SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

Size: px
Start display at page:

Download "SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3"

Transcription

1 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the origin at P.. (a) Suppose the horizontal istance between P an Q is 00 ft. Write equations in a, b, an c that will ensure that the track is smooth at the transition points. (b) Solve the equations in part (a) for a, b, an c to fin a formula for f. ; (c) Plot L, f, an L 2 to verify graphically that the transitions are smooth. () Fin the ifference in elevation between P an Q. 2. The solution in Problem might look smooth, but it might not feel smooth because the piecewise efine function [consisting of L for 0, f for 0 00, an L 2 for 00] oesn t have a continuous secon erivative. So you ecie to improve the esign by using a quaratic function q a 2 b c only on the interval 0 90 an connecting it to the linear functions by means of two cubic functions: t k 3 l 2 m n 0 0 h p 3 q 2 r s CAS (a) Write a system of equations in unknowns that ensure that the functions an their first two erivatives agree at the transition points. (b) Solve the equations in part (a) with a computer algebra system to fin formulas for q, t, an h. (c) Plot, t, q, h, an, an compare with the plot in Problem (c). L L THE PRODUCT AND QUOTIENT RULES The formulas of this section enable us to ifferentiate new functions forme from ol functions by multiplication or ivision. THE PRODUCT RULE Î u Î u Îu Î Îu By analogy with the Sum an Difference Rules, one might be tempte to guess, as Leibniz i three centuries ago, that the erivative of a prouct is the prouct of the erivatives. We can see, however, that this guess is wrong by looking at a particular eample. Let f an t 2. Then the Power Rule gives f an t 2. But ft 3, so ft 3 2. Thus ft f t. The correct formula was iscovere by Leibniz (soon after his false start) an is calle the Prouct Rule. Before stating the Prouct Rule, let s see how we might iscover it. We start by assuming that u f an v t are both positive ifferentiable functions. Then we can interpret the prouct uv as an area of a rectangle (see Figure ). If changes by an amount, then the corresponing changes in u an v are u Îu FIGURE The geometry of the Prouct Rule u f f v t t an the new value of the prouct, u uv v, can be interprete as the area of the large rectangle in Figure (provie that u an v happen to be positive). The change in the area of the rectangle is uv u uv v uv u v v u u v the sum of the three shae areas

2 8 4 CHAPTER 3 DIFFERENTIATION RULES If we ivie by, we get uv u v u v v u N Recall that in Leibniz notation the efinition of a erivative can be written as y y lim l 0 If we now let l 0, we get the erivative of uv: uv uv lim lim l 0 l 0u v u v v u v u u lim v lim l 0 l 0 v lim ulim l 0 l 0 u v u v v 0 2 v u uv u v (Notice that u l 0 as l 0 since f is ifferentiable an therefore continuous.) Although we starte by assuming (for the geometric interpretation) that all the quantities are positive, we notice that Equation is always true. (The algebra is vali whether u, v, u, an v are positive or negative.) So we have prove Equation 2, known as the Prouct Rule, for all ifferentiable functions u an v. N In prime notation: ft ft tf THE PRODUCT RULE If f an t are both ifferentiable, then f t f t t f In wors, the Prouct Rule says that the erivative of a prouct of two functions is the first function times the erivative of the secon function plus the secon function times the erivative of the first function. N Figure 2 shows the graphs of the function f of Eample an its erivative f. Notice that f is positive when f is increasing an negative when f is ecreasing. 3 EXAPLE (a) If f e, fin f. (b) Fin the nth erivative, f n. SOLUTION (a) By the Prouct Rule, we have f e e e e e e fª _3.5 f _ FIGURE 2 (b) Using the Prouct Rule a secon time, we get f e e e e e 2e

3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 5 Further applications of the Prouct Rule give f 3e f 4 4e In fact, each successive ifferentiation as another term e, so f n ne N In Eample 2, a an b are constants. It is customary in mathematics to use letters near the beginning of the alphabet to represent constants an letters near the en of the alphabet to represent variables. EXAPLE 2 Differentiate the function f t st a bt. SOLUTION Using the Prouct Rule, we have f t st bst t a bt a bt t (st ) st b a bt 2 t 2 a bt 2st a 3bt 2st SOLUTION 2 If we first use the laws of eponents to rewrite irectly without using the Prouct Rule. f t, then we can procee f t ast btst at 2 bt 32 f t 2at bt 2 which is equivalent to the answer given in Solution. Eample 2 shows that it is sometimes easier to simplify a prouct of functions than to use the Prouct Rule. In Eample, however, the Prouct Rule is the only possible metho. EXAPLE 3 If f s t, where t4 2 an t4 3, fin SOLUTION Applying the Prouct Rule, we get f 4. So f [s t] s s t t 2 2 t t [s ] s t t 2s f 4 s4 t4 t s4 2 2 THE QUOTIENT RULE We fin a rule for ifferentiating the quotient of two ifferentiable functions u f an v t in much the same way that we foun the Prouct Rule. If, u, an v change by amounts, u, an v, then the corresponing change in the quotient uv is u v u u v v u v u uv uv v vv v vu uv vv v

4 8 6 CHAPTER 3 DIFFERENTIATION RULES so v u v u uv lim lim l 0 l 0 u v vv v As l 0, v l 0 also, because v t is ifferentiable an therefore continuous. Thus, using the Limit Laws, we get v u v lim l 0 u v u lim l 0 v lim v v l 0 v u u v v 2 N In prime notation: t f tf ft t 2 THE QUOTIENT RULE If f an t are ifferentiable, then f t f f t t t 2 In wors, the Quotient Rule says that the erivative of a quotient is the enominator times the erivative of the numerator minus the numerator times the erivative of the enominator, all ivie by the square of the enominator. The Quotient Rule an the other ifferentiation formulas enable us to compute the erivative of any rational function, as the net eample illustrates. N We can use a graphing evice to check that the answer to Eample 4 is plausible. Figure 3 shows the graphs of the function of Eample 4 an its erivative. Notice that when y grows rapily (near 2), y is large. An when y grows slowly, y is near 0..5 yª _4 4 y _.5 FIGURE 3 EXAPLE 4 Let y 2 2 V. Then y V EXAPLE 5 Fin an equation of the tangent line to the curve y e 2 at the point (, 2e). SOLUTION Accoring to the Quotient Rule, we have y 2 e e e e 2 e

5 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES y= + _ FIGURE 4 y= e 2 So the slope of the tangent line at (, 2e) is y 0 This means that the tangent line at (, 2e) is horizontal an its equation is y 2e. [See Figure 4. Notice that the function is increasing an crosses its tangent line at (, 2e).] NOTE Don t use the Quotient Rule every time you see a quotient. Sometimes it s easier to rewrite a quotient first to put it in a form that is simpler for the purpose of ifferentiation. For instance, although it is possible to ifferentiate the function F 3 2 2s using the Quotient Rule, it is much easier to perform the ivision first an write the function as F before ifferentiating. We summarize the ifferentiation formulas we have learne so far as follows. TABLE OF DIFFERENTIATION FORULAS c 0 n n n e e cf cf ft ft tf f t f t t f tf ft t 2 f t f t 3.2 EXERCISES. Fin the erivative of y 2 3 in two ways: by using the Prouct Rule an by performing the multiplication first. Do your answers agree? 2. Fin the erivative of the function in two ways: by using the Quotient Rule an by simplifying first. Show that your answers are equivalent. Which metho o you prefer? Differentiate y e y e 2 F 3s s 3. f 3 2e 4. t s e 3 7. t 8. f t 2t 2 4 t 2 9. V Yu u 2 u 3 u 5 2u 2. Fy y 2 3 y 4y 5y 3 2. Rt t e t (3 st ) 3. y y 3 2 t 2 2 t 5. y 6. y t 4 3t 2 t 2 7. y r 2 2re r 8. y s ke s

6 8 8 CHAPTER 3 DIFFERENTIATION RULES 9. y v3 2vsv 2 0. z w 32 w ce w v 2. f t 2t 2 2. tt 2 st A 23. f 2 4. f B Ce 2 5. f c Fin f an f Fin an equation of the tangent line to the given curve at the specifie point. 26. f 3., 32. y e y 2,, t st t 3 e e a b c 27. f 4 e 2 8. f 52 e 29. f f 2 3 e Fin equations of the tangent line an normal line to the given curve at the specifie point y 2e, 0, y s,, e 4, (a) If f e, fin f an f. ; (b) Check to see that your answers to part (a) are reasonable by comparing the graphs of f, f, an f (a) If f 2, fin f an f. ; (b) Check to see that your answers to part (a) are reasonable by comparing the graphs of f, f, an f. 4. If f 2, fin f. 42. If t e, fin t n Suppose that f 5, f 5 6, t5 3, an t5 2. Fin the following values. (a) ft5 (b) ft5 (c) tf Suppose that f 2 3, t2 4, f 2 2, an t2 7. Fin h2. (a) h 5f 4t (b) h f t (c) h f t 4 5. If f e t, where t0 2 an t0 5, fin f If h2 4 an h2 3, fin h () h t f If f an t are the functions whose graphs are shown, let u f t an v f t. (a) Fin u. (b) Fin v5. y 3 5. (a) The curve y 2 is calle a witch of aria Agnesi. Fin an equation of the tangent line to this curve at the point (, 2 ). ; (b) Illustrate part (a) by graphing the curve an the tangent line on the same screen. 0 f g 3 6. (a) The curve y 2 is calle a serpentine. Fin an equation of the tangent line to this curve at the point 3, 0.3. ; (b) Illustrate part (a) by graphing the curve an the tangent line on the same screen (a) If f e 3, fin f. ; (b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f an f. 48. Let P FG an Q FG, where F an G are the functions whose graphs are shown. (a) Fin P2. (b) Fin Q7. y F 3 8. (a) If f 2, fin f. ; (b) Check to see that your answer to part (a) is reasonable by comparing the graphs of f an f. 0 G

7 SECTION 3.3 DERIVATIVES OF TRIGONOETRIC FUNCTIONS If t is a ifferentiable function, fin an epression for the erivative of each of the following functions. (a) y t (b) y (c) y t t 50. If f is a ifferentiable function, fin an epression for the erivative of each of the following functions. (a) y 2 f (c) y 2 f (b) () y y f 2 f s 55. write q f p. Then the total revenue earne with selling price p is Rp pf p. (a) What oes it mean to say that f 20 0,000 an f ? (b) Assuming the values in part (a), fin R20 an interpret your answer. (a) Use the Prouct Rule twice to prove that if f, t, an h are ifferentiable, then fth f th fth fth. (b) Taking f t h in part (a), show that f 3 3 f 2 f 5. How many tangent lines to the curve y ) pass through the point, 2? At which points o these tangent lines touch the curve? 52. Fin equations of the tangent lines to the curve y that are parallel to the line 2y In this eercise we estimate the rate at which the total personal income is rising in the Richmon-Petersburg, Virginia, metropolitan area. In 999, the population of this area was 96,400, an the population was increasing at roughly 9200 people per year. The average annual income was $30,593 per capita, an this average was increasing at about $400 per year (a little above the national average of about $225 yearly). Use the Prouct Rule an these figures to estimate the rate at which total personal income was rising in the Richmon-Petersburg area in 999. Eplain the meaning of each term in the Prouct Rule. 54. A manufacturer prouces bolts of a fabric with a fie with. The quantity q of this fabric (measure in yars) that is sol is a function of the selling price p (in ollars per yar), so we can (c) Use part (b) to ifferentiate y e (a) If F f t, where f an t have erivatives of all orers, show that F f t 2f t ft. (b) Fin similar formulas for F an F 4. (c) Guess a formula for. F n 57. Fin epressions for the first five erivatives of f 2 e. Do you see a pattern in these epressions? Guess a formula for f n an prove it using mathematical inuction. 58. (a) If t is ifferentiable, the Reciprocal Rule says that Use the Quotient Rule to prove the Reciprocal Rule. (b) Use the Reciprocal Rule to ifferentiate the function in Eercise 8. (c) Use the Reciprocal Rule to verify that the Power Rule is vali for negative integers, that is, for all positive integers n. t t t 2 n n n N A review of the trigonometric functions is given in Appeni D. 3.3 DERIVATIVES OF TRIGONOETRIC FUNCTIONS Before starting this section, you might nee to review the trigonometric functions. In particular, it is important to remember that when we talk about the function f efine for all real numbers by f sin it is unerstoo that sin means the sine of the angle whose raian measure is. A similar convention hols for the other trigonometric functions cos, tan, csc, sec, an cot. Recall from Section 2.5 that all of the trigonometric functions are continuous at every number in their omains. If we sketch the graph of the function f sin an use the interpretation of f as the slope of the tangent to the sine curve in orer to sketch the graph of f (see Eer-

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved.

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved. 2.3 Differentiation Formulas Copyright Cengage Learning. All rights reserved. Differentiation Formulas Let s start with the simplest of all functions, the constant function f (x) = c. The graph of this

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

SHORT-CUTS TO DIFFERENTIATION

SHORT-CUTS TO DIFFERENTIATION Chapter Three SHORT-CUTS TO DIFFERENTIATION In Chapter, we efine the erivative function f () = lim h 0 f( + h) f() h an saw how the erivative represents a slope an a rate of change. We learne how to approimate

More information

Product and Quotient Rules and Higher-Order Derivatives. The Product Rule

Product and Quotient Rules and Higher-Order Derivatives. The Product Rule 330_003.q 11/3/0 :3 PM Page 119 SECTION.3 Prouct an Quotient Rules an Higher-Orer Derivatives 119 Section.3 Prouct an Quotient Rules an Higher-Orer Derivatives Fin the erivative o a unction using the Prouct

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 1a 1b 2.1 Derivatives an Rates of Change Tangent Lines Example. Consier y f x x 2 0 2 x-, 0 4 y-, f(x) axes, curve C Consier a smooth curve C. A line tangent to C at a point P both intersects C at P an

More information

Integration by Parts

Integration by Parts Integration by Parts 6-3-207 If u an v are functions of, the Prouct Rule says that (uv) = uv +vu Integrate both sies: (uv) = uv = uv + u v + uv = uv vu, vu v u, I ve written u an v as shorthan for u an

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

With the Chain Rule. y x 2 1. and. with respect to second axle. dy du du dx. Rate of change of first axle. with respect to third axle

With the Chain Rule. y x 2 1. and. with respect to second axle. dy du du dx. Rate of change of first axle. with respect to third axle 0 CHAPTER Differentiation Section The Chain Rule Fin the erivative of a composite function using the Chain Rule Fin the erivative of a function using the General Power Rule Simplif the erivative of a function

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

lim Prime notation can either be directly applied to a function as previously seen with f x 4.1 Basic Techniques for Finding Derivatives

lim Prime notation can either be directly applied to a function as previously seen with f x 4.1 Basic Techniques for Finding Derivatives MATH 040 Notes: Unit Page 4. Basic Techniques for Fining Derivatives In the previous unit we introuce the mathematical concept of the erivative: f f ( h) f ( ) lim h0 h (assuming the limit eists) In this

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Basic Differentiation Rules and Rates of Change. The Constant Rule

Basic Differentiation Rules and Rates of Change. The Constant Rule 460_00.q //04 4:04 PM Page 07 SECTION. Basic Differentiation Rules an Rates of Change 07 Section. The slope of a horizontal line is 0. Basic Differentiation Rules an Rates of Change Fin the erivative of

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.eu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms. Lecture 8.0 Fall 2006 Unit

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

The Chain Rule. y x 2 1 y sin x. and. Rate of change of first axle. with respect to second axle. dy du. du dx. Rate of change of first axle

The Chain Rule. y x 2 1 y sin x. and. Rate of change of first axle. with respect to second axle. dy du. du dx. Rate of change of first axle . The Chain Rule 9. The Chain Rule Fin the erivative of a composite function using the Chain Rule. Fin the erivative of a function using the General Power Rule. Simplif the erivative of a function using

More information

Authors Gregory Hartman, Ph.D. Brian Heinold, Ph.D. Troy Siemers, Ph.D. Dimplekumar Chalishajar, Ph.D. Editor Jennifer Bowen, Ph.D.

Authors Gregory Hartman, Ph.D. Brian Heinold, Ph.D. Troy Siemers, Ph.D. Dimplekumar Chalishajar, Ph.D. Editor Jennifer Bowen, Ph.D. Section 7 Derivatives of Inverse Functions AP E XC I Version 0 Authors Gregory Hartman, PhD Department of Applie Mathema cs Virginia Military Ins tute Brian Heinol, PhD Department of Mathema cs an Computer

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Trigonometric Functions

Trigonometric Functions 72 Chapter 4 Trigonometric Functions 4 Trigonometric Functions To efine the raian measurement system, we consier the unit circle in the y-plane: (cos,) A y (,0) B So far we have use only algebraic functions

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Higher. Further Calculus 149

Higher. Further Calculus 149 hsn.uk.net Higher Mathematics UNIT 3 OUTCOME 2 Further Calculus Contents Further Calculus 49 Differentiating sinx an cosx 49 2 Integrating sinx an cosx 50 3 The Chain Rule 5 4 Special Cases of the Chain

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

Chapter 1 Prerequisites for Calculus

Chapter 1 Prerequisites for Calculus Section. Chapter Prerequisites for Calculus Section. Lines (pp. 9) Quick Review.. ( ) (). ( ). m 5. m ( ) 5 ( ) 5. (a) () 5 Section. Eercises.. (). 8 () 5. 6 5. (a, c) 5 B A 5 6 5 Yes (b) () () 5 5 No

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

2.3 Product and Quotient Rules and Higher-Order Derivatives

2.3 Product and Quotient Rules and Higher-Order Derivatives Chapter Dierentiation. Prouct an Quotient Rules an Higher-Orer Derivatives Fin the erivative o a unction using the Prouct Rule. Fin the erivative o a unction using the Quotient Rule. Fin the erivative

More information

1 Lecture 18: The chain rule

1 Lecture 18: The chain rule 1 Lecture 18: The chain rule 1.1 Outline Comparing the graphs of sin(x) an sin(2x). The chain rule. The erivative of a x. Some examples. 1.2 Comparing the graphs of sin(x) an sin(2x) We graph f(x) = sin(x)

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

by using the derivative rules. o Building blocks: d

by using the derivative rules. o Building blocks: d Calculus for Business an Social Sciences - Prof D Yuen Eam Review version /9/01 Check website for any poste typos an upates Eam is on Sections, 5, 6,, 1,, Derivatives Rules Know how to fin the formula

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

x 2 2x 8 (x 4)(x + 2)

x 2 2x 8 (x 4)(x + 2) Problems With Notation Mathematical notation is very precise. This contrasts with both oral communication an some written English. Correct mathematical notation: x 2 2x 8 (x 4)(x + 2) lim x 4 = lim x 4

More information

C6-1 Differentiation 2

C6-1 Differentiation 2 C6-1 Differentiation 2 the erivatives of sin, cos, a, e an ln Pre-requisites: M5-4 (Raians), C5-7 (General Calculus) Estimate time: 2 hours Summary Lea-In Learn Solve Revise Answers Summary The erivative

More information

Breakout Session 13 Solutions

Breakout Session 13 Solutions Problem True or False: If f = 2, then f = 2 False Any time that you have a function of raise to a function of, in orer to compute the erivative you nee to use logarithmic ifferentiation or something equivalent

More information

Math 1 Lecture 20. Dartmouth College. Wednesday

Math 1 Lecture 20. Dartmouth College. Wednesday Math 1 Lecture 20 Dartmouth College Wenesay 10-26-16 Contents Reminers/Announcements Last Time Derivatives of Trigonometric Functions Reminers/Announcements WebWork ue Friay x-hour problem session rop

More information

Antiderivatives and Indefinite Integration

Antiderivatives and Indefinite Integration 60_00.q //0 : PM Page 8 8 CHAPTER Integration Section. EXPLORATION Fining Antierivatives For each erivative, escribe the original function F. a. F b. F c. F. F e. F f. F cos What strateg i ou use to fin

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

4.2 First Differentiation Rules; Leibniz Notation

4.2 First Differentiation Rules; Leibniz Notation .. FIRST DIFFERENTIATION RULES; LEIBNIZ NOTATION 307. First Differentiation Rules; Leibniz Notation In this section we erive rules which let us quickly compute the erivative function f (x) for any polynomial

More information

Calculus I Announcements

Calculus I Announcements Slie 1 Calculus I Announcements Office Hours: Amos Eaton 309, Monays 12:50-2:50 Exam 2 is Thursay, October 22n. The stuy guie is now on the course web page. Start stuying now, an make a plan to succee.

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

(x,y) 4. Calculus I: Differentiation

(x,y) 4. Calculus I: Differentiation 4. Calculus I: Differentiation 4. The eriatie of a function Suppose we are gien a cure with a point lying on it. If the cure is smooth at then we can fin a unique tangent to the cure at : If the tangent

More information

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY 1. Calculate the following: a. 2 x, x(t) = A sin(ωt φ) t2 Solution: Using the chain rule, we have x (t) = A cos(ωt φ)ω = ωa cos(ωt φ) x (t) = ω 2

More information

Additional Derivative Topics

Additional Derivative Topics BARNMC04_0132328186.QXD 2/21/07 1:27 PM Page 216 Aitional Derivative Topics CHAPTER 4 4-1 The Constant e an Continuous Compoun Interest 4-2 Derivatives of Eponential an Logarithmic Functions 4-3 Derivatives

More information

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method

Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Method Unit #4 - Inverse Trig, Interpreting Derivatives, Newton s Metho Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Computing Inverse Trig Derivatives. Starting with the inverse

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2)

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2) 3.5 Chain Rule 149 3.5 Chain Rule Introuction As iscusse in Section 3.2, the Power Rule is vali for all real number exponents n. In this section we see that a similar rule hols for the erivative of a power

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information