expression. 1. ( 7)(2.8) ( 9)( 9) Warm Up Simplify each expression. 1. ( 7)(2.8) 2. 0.96 6 3. ( 9)( 9) 4. 5. 6. Learning Goals 1. Students will solve and check equations using multiplication 2. Students will solve and check equations using

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION NON-CALCULATOR PORTION Find four solutions to each of the following; write your answer in 1. 2. 3. 4. 5. 6. radians: Find the value of each of the following: 7. ( ) 8. 9. ( ) 10. 11. 12. 13. ( ) Find four

More information

Math 370 Exam 3 Review Name

Math 370 Exam 3 Review Name Math 70 Exam Review Name The following problems will give you an idea of the concepts covered on the exam. Note that the review questions may not be formatted like those on the exam. You should complete

More information

Mathematics 5 SN Guide

Mathematics 5 SN Guide Mathematics 5 SN Guide 1 Quadrilateral RSTU is a parallelogram and M is the point of intersection of its diagonals. S M T Antoine lists the following vector operation statements: R U 1) ST SR 2MU 2) UT

More information

Polar Coordinates; Vectors

Polar Coordinates; Vectors 10.5 The Dot Product 1. v i, w i+ (a) v w 1(1) + ( 1)(1) 1 1 0 (b) cos v w 0 1 + ( 1) 1 + 1 0 0 0 90º (c) The vectors are orthogonal.. v i +, w i+ (a) v w 1( 1) +1(1) 1 + 1 0 (b) cos v w 0 1 +1 ( 1) +

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

10.2,3,4. Vectors in 3D, Dot products and Cross Products

10.2,3,4. Vectors in 3D, Dot products and Cross Products Name: Section: 10.2,3,4. Vectors in 3D, Dot products and Cross Products 1. Sketch the plane parallel to the xy-plane through (2, 4, 2) 2. For the given vectors u and v, evaluate the following expressions.

More information

Teacher Content Brief

Teacher Content Brief Teacher Content Brief Vectors Introduction Your students will need to be able to maneuver their Sea Perch during the competition, so it will be important for them to understand how forces combine to create

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra McDougal 1 Algebra 1

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra McDougal 1 Algebra 1 1-3 Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up Evaluate each expression. 1. ( 7)(2.8) 19. 2. 0.9 3. ( 9)( 9) 0.1 81 4. 5.. 1 2 3 1.8 Objective Solve one-step equations

More information

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is 1.1 Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length,

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

Unit 4 Day 8 Symmetry & Compositions

Unit 4 Day 8 Symmetry & Compositions Unit 4 Day 8 Symmetry & Compositions Warm Up Day 8 1. f ( ) 4 3. g( ) 4 a. f(-1)= a. -g()= b. f(3)= b. g(+y)= c. f(-y)= c. g(-)= 3. Write and graph an equation that has the following: -Nonremovable discontinuity

More information

LC O 6 12 =? 6 + ( 12) = 18. Add the Opposite... Leave Change Opposite. the same... different... Subtraction. Know this Term

LC O 6 12 =? 6 + ( 12) = 18. Add the Opposite... Leave Change Opposite. the same... different... Subtraction. Know this Term Adding/Subtracting Integers Copy Notes Adding and Subtracting Integers Copy Notes Addition Subtraction the same... Add, and keep the sign... ex. 2 + 3 = 5 2 + ( 3) = 5 Are the signs... different... Subtract,

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3 Math 36 Exam 3 Multiple Choice Identify the choice that best completes the statement or answers the question.. Find the component form of v if ÄÄ= v 0 and the angle it makes with the x-axis is 50. 0,0

More information

Scalar Quantities - express only magnitude ie. time, distance, speed

Scalar Quantities - express only magnitude ie. time, distance, speed Chapter 6 - Vectors Scalar Quantities - express only magnitude ie. time, distance, speed Vector Quantities - express magnitude and direction. ie. velocity 80 km/h, 58 displacement 10 km (E) acceleration

More information

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1 Section 5 B: Graphs of Decreasing Eponential Functions We want to determine what the graph of an eponential function y = a looks like for all values of a such that 0 > a > We will select a value of a such

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

Chapter 6 Additional Topics in Trigonometry

Chapter 6 Additional Topics in Trigonometry Chapter 6 Additional Topics in Trigonometry Overview: 6.1 Law of Sines 6.2 Law of Cosines 6.3 Vectors in the Plan 6.4 Vectors and Dot Products 6.1 Law of Sines What You ll Learn: #115 - Use the Law of

More information

UNIT 3 REASONING WITH EQUATIONS Lesson 2: Solving Systems of Equations Instruction

UNIT 3 REASONING WITH EQUATIONS Lesson 2: Solving Systems of Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: graphing equations of lines using properties of equality to solve equations Introduction Two equations that are solved together

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to 1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to A) 9.2 10 12 s B) 8.3 10 14 s C) 1.6 10 16 s D) 4.4 10 17 s E) 2.7

More information

Identify polynomial functions

Identify polynomial functions EXAMPLE 1 Identify polynomial functions Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient. a. h (x) = x 4 1 x 2

More information

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C.

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C. Name: Date: 1. When a 12-newton horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of static friction acting on the box is 3. The graph given shows the weight

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

The density is very large, so the 130-pound sphere is small in size.

The density is very large, so the 130-pound sphere is small in size. Chapter 1 Solutions 1.8.IDENTIFY: Apply the given conversion factors. A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a much smaller number. 1.11. IDENTIFY: We

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

2-4. Warm Up Lesson Presentation Lesson Quiz

2-4. Warm Up Lesson Presentation Lesson Quiz Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up Solve each equation. 1. 2x 5 = 17 6 2. 14 Solve each inequality and graph the solutions. 3. 5 < t + 9 t > 4 4. a 8 Objective

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 131 George Voutsadakis (LSSU) Trigonometry January 2015 1 / 39 Outline 1 Applications

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

Vectors and Matrices Lecture 2

Vectors and Matrices Lecture 2 Vectors and Matrices Lecture 2 Dr Mark Kambites School of Mathematics 13/03/2014 Dr Mark Kambites (School of Mathematics) COMP11120 13/03/2014 1 / 20 How do we recover the magnitude of a vector from its

More information

Physics Bachelors Have Successful Careers!

Physics Bachelors Have Successful Careers! Did You Know? Physics Bachelors Have Successful Careers! 82% In times of economic instability, job security is important. Other important job aspects such as salary and benefits rank highly among physics

More information

Chapter 5 Inequalities

Chapter 5 Inequalities Chapter 5 Inequalities 5.1 Solve inequalities using addition and subtraction 1. Write and graph an inequality. 2. Solve inequalities using addition and subtraction. Review- Symbols to KNOW < LESS THAN

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Accelerated Precalculus (Shildneck) Spring Final Exam Topic List Unit 1 Laws of Sines and Cosines Unit 4 Polar Equations Law of Cosines Law of Sines Ambiguous Case Sine Area Formula Hero s Formula Applications

More information

SB Ch 6 May 15, 2014

SB Ch 6 May 15, 2014 Warm Up 1 Chapter 6: Applications of Trig: Vectors Section 6.1 Vectors in a Plane Vector: directed line segment Magnitude is the length of the vector Direction is the angle in which the vector is pointing

More information

Mechanics. Flight Lessons 1: Basic Flight. Position, starting with 2 dimensions

Mechanics. Flight Lessons 1: Basic Flight. Position, starting with 2 dimensions Position, starting with 2 dimensions Mechanics We can measure our position forward with positive numbers and backwards with negative numbers. The bike is at 0. Speed (Average) If we take two odometer readings,

More information

When two letters name a vector, the first indicates the and the second indicates the of the vector.

When two letters name a vector, the first indicates the and the second indicates the of the vector. 8-8 Chapter 8 Applications of Trigonometry 8.3 Vectors, Operations, and the Dot Product Basic Terminology Algeraic Interpretation of Vectors Operations with Vectors Dot Product and the Angle etween Vectors

More information

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3 New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product reading assignment read chap 3 Most physical quantities are described by a single number or variable examples:

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

INTRO VIDEO REVIEW QUIZ

INTRO VIDEO REVIEW QUIZ DEVIL PHYSICS BADDEST CLASS ON CAMPUS PRE-DP PHYSICS INTRO VIDEO Newton's Third Law of Motion REVIEW QUIZ 1. What is force? 2. Name Newton s First Law of Motion. 3. What is inertia? 4. What is the chemistry

More information

Elementary Linear Algebra. Kuttler

Elementary Linear Algebra. Kuttler Elementary Linear Algebra Kuttler March 6, 9 Contents Introduction 7 F n 9 Outcomes 9 Algebra in F n Geometric Meaning Of Vectors Geometric Meaning Of Vector Addition 4 Distance Between Points In R n

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls. 4.1. Solve: A force is basically a push or a pull on an object. There are five basic characteristics of forces. (i) A force has an agent that is the direct and immediate source of the push or pull. (ii)

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information