Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval

Size: px
Start display at page:

Download "Epidemiology Wonders of Biostatistics Chapter 11 (continued) - probability in a single population. John Koval"

Transcription

1 Epidemiology 9509 Wonders of Biostatistics Chapter 11 (continued) - probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario

2 What is being covered 1. sample size 2. inference about single samples - goodness of fit

3 sample size and power calculations 1. sample size for margin of error (E) 2. power 3. sample size for effect size (ES)

4 required margin of error - precision E is margin of error - half interval width measure of precision from previous formula for single sample n = π(1 π) ( z(α/2) ) 2 E since π usually unknown use π = 0.5 which maximizes π(1 π) Formula becomes n = 1 ( z(α/2) ) 2(1) 4 E

5 sample size - margin of error - example α = 0.05, π = 0.5 want to estimate proportion (prevalence) of smokers to within 10% E =.10 ( 1.96 ) 2 n = = 0.25(384.16) = that is 97, (essentially 100) for E = 0.05 (width of 0.10) n is almost 400. since z α/2 2 formula is essentially n = ( ) 1 2 (2) E

6 Power Epidemiology 9509 interested in the difference in probability δ π = π A π o where π o is the probability (proportion) under null and π A is the probability (proportion) under alternative we have to specify π o and π A because variances are related to means cannot use the formula for a single population that we used previously, but have to derive a new formula.

7 power (continued) The rule for rejecting a null hypothesis if p > π o +z α/2 σ po, then reject H o. where π σ po = o(1 π o) n

8 formula for power Pr where π σ pa = A (1 π A ) n ( Z N > z ) α/2σ po π o π A (3) σ pa This may also be written as ( Pr Z N > z α/2σ o ) n π o π A (4) σ A where σ o = π o (1 π o ) and σ A = π A (1 π A ) π o π A is Effect Size (for proportions)

9 Example of calculation of power for proportion Usually α = 0.05, so that z α/2 = z = current success rate in treatment of a disease is 50%. In a clinical trial of a new drug on 9 subjects, what power do we have of finding a new rate of 60%. Mathematically, this may be stated as π o = 0.5 and π A = 0.60, δ π = 0.10 = ES

10 σ o = π o (1 π o ) = 0.5(0.5) = 0.5 and σ A = π A (1 π A ) = 0.4(0.6) = 0.24 = 0.490

11 Plug these figures into equation (4) ( ) Pr Z N > 1.96(0.5) 9(0.10) ( = Pr Z N > ) = z (1.388) = Hence the chance of finding a difference of 0.10 with a sample of size 9 is about 8%

12 simplifying formula may use σ o = σ A = 0.5 in (4) In our example, this becomes Pr(Z N > z α/2 2 π o π A n)(5) Pr(Z N > (0.1) 9) = Pr(Z N > ) = Pr(Z N > 1.36) = z (1.36) = This is larger than previous calculation optimistic; only use when π o and π A close to 0.5

13 Sample size for a single proportion start with equation (4) and solve for n. ( 1 β = Pr Z N > z α/2σ o ) n π o π A σ A and eventually get n = ( ) zα/2 σ o +z β σ 2 A π o π A where σ o = π o (1 π o ) and σ A = π A (1 π A ) π o π A is sometimes referred to as ES (Effect size)

14 This formula maximized when σ o = σ A = 0.5 n = ( ) zα/2 +z 2 β (6) 2 π o π A don t use when π o or π A far from 0.5.

15 Example of sample size calculation Usually, the required power is 80% so that z β = z (0.20) = For the same clinical trial, where we wish to show a proportion of 0.6 (π A ) where the usual result is 0.5 (π o ), we have σ A = and σ o = 0.5. Moreover ES, the effect size,is δ π = = 0.1

16 Substituting into the preceding equation, we get n = ( zα/2 σ o +z β σ A π o π A ) 2 ( ) 1.96(0.5) (0.490) 2 = 0.1 ( ) = = = Hence 194 subjects are required (close enough to 200) Short formula (6) gives ( n = 2(0.1) ) 2 or 197 subjects = ( ) =

17 Goodness of fit chi-square multinomial (categorical) data observe x i in each of k categories

18 examples toss coin k = 2 20 tosses, 8 heads (x 1 ), 12 tails (x 2 ) is coin fair? random sample of 20 graduate students 8 males (x 1 ), 12 females (x 2 ) supposedly 70% of Western grad students are female does this seem to be a random sample of the population? of 36 graduate students, selected at random 9 are smokers and 27 are not Statistics Canada says that 20% of young people smoke. Do the results for this sample agree with that?

19 examples (continued) of the 20 graduate students 12 from Ontario, 4 from Canada outside Ontario 4 from outside Canada k = 3 supposedly the population figures for Western are 70% Ontario, 20% Canadian outside Ontario 10% from outside Canada Is this sample representative of population?

20 statistical test Exact distribution is binomial 8 heads from 20 trials H o : π = 0.5 H A : π 0.5 p-value = Pr(X B 8 π = 0.5) +Pr(X B 12 π = 0.5) = 2Pr(X B 8 π = 0.5) symmetric Use SAS program to calculate p-value =

21 approximate test goodness of fit how well does data fit theoretical distribution when π = π o can be used to test against two-sided alternative H A : π π o O i observed : x i E i expected : under H o O 1 = 8,E 1 = 10 O 2 = 12,E 2 = 10

22 approximate test (continued) S = k (O i E i ) 2 i 1 E i = (8 10)2 10 = = (12 10)2 10 under H o, S P χ 2 k 1 Karl Pearson

23 example (continued) In this case S χ 2 1 pvalue = Pr(χ 2 1 > 0.8) > 0.10 at α = 0.05, fail to reject H o

24 better p-values χ 2 1 (Z N) 2 Pr(χ 2 1 > 0.8) = 2Pr(Z N > 0.8) = 2Pr(Z n > ) = 2z (0.8944) = 2( ) by linear interpolation =

25 better approximate test χ 2 approximation to binomial continuity correction Frank Yates S Y = 2 ( O i E i 0.5) 2 i=1 E i = ( )2 10 = = ( )2 10

26 better approximate test (continued) Pr(χ 2 1 > 0.45) = 2Pr(Z N > 0.45) = 2Pr(Z n > ) = 2(.25115) by liner interpolation = good approximation 1. nπ o = 20(0.5) = 10 > 5 2. O i > 5,i = 1,...,k

27 example II same observations, O 1 = 8,O 2 = 12 but different E i E 1 = 20(0.3) = 6 E 2 = 20(0.7) = 14 S = 2 ( O i E i 0.5) 2 i=1 E i = ( )2 6 = = ( )2 14 so that p-value= 2Pr(Z N > ) = 2(0.2321) =

28 example III O 1 = 9,O 2 = 27 E 1 = 36(0.2) = 7.2 E 2 = 36(0.8) = 28.8 S = 2 ( O i E i 0.5) 2 i=1 E i = ( )2 7.2 = = so that p-value= Pr(χ 2 1 > ) = 2Pr(Z N > ) = 2z (0.5417) = 2(0.2940) = ( )2 28.8

29 Relationship - test of proportion and Goodness of Fit The test of H o : π = π o against a two-sided interval H A : π π o can be handled by the p-value calculation p = 2Pr(Z N > (p πo) 1/2n ) πo(1 π o)/n or by the Goodness of Fit test S = 2 i=1 ( O i E i 0.5) 2 E i

30 example IV O 1 = 12,E 1 = 20(0.7) = 14 O 2 = 4,E 2 = 20(0.2) = 4 O 3 = 4,E 3 = 20(0.1) = 2 nocc S = (12 14) (4 2)2 2 = = (4 4)2 4 However, under H o, S χ 2 2 so that pvalue = Pr(χ 2 2 > 2.285) > 0.10

31 Using SAS for inference with a single population title inference for single sample probabilities ; options ls=64; proc format; value grp 0= non-smoker 1= smoker ; data marj; input grp smok; format grp grp.; datalines; ;

32 SAS program (continued) proc freq; weight smok; tables grp/binomial(level = smoker p=0.2 wilson ac); exact binomial; quit; 1. have to indicate group membership; 2. indicate counts by using the WEIGHT command in Proc FREQ; 3. Wilson (option WILSON) and adjusted Wald (option AC) confidence intervals. 4. SAS does not do continuity correction We have to ask for an exact test for the binomial (EXACT BINOMIAL).

33 output of SAS program inference for single sample probabilities The FREQ Procedure Cumulative Cumulative grp Frequency Percent Frequency Percent non-smoker smoker Binomial Proportion for grp = smoker Proportion ASE Type 95% Confidence Limits Wilson Agresti-Coull

34 output of SAS program (continued) Test of H0: Proportion = 0.2 ASE under H Z One-sided Pr > Z Two-sided Pr > Z Exact Test One-sided Pr >= Two-sided = 2 * One-sided Sample Size = 36

35 SAS with raw data raw data refers to data that occurs as one subject per line not in table form Solution: use Proc FREQ as above, but 1. don t need WEIGHT command, because SAS calculates the weights, that is, the counts (number of people in each group) 2. use variable which defines group eg sex, or cryo. etc.

36 SAS program proc freq data=fred.cancer; tables cryo/binomial(level = smoker p=0.2 wilson ac); exact binomial; quit;

37 Creating new SAS datasets Remember that you require 1. LIBNAME for your dataset 2. LIBNAME for your formats library 3. DATA command with name of the new permanent dataset 4. SET sub-command with name of current permanent dataset

38 example of part of SAS program for dataset creation LIBNAME fred U:/Epid9509 ; LIBNAME library U:/Epid9509 ; DATA fred.cancer2; SET fred.cancer;

39 creating new variables 1. Must be done in a DATA step 2. often involves IF statement 3. usually involves initially creation of new variable then modification of values diag3 = diagnosis ; if (diagnosis ge 2) then diag3 = 2; 4. missing value indicator is. diag2 = diagnosis ; if (diagnosis ge 2) then diag2 =.;

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval

Epidemiology Principle of Biostatistics Chapter 11 - Inference about probability in a single population. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 11 - Inference about probability in a single population John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is

More information

Epidemiology Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures. John Koval

Epidemiology Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures. John Koval Epidemiology 9509 Principle of Biostatistics Chapter 14 - Dependent Samples and effect measures John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered

More information

Epidemiology Wonders of Biostatistics Chapter 13 - Effect Measures. John Koval

Epidemiology Wonders of Biostatistics Chapter 13 - Effect Measures. John Koval Epidemiology 9509 Wonders of Biostatistics Chapter 13 - Effect Measures John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered 1. risk factors 2. risk

More information

Inference for Binomial Parameters

Inference for Binomial Parameters Inference for Binomial Parameters Dipankar Bandyopadhyay, Ph.D. Department of Biostatistics, Virginia Commonwealth University D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 58 Inference for

More information

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13 PubH 5450 Biostatistics I Prof. Carlin Lecture 13 Outline Outline Sample Size Counts, Rates and Proportions Part I Sample Size Type I Error and Power Type I error rate: probability of rejecting the null

More information

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval

Epidemiology Principles of Biostatistics Chapter 10 - Inferences about two populations. John Koval Epidemiology 9509 Principles of Biostatistics Chapter 10 - Inferences about John Koval Department of Epidemiology and Biostatistics University of Western Ontario What is being covered 1. differences in

More information

An introduction to biostatistics: part 1

An introduction to biostatistics: part 1 An introduction to biostatistics: part 1 Cavan Reilly September 6, 2017 Table of contents Introduction to data analysis Uncertainty Probability Conditional probability Random variables Discrete random

More information

Testing Independence

Testing Independence Testing Independence Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/50 Testing Independence Previously, we looked at RR = OR = 1

More information

ST3241 Categorical Data Analysis I Two-way Contingency Tables. 2 2 Tables, Relative Risks and Odds Ratios

ST3241 Categorical Data Analysis I Two-way Contingency Tables. 2 2 Tables, Relative Risks and Odds Ratios ST3241 Categorical Data Analysis I Two-way Contingency Tables 2 2 Tables, Relative Risks and Odds Ratios 1 What Is A Contingency Table (p.16) Suppose X and Y are two categorical variables X has I categories

More information

STAT 705: Analysis of Contingency Tables

STAT 705: Analysis of Contingency Tables STAT 705: Analysis of Contingency Tables Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Analysis of Contingency Tables 1 / 45 Outline of Part I: models and parameters Basic

More information

1) Answer the following questions with one or two short sentences.

1) Answer the following questions with one or two short sentences. 1) Answer the following questions with one or two short sentences. a) What is power and how can you increase it? (2 marks) Power is the probability of rejecting a false null hypothesis. It may be increased

More information

BIOS 625 Fall 2015 Homework Set 3 Solutions

BIOS 625 Fall 2015 Homework Set 3 Solutions BIOS 65 Fall 015 Homework Set 3 Solutions 1. Agresti.0 Table.1 is from an early study on the death penalty in Florida. Analyze these data and show that Simpson s Paradox occurs. Death Penalty Victim's

More information

Example. χ 2 = Continued on the next page. All cells

Example. χ 2 = Continued on the next page. All cells Section 11.1 Chi Square Statistic k Categories 1 st 2 nd 3 rd k th Total Observed Frequencies O 1 O 2 O 3 O k n Expected Frequencies E 1 E 2 E 3 E k n O 1 + O 2 + O 3 + + O k = n E 1 + E 2 + E 3 + + E

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank Predicting performance Assume the estimated error rate is 5%. How close is this to the true error rate? Depends on the amount of test data Prediction

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Lecture 8: Summary Measures

Lecture 8: Summary Measures Lecture 8: Summary Measures Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 8:

More information

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests

Two Correlated Proportions Non- Inferiority, Superiority, and Equivalence Tests Chapter 59 Two Correlated Proportions on- Inferiority, Superiority, and Equivalence Tests Introduction This chapter documents three closely related procedures: non-inferiority tests, superiority (by a

More information

n y π y (1 π) n y +ylogπ +(n y)log(1 π).

n y π y (1 π) n y +ylogπ +(n y)log(1 π). Tests for a binomial probability π Let Y bin(n,π). The likelihood is L(π) = n y π y (1 π) n y and the log-likelihood is L(π) = log n y +ylogπ +(n y)log(1 π). So L (π) = y π n y 1 π. 1 Solving for π gives

More information

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1!

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1! Proportions A proportion is the fraction of individuals having a particular attribute. It is also the probability that an individual randomly sampled from the population will have that attribute Can range

More information

Chapter 19. Agreement and the kappa statistic

Chapter 19. Agreement and the kappa statistic 19. Agreement Chapter 19 Agreement and the kappa statistic Besides the 2 2contingency table for unmatched data and the 2 2table for matched data, there is a third common occurrence of data appearing summarised

More information

Chapters 10. Hypothesis Testing

Chapters 10. Hypothesis Testing Chapters 10. Hypothesis Testing Some examples of hypothesis testing 1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin? 2. Is the new treatment on blood pressure more effective than the

More information

Inferences About Two Proportions

Inferences About Two Proportions Inferences About Two Proportions Quantitative Methods II Plan for Today Sampling two populations Confidence intervals for differences of two proportions Testing the difference of proportions Examples 1

More information

The Multinomial Model

The Multinomial Model The Multinomial Model STA 312: Fall 2012 Contents 1 Multinomial Coefficients 1 2 Multinomial Distribution 2 3 Estimation 4 4 Hypothesis tests 8 5 Power 17 1 Multinomial Coefficients Multinomial coefficient

More information

Introduction to Survey Analysis!

Introduction to Survey Analysis! Introduction to Survey Analysis! Professor Ron Fricker! Naval Postgraduate School! Monterey, California! Reading Assignment:! 2/22/13 None! 1 Goals for this Lecture! Introduction to analysis for surveys!

More information

Probability and Statistics. Joyeeta Dutta-Moscato June 29, 2015

Probability and Statistics. Joyeeta Dutta-Moscato June 29, 2015 Probability and Statistics Joyeeta Dutta-Moscato June 29, 2015 Terms and concepts Sample vs population Central tendency: Mean, median, mode Variance, standard deviation Normal distribution Cumulative distribution

More information

Chapters 10. Hypothesis Testing

Chapters 10. Hypothesis Testing Chapters 10. Hypothesis Testing Some examples of hypothesis testing 1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin? 2. Is the new treatment more effective than the old one? 3. Quality

More information

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION FOR SAMPLE OF RAW DATA (E.G. 4, 1, 7, 5, 11, 6, 9, 7, 11, 5, 4, 7) BE ABLE TO COMPUTE MEAN G / STANDARD DEVIATION MEDIAN AND QUARTILES Σ ( Σ) / 1 GROUPED DATA E.G. AGE FREQ. 0-9 53 10-19 4...... 80-89

More information

Cohen s s Kappa and Log-linear Models

Cohen s s Kappa and Log-linear Models Cohen s s Kappa and Log-linear Models HRP 261 03/03/03 10-11 11 am 1. Cohen s Kappa Actual agreement = sum of the proportions found on the diagonals. π ii Cohen: Compare the actual agreement with the chance

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 4: Inference for a single mean ) GY Zou gzou@srobarts.ca Example 5.4. (p. 183). A random sample of n =16, Mean I.Q is 106 with standard deviation S =12.4. What

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Probability and Statistics. Terms and concepts

Probability and Statistics. Terms and concepts Probability and Statistics Joyeeta Dutta Moscato June 30, 2014 Terms and concepts Sample vs population Central tendency: Mean, median, mode Variance, standard deviation Normal distribution Cumulative distribution

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information

15: CHI SQUARED TESTS

15: CHI SQUARED TESTS 15: CHI SQUARED ESS MULIPLE CHOICE QUESIONS In the following multiple choice questions, please circle the correct answer. 1. Which statistical technique is appropriate when we describe a single population

More information

Ling 289 Contingency Table Statistics

Ling 289 Contingency Table Statistics Ling 289 Contingency Table Statistics Roger Levy and Christopher Manning This is a summary of the material that we ve covered on contingency tables. Contingency tables: introduction Odds ratios Counting,

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 12/15/2008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT)

Welcome! Webinar Biostatistics: sample size & power. Thursday, April 26, 12:30 1:30 pm (NDT) . Welcome! Webinar Biostatistics: sample size & power Thursday, April 26, 12:30 1:30 pm (NDT) Get started now: Please check if your speakers are working and mute your audio. Please use the chat box to

More information

Unit 9: Inferences for Proportions and Count Data

Unit 9: Inferences for Proportions and Count Data Unit 9: Inferences for Proportions and Count Data Statistics 571: Statistical Methods Ramón V. León 1/15/008 Unit 9 - Stat 571 - Ramón V. León 1 Large Sample Confidence Interval for Proportion ( pˆ p)

More information

Lecture 25: Models for Matched Pairs

Lecture 25: Models for Matched Pairs Lecture 25: Models for Matched Pairs Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture

More information

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 I. χ 2 or chi-square test Objectives: Compare how close an experimentally derived value agrees with an expected value. One method to

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual

Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Mock Exam - 2 hours - use of basic (non-programmable) calculator is allowed - all exercises carry the same marks - exam is strictly individual Question 1. Suppose you want to estimate the percentage of

More information

Data Mining. Chapter 5. Credibility: Evaluating What s Been Learned

Data Mining. Chapter 5. Credibility: Evaluating What s Been Learned Data Mining Chapter 5. Credibility: Evaluating What s Been Learned 1 Evaluating how different methods work Evaluation Large training set: no problem Quality data is scarce. Oil slicks: a skilled & labor-intensive

More information

13.1 Categorical Data and the Multinomial Experiment

13.1 Categorical Data and the Multinomial Experiment Chapter 13 Categorical Data Analysis 13.1 Categorical Data and the Multinomial Experiment Recall Variable: (numerical) variable (i.e. # of students, temperature, height,). (non-numerical, categorical)

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

2.3 Analysis of Categorical Data

2.3 Analysis of Categorical Data 90 CHAPTER 2. ESTIMATION AND HYPOTHESIS TESTING 2.3 Analysis of Categorical Data 2.3.1 The Multinomial Probability Distribution A mulinomial random variable is a generalization of the binomial rv. It results

More information

6.4 Type I and Type II Errors

6.4 Type I and Type II Errors 6.4 Type I and Type II Errors Ulrich Hoensch Friday, March 22, 2013 Null and Alternative Hypothesis Neyman-Pearson Approach to Statistical Inference: A statistical test (also known as a hypothesis test)

More information

Lecture 5: ANOVA and Correlation

Lecture 5: ANOVA and Correlation Lecture 5: ANOVA and Correlation Ani Manichaikul amanicha@jhsph.edu 23 April 2007 1 / 62 Comparing Multiple Groups Continous data: comparing means Analysis of variance Binary data: comparing proportions

More information

2 Describing Contingency Tables

2 Describing Contingency Tables 2 Describing Contingency Tables I. Probability structure of a 2-way contingency table I.1 Contingency Tables X, Y : cat. var. Y usually random (except in a case-control study), response; X can be random

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 25. Ingo Ruczinski. November 24, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 25 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University November 24, 2015 1 2 3 4 5 6 7 8 9 10 11 1 Hypothesis s of homgeneity 2 Estimating risk

More information

Review of One-way Tables and SAS

Review of One-way Tables and SAS Stat 504, Lecture 7 1 Review of One-way Tables and SAS In-class exercises: Ex1, Ex2, and Ex3 from http://v8doc.sas.com/sashtml/proc/z0146708.htm To calculate p-value for a X 2 or G 2 in SAS: http://v8doc.sas.com/sashtml/lgref/z0245929.htmz0845409

More information

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke

BIOL 51A - Biostatistics 1 1. Lecture 1: Intro to Biostatistics. Smoking: hazardous? FEV (l) Smoke BIOL 51A - Biostatistics 1 1 Lecture 1: Intro to Biostatistics Smoking: hazardous? FEV (l) 1 2 3 4 5 No Yes Smoke BIOL 51A - Biostatistics 1 2 Box Plot a.k.a box-and-whisker diagram or candlestick chart

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Lecture 9. Selected material from: Ch. 12 The analysis of categorical data and goodness of fit tests

Lecture 9. Selected material from: Ch. 12 The analysis of categorical data and goodness of fit tests Lecture 9 Selected material from: Ch. 12 The analysis of categorical data and goodness of fit tests Univariate categorical data Univariate categorical data are best summarized in a one way frequency table.

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

CHI SQUARE ANALYSIS 8/18/2011 HYPOTHESIS TESTS SO FAR PARAMETRIC VS. NON-PARAMETRIC

CHI SQUARE ANALYSIS 8/18/2011 HYPOTHESIS TESTS SO FAR PARAMETRIC VS. NON-PARAMETRIC CHI SQUARE ANALYSIS I N T R O D U C T I O N T O N O N - P A R A M E T R I C A N A L Y S E S HYPOTHESIS TESTS SO FAR We ve discussed One-sample t-test Dependent Sample t-tests Independent Samples t-tests

More information

BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings

BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings BIO5312 Biostatistics Lecture 6: Statistical hypothesis testings Yujin Chung October 4th, 2016 Fall 2016 Yujin Chung Lec6: Statistical hypothesis testings Fall 2016 1/30 Previous Two types of statistical

More information

Categorical Data Analysis 1

Categorical Data Analysis 1 Categorical Data Analysis 1 STA 312: Fall 2012 1 See last slide for copyright information. 1 / 1 Variables and Cases There are n cases (people, rats, factories, wolf packs) in a data set. A variable is

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 3: Bivariate association : Categorical variables Proportion in one group One group is measured one time: z test Use the z distribution as an approximation to the binomial

More information

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables. Chapter 10 Multinomial Experiments and Contingency Tables 1 Chapter 10 Multinomial Experiments and Contingency Tables 10-1 1 Overview 10-2 2 Multinomial Experiments: of-fitfit 10-3 3 Contingency Tables:

More information

10: Crosstabs & Independent Proportions

10: Crosstabs & Independent Proportions 10: Crosstabs & Independent Proportions p. 10.1 P Background < Two independent groups < Binary outcome < Compare binomial proportions P Illustrative example ( oswege.sav ) < Food poisoning following church

More information

Discrete distribution. Fitting probability models to frequency data. Hypotheses for! 2 test. ! 2 Goodness-of-fit test

Discrete distribution. Fitting probability models to frequency data. Hypotheses for! 2 test. ! 2 Goodness-of-fit test Discrete distribution Fitting probability models to frequency data A probability distribution describing a discrete numerical random variable For example,! Number of heads from 10 flips of a coin! Number

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

ij i j m ij n ij m ij n i j Suppose we denote the row variable by X and the column variable by Y ; We can then re-write the above expression as

ij i j m ij n ij m ij n i j Suppose we denote the row variable by X and the column variable by Y ; We can then re-write the above expression as page1 Loglinear Models Loglinear models are a way to describe association and interaction patterns among categorical variables. They are commonly used to model cell counts in contingency tables. These

More information

STA6938-Logistic Regression Model

STA6938-Logistic Regression Model Dr. Ying Zhang STA6938-Logistic Regression Model Topic 2-Multiple Logistic Regression Model Outlines:. Model Fitting 2. Statistical Inference for Multiple Logistic Regression Model 3. Interpretation of

More information

Quantitative Analysis and Empirical Methods

Quantitative Analysis and Empirical Methods Hypothesis testing Sciences Po, Paris, CEE / LIEPP Introduction Hypotheses Procedure of hypothesis testing Two-tailed and one-tailed tests Statistical tests with categorical variables A hypothesis A testable

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

ST3241 Categorical Data Analysis I Two-way Contingency Tables. Odds Ratio and Tests of Independence

ST3241 Categorical Data Analysis I Two-way Contingency Tables. Odds Ratio and Tests of Independence ST3241 Categorical Data Analysis I Two-way Contingency Tables Odds Ratio and Tests of Independence 1 Inference For Odds Ratio (p. 24) For small to moderate sample size, the distribution of sample odds

More information

Statistics 3858 : Contingency Tables

Statistics 3858 : Contingency Tables Statistics 3858 : Contingency Tables 1 Introduction Before proceeding with this topic the student should review generalized likelihood ratios ΛX) for multinomial distributions, its relation to Pearson

More information

Frequency Distribution Cross-Tabulation

Frequency Distribution Cross-Tabulation Frequency Distribution Cross-Tabulation 1) Overview 2) Frequency Distribution 3) Statistics Associated with Frequency Distribution i. Measures of Location ii. Measures of Variability iii. Measures of Shape

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

10.4 Hypothesis Testing: Two Independent Samples Proportion

10.4 Hypothesis Testing: Two Independent Samples Proportion 10.4 Hypothesis Testing: Two Independent Samples Proportion Example 3: Smoking cigarettes has been known to cause cancer and other ailments. One politician believes that a higher tax should be imposed

More information

Probability & Statistics - FALL 2008 FINAL EXAM

Probability & Statistics - FALL 2008 FINAL EXAM 550.3 Probability & Statistics - FALL 008 FINAL EXAM NAME. An urn contains white marbles and 8 red marbles. A marble is drawn at random from the urn 00 times with replacement. Which of the following is

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.0 Introduction to Statistical Methods in Economics Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

One-sample categorical data: approximate inference

One-sample categorical data: approximate inference One-sample categorical data: approximate inference Patrick Breheny October 6 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction It is relatively easy to think about the distribution

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Part 1.) We know that the probability of any specific x only given p ij = p i p j is just multinomial(n, p) where p k1 k 2

Part 1.) We know that the probability of any specific x only given p ij = p i p j is just multinomial(n, p) where p k1 k 2 Problem.) I will break this into two parts: () Proving w (m) = p( x (m) X i = x i, X j = x j, p ij = p i p j ). In other words, the probability of a specific table in T x given the row and column counts

More information

Statistics Handbook. All statistical tables were computed by the author.

Statistics Handbook. All statistical tables were computed by the author. Statistics Handbook Contents Page Wilcoxon rank-sum test (Mann-Whitney equivalent) Wilcoxon matched-pairs test 3 Normal Distribution 4 Z-test Related samples t-test 5 Unrelated samples t-test 6 Variance

More information

Inferences About Two Population Proportions

Inferences About Two Population Proportions Inferences About Two Population Proportions MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Background Recall: for a single population the sampling proportion

More information

Ordinal Variables in 2 way Tables

Ordinal Variables in 2 way Tables Ordinal Variables in 2 way Tables Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2018 C.J. Anderson (Illinois) Ordinal Variables

More information

Logistic Regression Analyses in the Water Level Study

Logistic Regression Analyses in the Water Level Study Logistic Regression Analyses in the Water Level Study A. Introduction. 166 students participated in the Water level Study. 70 passed and 96 failed to correctly draw the water level in the glass. There

More information

8 Nominal and Ordinal Logistic Regression

8 Nominal and Ordinal Logistic Regression 8 Nominal and Ordinal Logistic Regression 8.1 Introduction If the response variable is categorical, with more then two categories, then there are two options for generalized linear models. One relies on

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

E509A: Principle of Biostatistics. (Week 11(2): Introduction to non-parametric. methods ) GY Zou.

E509A: Principle of Biostatistics. (Week 11(2): Introduction to non-parametric. methods ) GY Zou. E509A: Principle of Biostatistics (Week 11(2): Introduction to non-parametric methods ) GY Zou gzou@robarts.ca Sign test for two dependent samples Ex 12.1 subj 1 2 3 4 5 6 7 8 9 10 baseline 166 135 189

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

Person-Time Data. Incidence. Cumulative Incidence: Example. Cumulative Incidence. Person-Time Data. Person-Time Data

Person-Time Data. Incidence. Cumulative Incidence: Example. Cumulative Incidence. Person-Time Data. Person-Time Data Person-Time Data CF Jeff Lin, MD., PhD. Incidence 1. Cumulative incidence (incidence proportion) 2. Incidence density (incidence rate) December 14, 2005 c Jeff Lin, MD., PhD. c Jeff Lin, MD., PhD. Person-Time

More information

Chapter 5: Logistic Regression-I

Chapter 5: Logistic Regression-I : Logistic Regression-I Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

Chapter 10. Discrete Data Analysis

Chapter 10. Discrete Data Analysis Chapter 1. Discrete Data Analysis 1.1 Inferences on a Population Proportion 1. Comparing Two Population Proportions 1.3 Goodness of Fit Tests for One-Way Contingency Tables 1.4 Testing for Independence

More information

Exam 2 Practice Questions, 18.05, Spring 2014

Exam 2 Practice Questions, 18.05, Spring 2014 Exam 2 Practice Questions, 18.05, Spring 2014 Note: This is a set of practice problems for exam 2. The actual exam will be much shorter. Within each section we ve arranged the problems roughly in order

More information

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1 4 Hypothesis testing 4. Simple hypotheses A computer tries to distinguish between two sources of signals. Both sources emit independent signals with normally distributed intensity, the signals of the first

More information

Discrete Multivariate Statistics

Discrete Multivariate Statistics Discrete Multivariate Statistics Univariate Discrete Random variables Let X be a discrete random variable which, in this module, will be assumed to take a finite number of t different values which are

More information

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI Introduction of Data Analytics Prof. Nandan Sudarsanam and Prof. B Ravindran Department of Management Studies and Department of Computer Science and Engineering Indian Institute of Technology, Madras Module

More information

Just Enough Likelihood

Just Enough Likelihood Just Enough Likelihood Alan R. Rogers September 2, 2013 1. Introduction Statisticians have developed several methods for comparing hypotheses and for estimating parameters from data. Of these, the method

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 26 (MWF) Tests and CI based on two proportions Suhasini Subba Rao Comparing proportions in

More information